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Crosstalk in competing endogenous RNA network reveals the 
complex molecular mechanism underlying lung cancer
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ABSTRACT

We investigated the transcriptional mechanism underlying lung cancer 
development. RNA sequencing analysis was performed on blood samples from lung 
cancer cases and healthy controls. Differentially expressed microRNAs (miRNAs), 
circular RNAs (circRNAs), mRNAs (genes), and long non-coding RNAs (lncRNA) 
were identified, followed by pathway enrichment analysis. Based on miRNA target 
interactions, a competing endogenous network was established and significant 
nodes were screened. Differentially expressed transcriptional factors were retrieved 
from the TRRUST database and the transcriptional factor regulatory network was 
constructed. The expression of 59 miRNAs, 18,306 genes,232 lncRNAs, and 292 
circRNAs were greatly altered in patients with lung cancer. miRNAs were closely 
associated with cancer-related pathways, such as pathways in cancer, colorectal 
cancer, and transcriptional misregulation in cancer. Two novel pathways, olfactory 
transduction and neuroactive ligand-receptor interactions, were significantly enriched 
by differentially expressed genes. The competing endogenous RNA network revealed 
5 hub miRNAs. Hsa-miR-582-3p and hsa-miR-582-5p were greatly enriched in the 
Wnt signaling pathway. Hsa-miR-665 was closely related with the MAPK signaling 
pathway. Hsa-miR-582-3p and hsa-miR-582-5p were also present in the TF regulatory 
network. Transcriptional factors of WT1 (wilms tumor 1) and ETV1 (ETS variant 1) 
were regulated by hsa-miR-657 and hsa-miR-582-5p, respectively, and controlled 
androgen receptor gene expression. miR-582-5p, miRNA-582-3p, and miR-657 may 
play critical regulatory roles in lung tumor development. Our work may explore new 
mechanism of lung cancer and aid the development of novel therapy.

INTRODUCTION

Lung cancer has a high incidence and mortality 
and threatens public health worldwide. Recent data have 
suggested that lung cancer is the leading cause of cancer-
related deaths [1]. Approximately 1.82 million people 
are estimated to be affected by lung cancer, resulting in 
1.67 million cancer deaths in 2012 worldwide [1]. Lung 
cancer is caused by the combined effects of genetic and 
environmental factors. Despite progress in understanding 
the pathogenesis of lung cancer, the prognosis of lung 
cancer remains poor with a 5-year survival of less than 

15% [2]. With the development of molecular biology 
techniques, novel therapeutic targets and prognostic 
biomarkers for lung carcinogenesis have been discovered.

MicroRNAs (miRNAs) are a class of small non-
protein-coding RNAs that play regulatory roles in gene 
expression by binding to messenger RNAs (mRNAs) 
[3] to mediate various biological functions [4]. miRNA 
binding to mRNA comprises the minimal competing 
endogenous RNA (ceRNA) network. In addition to 
miRNAs, transcription factors (TFs) regulate gene 
expression to control protein output in the ceRNA 
network [5]. ceRNAs, as coding or non-coding RNAs, 
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share the recognition elements of miRNAs and increase 
the complexity of the miRNA-based regulation network 
[6]. miRNAs play critical roles in disease or cancer 
development by participating in multiple networks [7].

Circular RNAs (circRNAs) are a class of non-
coding RNAs and are abundant in the cytoplasm; they are 
characterized by acting as miRNA sponges or ceRNAs 
[8]. CircRNAs can regulate gene expression in mammals 
[8] and are differentially expressed based on cell type and 
developmental stage [9]. circRNAs have shown potential 
in the diagnosis and targeted therapy of cancers [10]. 
However, the role of circRNAs in lung cancer has not been 
widely examined. CircRNAs are abundant in exosomes, 
and the sorting of circRNAs to exosomes is related to 
changes in miRNAs, which prompted us to explore the 
relationship between circRNAs and miRNAs in lung 
cancer.

