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Treatment planning systems for proton therapy require a CT calibration curve relat-
ing Hounsfield units to proton stopping powers. An understanding of the accuracy 
of this curve, together with its limitations, is of utmost importance because the 
calibration underpins the calculated dose distribution of every patient preparing 
to undergo proton therapy, independent of delivery technique. The most common 
approach to the calibration is the stoichiometric method, which is well-defined and, 
in principle, straightforward to perform. Nevertheless, care must be taken when 
implementing it in the clinic in order to avoid introducing proton range uncertainties 
into treatment plans that are larger than the 3.5% that target margins are typically 
designed to account for. This work presents a variety of aspects related to the user-
specific implementation of the stoichiometric calibration, from both a measurement 
setup and a data-handling point of view, and evaluates the potential impact of each 
for treatment planning purposes. We demonstrate that two alternative commercial 
vendors’ tissue phantoms yield consistent results, that variable CT slice thickness 
is unimportant, and that, for a given cross-sectional size, all phantom data can, 
with today’s state-of-the-art beam hardening-related artifact reduction software, 
be acquired quickly and easily with a single scan, such that the resulting curve 
describes the calibration well at different positions across the imaging plane. We 
also show that one should be cautious of using metals in the calibration procedure 
and of using a single curve for anatomical sites differing widely in size. Further, 
we suggest that the quality of the parametric fit to the measurement data can be 
improved by performing a constrained, weighted linear regression. These observa-
tions, based on the 40 separate curves that were calculated, should help the medical 
physicist at any new proton therapy facility in deciding which considerations are 
worth particular attention.

PACS numbers: 87.53.Bn, 87.55.-x, 87.57.Q-, 87.59.bd
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I.	 Introduction

Protons of therapeutic energy passing through tissue slow down continuously, primarily via 
inelastic collisions with atomic electrons, until eventually reaching a halt. The rate of energy 
deposition increases with depth and is most dramatic in the “Bragg peak” near the end of the 
protons’ range.(1) The relationship between range and incident beam energy is well-defined, 
which means that this range can be matched to the targeted depth by appropriate selection of 
beam energy. Such characteristics provide proton therapy with a distinct physical advantage 
over conventional X-ray therapy; the gradual buildup of dose prior to the dramatic increase 
within the target, coupled with a lack of exit dose, leads to overall less ionization energy being 
deposited in healthy tissues for the same prescribed dose to the target.
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The calculation of proton therapy dose distributions typically relies on knowledge of the 
three-dimensional map of relative (to water) proton stopping powers throughout the parts 
of the patient anatomy through which the beam passes. While this could be derived directly 
from computed tomography (CT) images acquired in a proton beam, such proton CT scanners 
have yet to become commercially viable, although technical developments are ongoing.(2-11) 
Consequently, this map must currently be constructed from X-ray CT images, and the informa-
tion contained therein transformed in some indirect manner to relative proton stopping powers. 
The stoichiometric method is the technique used most widely for performing this transforma-
tion.(12,13) While this method has proven to be reliable, it is ultimately limited by the fact that 
the physics of X-ray and of proton interactions in matter are fundamentally different, and the 
mapping is therefore not strictly one-to-one. Many of the uncertainties associated with its 
application have been studied, and there is consensus in the community that in most practical 
situations this translates into a relative uncertainty in the proton range of ~ 3.5% at the 95% 
confidence level.(14-16) Margins along the beam direction are added routinely to the clinical 
target volume in treatment planning to allow for this. 

Proton therapy centers are undoubtedly on the increase. For example, in the United States 
alone, where there are currently 12 centers in operation,(17) a further 13 are either now in the 
planning stage or are under construction.(18) While there is diversity in technologies, delivery 
techniques, and treatment planning systems, the CT scanner calibration, which maps Hounsfield 
units (HUs) to proton stopping powers, is an aspect that is common to all. The last of these 
is, therefore, of widespread interest, especially to those performing the calibration for the first 
time. During the undertaking of the stoichiometric calibration at our facility, we found our-
selves confronting various practical considerations related to the acquisition and handling of 
the measurement data. We have not seen most of these addressed previously, and this led us to 
question whether or not the choice to use 3.5% as the assigned range uncertainty for treatment 
planning purposes is actually appropriate for our institution’s own particular calibration curve. 
We hope that by answering these in the present work, we will help to dispel similar concerns 
that physicists exercising the calibration at other centers may have in future. 