In this study, we applied RNA sequencing (RNA-
seq) to explore the transcriptional landscape of the 
peripheral blood in patients with lung cancer and healthy 
controls. Differentially expressed (DE) miRNAs and DE 
circRNAs were filtered in lung cancer cases and a ceRNA 
network was constructed by combining information for 
miRNA, mRNA, circRNA, and lncRNAs. Our results 
provide novel insight into the complex molecular 
mechanisms of the miRNA-mediated gene regulatory 
network.

RESULTS

Profiling of miRNAs and circRNAs in blood 
samples of lung cancer and healthy controls

We characterized the miRNA and circRNA 
transcripts by RNA-seq from 3 pooled control samples 
and 3 cancer samples, respectively. Each sample was 
sequenced and approximately 505 million raw reads were 
obtained by circRNA-seq and 158 million raw data reads 
by miRNA-seq. After the clean reads were mapped to the 
human reference genome, we obtained 1028 miRNAs and 
43,599 circRNAs (containing 12,857 lncRNAs).

DE-miRNAs were analyzed using the limma 
package, which yielded 59 miRNAs of interest, including 
16 up-regulated and 43 down-regulated miRNAs 
compared to those in healthy controls. Based on circRNA-
seq, we obtained 292 DE circRNAs, 232 DE lncRNAs, 
and 18,306 DE genes. The relative expression levels of 
DE miRNAs and DE circRNAs in lung cancer samples are 
depicted in Figure 1.

Significant pathways enriched by DE genes and 
DE miRNAs

Pathway enrichment analysis reveals the genetic 
determinants and dysregulated pathways underlying 
lung cancer progression. Pathway enrichment analysis 

was conducted for up- and down-regulated DE genes. 
Up-regulated genes were significantly enriched in 
four pathways: prion diseases, toxoplasmosis, central 
carbon metabolism in cancer, and fructose and mannose 
metabolism. Pathways of neuroactive ligand-receptor 
interaction, nicotine addiction, and drug metabolism-
cytochrome P450 were perturbed by down-regulated 
genes (Figure 2A).

DE miRNA analysis revealed significant enrichment 
in 4 up-regulated miRNAs and 15 down-regulated miRNAs. 
Up-regulated miR-203 was closely related to cancer-
related pathways such as colorectal cancer. Additionally, 
miR-203 was related to the cAMP signaling pathway, 
focal adhesion, and FoxO signaling pathway, as well as 
miR-203. In addition, miR-657 was closely associated 
with transcriptional misregulation in cancer, aldosterone 
synthesis, and secretion, while miR-183 was predicted to 
be related to retrograde endocannabinoid signaling and 
the hedgehog signaling pathway (Figure 2B). Conserved 
targets of down-regulated miRNAs were greatly enriched 
in the MAPK signaling pathway, cancer-related pathways, 
proteoglycans in cancer, and signaling pathways regulating 
the pluripotency of stem cells (Figure 2C).

CeRNA network

Based on the information from miRanda and 
TargetScan, 309 miRNAs were predicted to interact 
with 206 DE cicRNAs, among which 5 miRNAs 
were differentially expressed. Visual representation of 
circRNA-miRNA-mRNA interactions was conducted for 
5 DE miRNAs, while DE lncRNAs that play regulatory 
roles in DE-genes were integrated. As shown in Figure 3, 
an interaction network comprising 362 edges connecting 
339 nodes was established and contained 5 miRNAs (3 
up-miRNA and 2 down-miRNA), 41 circRNAs (20 up-
circRNA and 21 down-circRNA, 82 lncRNAs (82 down-
lncRNs), and 211 genes (47 down-genes and 164 non-DE 
genes). Five miRNAs, miR-582-5p, miR-665, miR-1197, 
miR-657, and miR-582-3p, were hub nodes with highly 
connected degrees (Table 1).

Pathway enrichment analysis for significant 
miRNAs

The 5 hub miRNAs were subjected to pathway 
enrichment analysis, which revealed enriched pathways 
for 3 hub miRNAs: hsa-miR-582-3p, hsa-miR-582-5p, 
and hsa-miR-665. Hsa-miR-582-3p and hsa-miR-665 
were closely related to pathways in cancer. Target 
genes of hsa-miR-582-3p and hsa-miR-582-5p were 
greatly enriched in the Wnt signaling pathway. Other 
significant pathways were found to be MAPK signaling 
pathways related to hsa-miR-665, adherens junction, 
and TGF-beta signaling pathway related to hsa-miR-
582-3p (Figure 4).
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TF regulatory network

To further understand the role of the 3 significant 
miRNAs described above, miRNA target DE genes were 
subjected to the prediction of TF regulatory relationships 
revealed by the TRRUST database. We obtained 8 TFs 
(including DLX5 (distal-less homeobox 5), E2F8 (E2F 
transcription factor 8), ETV1 (ETS variant 1), FOXG1 
(forkhead box G1), FOXP2 (forkhead box P2), KLF12 
(Kruppel-like factor 12), ONECUT2 (one cut homeobox 
2), and WT1 (Wilms tumor 1) among the 47 down-
regulated genes in the ceRNA network (Figure 5). The TF 
regulatory network was constructed with 21 miRNA-target 

pairs and 23 TF-regulatory relationships. Three circRNAs 
(circRNA4046, circRNA4882, and circRNA4406) were 
included in the TF regulatory network as miRNA targets. 
Hsa-miR-657 target WT1 and hsa-miR-582-5p target 
ETV1 simultaneously regulated the AR gene.

qRT-PCR validation

qRT-PCR analysis of hsa-miR-1197 and miR-
665 expression was validated in the blood samples of 
patients and healthy controls. The expression level of 
hsa-miR-1197 was lower in patients with lung cancer 
than in normal controls. The expression of hsa-miR-665 

Figure 1: Heatmap of RNA sequencing data.  (A) Expression profiles of differentially expressed miRNAs in patients and controls; 
(B) Expression profiles of differentially expressed circRNAs in patients and controls
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was up-regulated in the patient group compared to that in 
the controls. The expression profile of hsa-miR-1197 and 
miR-665 was similar to the RNA-seq findings.

DISCUSSION

Cross-talk between ceRNAs based on shared 
miRNAs plays key roles in the physiology and 
development of various cancers [11]. Lung cancer is 
the most common cancer type and the leading cause of 
cancer-related death worldwide. Genetic factors are the 
strongest contributors to cancer development. However, 
transcriptome changes in lung cancers remain unclear. 
RNA-seq is a newly developed transcriptome profiling 
technology that is widely applied to detect new genetic 
variants and quantify genomic expression in a specific 
assay.

In the previous study, Jiao Yuan et al performed 
microarray data analysis covering both mRNAs and 
lncRNAs of four tumor types of gastric, colon, liver 
and lung cancer and found 316 DE genes and 157 DE 
lncRNAs [12]. To understand the role of non-coding 
RNA in lung cancer development, we performed RNA-
seq (miRNA- and circRNA-seq) using blood samples of 
patients with lung cancer and controls. The expression 
profiles of mRNAs, miRNAs, circRNAs and lncRNAs 
were obtained for lung cancer samples. Our data showed 
that a total of 59 miRNAs, 292 circRNAs, 232 lncRNAs, 
and 18,306 mRNAs were differentially expressed in 
lung cancer samples. Based on miRNA profiling, miR-
1253, miR-504, and miR-26a-5p were found to be the 
biomarkers for predicting prognosis in non-small cell 
lung cancer [13]. Another RNA-seq analysis showed 
that miR-218 targeting N-cadherin was down-regulated 

Figure 2: Bubble diagram of significant enrichment of pathways.  (A) Pathways enriched by up- and down-regulated genes; (B) 
Significant pathways for up-regulated miRNAs; (C) Significant pathways for down-regulated miRNAs.
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in aggressive lung cancer adenocarcinoma cells [14]. All 
these above indicated the significant role of miRNAs in 
the lung cancer development.