The stoichiometric calibration is typically carried out with the aid of a tissue characterization 
phantom, comprising tissue-surrogate “plugs” of known elemental composition and electron 
density. Compositional details can be obtained from the commercial vendor, but often these 
details are nominal and there can be batch-to-batch variability. While the ultimate test of the 
calibration curve is to make direct measurements of points along it with real mammalian tissue 
samples,(13) such measurements are not easy to perform with sufficient precision. Implicit reli-
ance is therefore placed on the accuracy of the vendor’s data tables. To gain assurance of the 
accuracy of these tables, separate calibrations were performed with tissue surrogates from two 
independent sources. One set of tissue surrogates was tested further by replacing the nominal 
electron densities of the plugs provided by the vendor with, instead, values calculated from 
measurements of their densities, combined with the given elemental composition data. With 
this set, the impact of CT slice thickness, phantom size, position of the plug within the phan-
tom, and whether the plugs were scanned one-at-a-time at the center of a water phantom or 
scanned (more conveniently) simultaneously in a solid water phantom holder, were all assessed, 
in addition. With both sets, the effect of performing a weighted linear regression based on 
the uncertainties in the measured HUs of the plugs versus an unweighted linear regression to 
extract the parameters that characterize the CT scanner was explored. Since various metallic 
plugs are offered by the tissue phantom vendors as optional extras, but their suitability for use 
in the stoichiometric calibration is questionable, any bias in the result introduced by the inclu-
sion of an aluminum plug was studied. Furthermore, if the outcome was affected by placing a 
constraint on the standard stoichiometric fit such that only two instead of three parameters(12,13) 
were independent was investigated. The sensitivity of the calibration curve to phantom size 
and plug position during measurements as a result of differential beam hardening has been 
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discussed previously;(13,16,19,20) to the best of our knowledge, the other considerations identi-
fied above have not.

The focus of this work was not to undertake a comprehensive assessment of all of the uncer-
tainties attributable to the stoichiometric calibration, but rather to isolate just those components, 
alluded to above, that relate to the acquisition and handling of the measurements made with 
a particular user’s CT scanner. Armed with an appreciation of these, future users can perform 
their calibrations confident in the knowledge of the details, of those that are within their con-
trol, that deserve particular attention. In so doing, the user-dependent uncertainties introduced 
can be maintained sufficiently small compared to those that are user-independent such that the 
combined 3.5% range uncertainty assigned via margins in treatment planning is, to the great-
est extent possible, not being underestimated through an institution’s specific implementation 
of the procedure. 

 
II.	 Materials and Methods

The HUs of 14 tissue-surrogate plugs from one tissue characterization phantom (Gammex 465; 
Gammex Inc., Middleton, WI) (Table 1), nine tissue-surrogate plugs from a second phantom 
(Model 062; CIRS, Norfolk, VA) (Table 1), an aluminum plug and water were measured for 
a variety of different setups, detailed further below, using a Siemens Somatom Sensation CT 
scanner (Siemens AG, Erlangen, Germany) with the following, fixed settings: current × time = 
280 mAs (effective), peak X-ray energy = 120 kV, SFOV = 50 cm, matrix size = 512 × 512 
pixels, pixel size = 0.98 mm, CTDI = 25 mGy (32 cm diameter phantom), reconstruction filter = 
B31s. Scans of length 10 cm were performed along the long axis of each cylindrically shaped 
plug (or similarly sized volume of water), centered on the center of each. In all but one instance, 
the plugs were positioned in one of three holes drilled at different radii from the central axis in 
a home-made acrylic holder and scanned one at a time in a 30 × 40 × 30 cm3 water-filled tank 
(Figs. 1(a) and (b)). In these cases, each plug was set to protrude far enough from the holder 
such that the HU recorded at the center of the plug was not affected by any edge effects arising 
from the boundary between the holder and the water (as assessed by comparing with the HUs 
recorded in slices 9 mm either side of the central plane). Each plug was also taped securely in 
place to prevent any movement with respect to the surrounding water as the table translated 
during the scan. In the remaining instance, the HUs of all plugs were measured simultaneously 
in a single scan, using the vendor’s phantom holder with the plugs distributed across the field 

Table 1.  Tissue surrogates employed in this study (using vendors’ nomenclature) and their stated relative electron 
densities.