Similarly, the ceRNA network established in this 
study also revealed 5 hub miRNAs, namely hsa-miR-
582-5p, hsa-miR-665, hsa-miR-1197, hsa-miR-657, and 
hsa-miR-582-3p. Among the 47 miRNA target DE genes, 
24 were documented to be related to lung cancer, which 
contributed to the significance of miRNAs in the ceRNA 
network.

KEGG pathway analysis revealed functional 
enrichment of hsa-miR-582-3p, hsa-miR-582-5p, and 
hsa-miR-665 in pathways in cancer, including pancreatic 
cancer, melanoma, and colorectal cancer, which validated 
the significant status of these miRNAs in cancer 
development. Additionally, hsa-miR-582-3p and hsa-
miR-582-5p were significant nodes in the TF regulatory 
network and relevant to the Wnt signaling pathway. 
The critical role of the Wnt signaling pathway in lung 
carcinogenesis has been demonstrated previously [15, 16]. 

Figure 3: CeRNA network combined with miRNA, circRNA, lncRNA, and mRNA. Green: down-regulation; Red: up-
regulation; Gray: non-differential expression. Upsidedown triangle: circRNA, diamond: miRNA, rectangle: gene, triangle: lncRNA.

Table 1: Top 10 nodes with high connective degree in 
ceRNA network

ID DE degree

hsa-miR-582-5p UPMIR 123

hsa-miR-665 DOWNMIR 55

hsa-miR-1197 DOWNMIR 36

hsa-miR-657 UPMIR 31

hsa-miR-582-3p UPMIR 31

ADAMTSL1 DOWNGENE 17

CTNND2 DOWNGENE 12

DCX DOWNGENE 8

FOXP2 DOWNGENE 8

ROBO2 DOWNGENE 7

DE: differentially expression
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Up-regulation of Wnt pathway components is related to 
late stage and poor prognosis of non-small cell lung cancer 
[16]. The alteration of miR-582-3p expression was shown 
to be correlated with poor prognosis of patients with 
non-small cell lung cancer by activating Wnt/β-catenin 
signaling [17]. Furthermore, a new evidence has shown 
that the Wnt-β-catenin signaling pathway has function in 
regulating the expression of telomerase subunit Tert [18]. 
Telomerase is a most active enzyme in tumors, which 
controls telomere length and contributes to tumorigenesis 
[19]. Telomerase has been proposed to be the target for 
cancer therapy [20]. The dysregulation of β-catenin could 
lead to the overexpression of Tert, stabilize the telomeres, 

and further results in tumor formation. Intervention of 
Wnt/β-catenin signaling regulated by hsa-miR-582-
3p and hsa-miR-582-5p may be associated with the 
telomerase activity, which can be used to discover the 
new antitelomerase therapy for lung cancer. Hsa-miR-
582-5p has recently been investigated in various cancers, 
such as bladder cancer [21] and liver cancer [22]. Hsa-
miR-582-5p was found to be significantly down-regulated 
in high-grade bladder cancer, while the accumulation of 
miR-582-5p suppressed tumor growth [21]. A similar 
expression pattern of miR-582-5p was observed in liver 
tumors and contributes to cancer progression by targeting 
the cyclin-dependent kinase 1 and AKT serine/threonine 

Figure 4: Bubble diagram of pathways related to hub miRNAs

Figure 5: Transcriptional factor regulatory network. Green: down-regulation, Red: up-regulation; Upside-down triangle: 
circRNA, diamond: miRNA, rectangle: gene, Oblique quadrilateral: transcriptional factor.
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kinase 3 genes [22]. However, in this study, miR-582-5p 
was greatly up-regulated in the blood of patients with lung 
cancer. ETV1 is a DE TF regulated by miR-582-5p, which 
was recently proposed as an oncogene in non-small cell 
lung cancer [23]. Furthermore, WT1 as a Wilms’ tumor 
gene was found to be overexpressed in various types of 
cancers [24]. We found that WT1 as a DE TF was down-
regulated by hsa-miR-657. Whether the different findings 
can be attributed to sample variance requires further 
analysis.

MiRNAs are discovered as a class of small 
noncoding RNAs that inversely regulate gene expression 
[25]. Our results showed that target genes of up-regulated 
miRNAs were greatly associated with cancer-related 
pathways such as pathways in cancer, including colorectal 
cancer, and choline metabolism in cancer. Similar findings 
were observed in the DE gene pathway analysis; central 
carbon metabolism in cancer was altered by up-regulated 
genes. These results indicate the reliability of our 
findings. Additionally, two novel pathways of olfactory 
transduction and neuroactive ligand-receptor interactions 
were dysregulated by DE genes.

Olfactory transduction is induced by high 
concentrations of odorants mediated by adenylate cyclase 
[26]. Cyclin AMP (cAMP) is produced by adenylate 
cyclase, which is a second messenger in olfactory 
transduction. The expression of cAMP is elevated in 
patients with lung cancer [27]. Our pathway enrichment 
analysis also indicated that the cAMP signaling pathway 
was associated with DE miRNAs, suggesting that the 
cAMP signaling pathway may be dys-regulated in cancer 
progression. Previous studies showed that cAMP response 
element-binding protein (CREB) regulated the expression 
of genes involved in cell apoptosis, proliferation, and 
inflammation [28]. CREB contributes to cancer cell 
growth and metastasis. Overexpression of CREB was 
found in lung cancer cases with poor prognosis [29]. Thus, 
CREB may be targeted for the development of lung cancer 
therapies. In the present study, olfactory transduction was 
significantly enriched by the olfactory receptor (OR) gene, 
such as OR13C3, OR56A4, and OR1J2. Somatic mutations 
in OR13C3 and OR1J2 were detected in pancreatic tumors. 
Although the direct evidence for the correlation between 
the olfactory transduction pathway and lung cancer is 
rare, outside signals may be transmitted to cells through 
olfactory transduction underlying tumorigenesis.

Genes significantly contributing to the neuroactive 
ligand-receptor interaction pathway are highly relevant 
to lung cancer and have diverse functions, such as 
CHRNA3 (cholinergic receptor nicotinic alpha 3 
subunit), CHRNA5, GRPR (gastrin-releasing peptide 
receptor), SSTR2 (somatostatin receptor 2), and CHRNB4 
(cholinergic receptor nicotinic beta 4 subunit). CHRNA3, 
CHRNA5, and CHRNB4 are subunits of the nicotinic 
acetylcholine receptor, which contribute to lung cancer 
risk [30]. A previous study showed that single-nucleotide 

polymorphisms in CHRNA5 and CHRNA3 were associated 
with nicotine dependence [31]. GRPR has been found to be 
highly expressed in patients with lung cancer induced by 
nicotine, which stimulates cell proliferation, contributing 
to tumorigenesis [32]. Additionally, SSTR2 has been 
proposed as a therapeutic candidate for neuroendocrine 
tumors, such as small cell lung cancer [33]. Thus, the 
neuroactive ligand-receptor interaction pathway may be 
stimulated by the response to nicotine and involved in 
neuroendocrine processes.

In this paper, we used the pooled samples for 
analysis, which may ignore the differences between 
individuals. However, in this study we attempted to 
analyzed the common molecular mechanism throughout 
all types of lung cancers. Thus, studies with a large sample 
size are warranted.

Crosstalk between miRNAs, mRNAs, circRNA, and 
lncRNAs reveals the complex mechanism underlying lung 
cancer development and progression. Significant miRNAs 
play pathological roles in tumorigenesis of lung cancer, 
such as miR-582-5p, miRNA-582-3p, and miR-657. The 
aberrant regulation of key miRNAs in ceRNA network 
may also perturb the pathways of olfactory transduction 
and neuroactive ligand-receptor interactions in lung cancer 
development. Our work may provide the novel perspective 
to understanding the pathogenesis underlying lung cancer 
and pave the way to uncover new target therapy for lung 
cancer.