	 Gammex	 CIRS
	 Description	 		  Description	

lung (LN-300)	 0.280	 lung (inhale)	 0.190
lung (LN-450)	 0.400	 lung (exhale)	 0.489
adipose (AP6)	 0.895	 adipose	 0.949
polyethylene	 0.945	 breast (50% gland / 50% adipose)	 0.976
solid water	 1.000	 plastic water	 1.002
brain (SR2)	 1.039	 muscle	 1.043
liver (LV1)	 1.050	 liver	 1.052
CB4 resin	 1.116	 trabecular bone (200 mg cm-3)	 1.117
bone (CB2 – 10% CaCO3)	 1.142	 dense bone (800 mg cm-3) 	 1.456
acrylic	 1.147		
inner bone (IB)	 1.081		
bone (CB2 – 30% CaCO3)	 1.285		
bone (CB2 – 50% CaCO3)	 1.473		
cortical bone (SB3)	 1.707		
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of view (Fig. 1(c)). Of all the series of scans above, all but one was reconstructed with 3 mm 
slice thickness; the other being reconstructed with 1.5 mm slice thickness. We refer to our 
“standard configuration” as that in which the narrowest dimension of the water tank (30 cm) is 
aligned with the scan plane, the plugs are placed in turn in the central hole of the holder, and 
the slice thickness is 3 mm. 

The data were processed in a variety of ways, also detailed further below. In each scenario, 
the measured HUs of the series of plugs interrogated (with or without their measurement uncer-
tainties, as appropriate) were used to extract the coefficients A, B, and C — which parameterize 
the contributions to the linear attenuation coefficient of the CT scanner from the photoelectric 
effect, coherent scattering, and Compton interactions, respectively — from a linear regression 
fit to(12,13,21,22)

	 	 (1)

(a)

(c)

(b)

Fig. 1.  Measurement setup showing (a) the home-made acrylic holder with holes drilled at the center and at two off-axis 
radii (6 cm (“inner hole”) and 12 cm (“outer hole”)), (b) a single plug placed in this holder, positioned in the water tank, 
and (c) the Gammex tissue characterization phantom with multiple plugs being scanned simultaneously.
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across all plugs, i. Here,  and  are the linear attenuation coefficient and volumetric elec-
tron density relative to water, respectively, of plug i,  and  are effective atomic numbers 
defined by
			 
	 	 (2)

and 		

	 	 (3)

where  and wj, Zj and Aj are, respectively, the mass fraction, atomic

number, and mass number of element j in the mixture from which plug i is composed. These 
parameters were then used to calculate theoretical Hounsfield units, HUcalc, in each scenario 
for 63 human tissues of known composition taken from the literature.(23,24) The values obtained 
were plotted against theoretical relative proton stopping powers, , calculated according to 
the Bethe-Bloch equation:(25)

		  (4)
	
	
where mec

2 is the rest mass energy of the electron, β is the proton speed relative to the speed of 
light, c, and It and Iw are the mean ionization potentials(26) of the tissue in question and water, 
respectively. The effect of variations in the value of β as a proton beam passes through matter 
and uncertainties in the I values introduce uncertainties in the calibration procedure has been 
assessed before.(16,27) However, as these uncertainties are independent of the user while the 
focus of this study is those which are user-dependent, they are not considered further here. A 
fixed proton energy of 115 MeV was used to set the value for β in all cases, close to the energy 
recommended to minimize the consequence of its variation in practice.(16) Of the 63 tissues, 
separate linear fits were made through 42 identified as being “organ-like” in their composition, 
seven identified as being “fat-like”, and the remaining 14 identified as being “bone-like”, with 
the organ-like fit constrained to pass through  at HUcalc = -1000. These fits were con-
nected piecewise in regions generally populated sparsely with tissues(13) in order to create the 
full calibration curve in a particular scenario. Thus, in each case, the organ-like fit was tracked 
from -1000 to -200 HU, the fat-like fit was tracked from -120 to -20 HU, the organ-like fit was 
tracked again from +35 to +100 HU, and the bone-like fit was tracked above 140 HU. In all, 
40 curves were calculated under different scenarios using the different measurement setups 
and data-handling techniques described below. These were intercompared by evaluating the 
relative difference in  (and, hence, water-equivalent range) between pairs of curves as a 
function of HUcalc. 

A.	 Extraction of HU data
Regions of interest (ROIs) of different square size, centered on the axis of each plug scanned, 
were identified in the CT data (Fig. 2(a)) and, in each instance, the standard error on the mean 
HU of the plug, ΔHUmeas, in the slice used for analysis was calculated (e.g., for the bone plug 
shown in Fig. 2(a) with an ROI of 20 (“DX”) × 20 (“DY”) pixels and a standard deviation on 
the measured HU of 40.89 (“SD”), ΔHUmeas = SD/√(DX × DY) = 2.0, as plotted in Fig. 2(b)). 
The ROI for which this quantity was minimized was used subsequently. 
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B. 	 Electron density
The HU of each of the 14 Gammex plugs was measured in the standard configuration (narrow-
est tank dimension aligned with the scan plane; plugs placed in turn in the central hole of the 
holder; 3 mm slice thickness). The HU of the water itself at the same point was noted, as well. 
The mass of each plug was also measured and used to compute its mass density and, from the 
vendor’s elemental composition datasheet, its volumetric electron density. Using these data, 
stoichiometric calibrations were carried out based on whether the nominal  values provided 
by the vendor or those computed by us were used as input.
  