MATERIALS AND METHODS

Patients and sampling

Approval was obtained from the ethics committee 
of the First Hospital of Jilin University and all 
participants provided informed consent before the study. 
A total of 38 patients with lung cancer and 23 age-paired 
normal individuals were enrolled in the study between 
January 2016 and January 2017. All patients were 
histopathologically diagnosed with adenocarcinoma, 
squamous carcinoma, or other types of lung cancer. The 
healthy controls who underwent physical examinations 
in our hospital were included in this study. The basic 
characteristics of the enrolled subjects were listed in 
Supplementary Table 1. Total 18 paired peripheral blood 
samples (3 mL) from patients and healthy controls 
were collected after 12 h fasting at the First Hospital of 
Jilin University. Samples from 3 patients with similar 
pathological characteristics were pooled together. 
Peripheral blood mononuclear cells were isolated from 
12 pooled blood samples in the patient group (n = 6) and 
controls (n = 6) by Ficoll-Hypaque density separation 
(Flow Laboratories, Irvine, UK). Total RNA was isolated 
from fresh collected peripheral blood mononuclear cells 
using an RNeasy mini kit according the manufacturer’s 
instructions (Qiagen, Hilden, Germany). The purity 
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and integrity of the RNA samples were measured by a 
Nanodrop spectrophotometer (Wilmington, DE, USA) and 
Agilent 2100 Bioanalyzer (Santa Clara, CA, USA).

miRNA sequencing (miRNA-seq)

Six pooled samples from the patient and control 
groups were used for miRNA-seq. The detailed 
information for the pooled samples is shown in 
Supplementary Table 1. A small RNA-seq library was 
constructed by using TruSeq™ Small RNA Sample Prep 
Kits (Illumina, San Diego, CA, USA) according to the 
manufacturer’s instructions. Total RNA (1 μg) was ligated 
with 3′ and 5′ Adenylated Adapter, followed by reverse 
transcription reactions. Complementary DNA (cDNA) was 
amplified by PCR and the products were purified on a 6% 
polyacrylamide Tris-borate-EDTA gel. Next, the library 
preparations were subjected to next-generation sequencing 
on an Illumina Hiseq2000/2500 platform with 150-base 
pair single-end reads.

The quality of raw reads was controlled by the 
FastQC tool [34]. Unreliable bases and low-quality reads 
were removed by prinkitseq-lite [35] and fastx toolkit 
[36]. The clean data were mapped to the reference human 
miRNA gene database provided by GENCODE [37] using 
StringTie software [38].

CircRNA sequencing (circRNA-seq)

Another 3 RNA specimens from each group 
were subjected to RNA-seq (Supplementary Table 1). 
An Epicentre Ribo-ZeroTM kit (Illumina) was used to 
remove rRNA from total RNA (3 μg) according to the 
manufacturer’s instructions. After purification, the 
depleted RNA was fragmented and used for first-strand 
cDNA synthesis with random hexamer primers followed 
by second-strand synthesis with a dUTP mixture. The 
purified double-stand DNA products were treated with 
T4 DNA polymerase and Klenow DNA polymerase, 
and then ligated with adaptors. The circRNA library was 
constructed by PCR amplification with first-strand cDNA 
selected by AMPureXP beads (Beckman Coulter, Brea, 
CA, USA) and sequenced on the Illumina Hiseq4000 
platform with 150-base pair paired-end read generation.

Valid reads were obtained after the raw dataset was 
preprocessed by the FastQC and RseQC quality control 
tool. Genomic circRNA were mapped to the human 
reference genome (GRCh38) by TopHat2 [39]. Next, all 
circRNAs were annotated for circRNA-hosting genes with 
the application GENCODE v24 [40]. Protein-coding genes 
and lncRNAs were collected for further analysis.

Differential analysis of patients and controls

DE miRNAs between patients and controls were 
detected by the limma package in R. P values were 
controlled by Benjamini and Hochberg’s false discovery 

rate procedure. miRNAs with |fold-change (FC)| > 2 and 
false discovery rate < 0.05 were considered differentially 
expressed in lung cancer cases.

Based on the circRNA-seq dataset, the genes 
(mRNAs) and lncRNAs showing differential expression 
(|log2FC (fold-change)| > 1 and q value < 0.05) were 
analyzed by Cuffdiff of the Cufflinks package [41]. DEseq 
package in R was used to detect circRNAs at differential 
expression levels (p value < 0.05).

miRNA–target prediction and function 
annotation

miRNA-target gene interactions were predicted based 
on seven publicly available databases. Conserved miRNA 
targets recoded in miRecords [42] and MiRWalk database 
[43] were collected and those deposited in at least three 
databases of miRanda [44], MirTarget2 [45], PicTar [46], 
PITA [47], TargetScan [48] were filtered. The two parts of 
predicted targets were integrated by screening overlapping 
miRNA targets. Subsequently, the miRNA targets were 
subjected to Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis by using clusterProfiler R 
package [49]. Similarly, DE genes were subjected to 
pathway analysis at a significance level of P < 0.05.

CeRNA network analysis

TargetScan 7.0 Human database (http://www.
targetscan.org/) [50] is a collection of conserved target 
sites of conserved miRNA families. miRanda [44] 
predicts miRNA targets by scoring the binding energy of 
the miRNA to the targets. Potential interactions between 
circRNA and miRNA were predicted by TargetScan 7.0 
and miRanda based on miRNA-target gene interactions. 
In miRanda analysis, the threshold miRanda-type score 
was set as ≤ -20 with other default parameters. Based 
on the miRNA-target gene interactions obtained above, 
a circRNAs-miRNAs-mRNA network was constructed 
and visualized with Cytoscape software [51]. LncRNAs 
that play regulatory roles in DE genes were filtered and 
integrated into the ceRNA network.

Pathway analysis of significant miRNAs

Based on the topology of the ceRNA network, hubs 
with a high degree centrality were screened. miRNAs 
showing a high degree in the ceRNA network were 
subjected to pathway enrichment analysis. ClusterProfiler 
was utilized to classify pathway terms for miRNA target 
gene clusters. A pathway was considered significant when 
P < 0.05.

TF regulatory network analysis

The Transcriptional Regulatory Relationships 
Unraveled by Sentence-based Text mining (TRRUST) is a 
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collection of literature-curated TF-target interactions. The 
transcriptional regulation interaction between DE TFs and 
targets were retrieved from the TRRUST database. Based 
on the miRNA-target interactions (including miRNA-
circRNA and miRNA-gene interactions), the TF regulatory 
network was constructed by connecting miRNAs, TFs, 
circRNAs, and DE genes.

Quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR) detection of 
significant miRNAs and target genes

We verified the differential expression of hsa-
miR-1197 and hsa-miR-665 in the patient group 
compared to that in healthy controls. qRT-PCR analysis 
was conducted using blood RNA samples from the 
remaining 20 patients with lung cancer and 5 healthy 
controls. The primers used in this analysis were 
synthesized by Sangon Biotech (Shanghai, China) and 
the primer sequences were as follows: hsa-miR-1197 
forward: GCAGGACACATGGTCTACTTCT, reverse: 
GCTGTCAACGATACGCTACCTA; hsa-miR-665 
forward: ACCAGGAGGCTGAGGCCCCTAA, reverse: 
GCTGTCAACGATACGCTACCTA; GAPDH forward: 
TGACAACTTTGGTATCGTGGAAGG and reverse: 
AGGCAGGGATGATGTTCTGGAGAG. The reverse 
transcription reaction was performed using PrimeScript™ 
RT Master Mix (RR036A, TAKARA, Shiga, Japan) for 
cirRNAs and miRNA First-Strand cDNA Synthesis Kit 
(EY001, Eryun, Shanghai, China) for miRNAs. PCR 
amplification was achieved under Applied Biosystems® 
ViiA™ 7 PCR system (Foster City, CA, USA). The 
expression value of miRNA, circRNA, and genes was 
calculated by the 2−ΔΔCT method relative to GAPDH.

Statistical analysis

Statistical analysis was performed using SPSS 22.0 
(SPSS, Inc., Chicago, IL, USA). Data were expressed as 
the mean ± SEM (standard error of the mean). Difference 
between groups were compared by t test or Mann-
Whitney. P < 0.05 was considered statistically significant.
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