C. 	 Slice thickness
A similar HU dataset to that in Materials and Methods section B above was collected in our 
standard configuration, though using 1.5 mm instead of 3 mm CT slice thickness. Employing 
the vendor’s nominal electron densities in both cases, stoichiometric calibrations were carried 
out and compared.

(a)

(b)

Fig. 2.  (a) Determination of the standard error on the mean HU, ΔHUmeas, of the Gammex bone (CB2 – 30% CaCO3) 
plug for an ROI of 20 pixels × 20 pixels, and (b) variation of this error with the size of the ROI for this and for four of the 
other plugs, listed in order of descending HU. 
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D. 	 Phantom size/plug location
An HU dataset similar to that in Materials and Methods section B was collected in our standard 
configuration, though placing each plug alternately in the inner hole (6 cm off-axis) and the 
outer hole (12 cm off-axis) of the acrylic holder (Figs. 1(a) and (b)). The tank was then rotated 
by 90° so that its widest dimension (40 cm) was aligned with the scan plane, and additional 
data were collected with each plug alternately in the central, inner, and outer holes of the 
holder. Stoichiometric calibrations were carried out for each of the five variants, employing 
nominal electron densities in all cases, and compared with that derived from the standard 
configuration.

E. 	 Simultaneous data acquisition
The 14 Gammex plugs were distributed throughout the vendor’s 33 cm diameter tissue char-
acterization phantom holder, inserted fully into their respective holes (Fig. 1(c)) and scanned 
simultaneously with 3 mm slice thickness. The HUs of the plugs assessed in the central plane 
through the phantom were used to perform the stoichiometric calibration, employing nominal 
electron densities in both cases. This was compared with the calibration undertaken in the 
standard configuration.

F. 	 Plug manufacturer
Calibration curves computed using either the HU measurements from the Gammex plugs or 
from the CIRS plugs were compared in the standard configuration with the curves resulting from 
using all data from both vendors’ plugs, employing nominal electron densities in both cases.

G. 	 Fit weighting
Technically, the fitting of measured data to the independent variable (e.g., the quantity on the 
left-hand side of Eq. (1)) and the extraction of the free parameters (A, B, and C) should be per-
formed by weighting each data point by the inverse square of the measurement error in the linear 
regression. However, this consideration may be easily overlooked or neglected, though may 
be important if these errors have appreciable variation. The commonly employed commercial 
software Microsoft Excel (Microsoft Corporation, Redmond, WA), for example, doesn’t have 
the option to accommodate weighting directly, but the appropriate weights can be incorporated 
equivalently by formulating the data to be fitted in accordance with

			 
		  (5)
	

 

where  is the error in the measurement of . Plugs of higher HU tend to be more sus-
ceptible to noise (Fig. 2(b)) because of the relative paucity of photons measured by the detectors 
of the CT scanner owing to higher absorption, thus these data points carry lower weights in the 
fitting procedure. We therefore investigated whether or not neglecting to weight the input data 
significantly affected the outcome, using the standard configuration.

H. 	 Inclusion of high-density plug
The commercial tissue characterization phantoms studied include metallic substitutes of high-
Z (compared to tissue) (and, hence, high HU) as optional add-ons. However, it is known that 
the accuracy of the stoichiometric parameterization deteriorates for such materials.(22) Thus, 
whether or not the inclusion of the additional datum from an Al plug in the fitting procedure 
significantly affected the outcome was investigated using the standard configuration. 
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I. 	 Fit constraining
Equation (1) can be applied to any set of data comprising measured HUs of materials of known 
composition in order to extract the three parameters A, B, and C, which are treated implicitly 
as being independent from one another. However, one can constrain the fit by noting that, for 
water, HU = 1000 and  = 1, by definition. Thus, we also have

	 	 (6)

where the subscript w denotes water. Eliminating C between Eq. (6) and Eq. (1) gives, in the 
unweighted case

			 
 	 	 (7)

while eliminating C between Eq. (6) and Eq. (5) gives, in the weighted case

			 
		  (8)
	

Hence the fit can be constrained such that there are two, rather than three, free parameters. For 
all of the aforementioned HU data measured in the standard configuration for both the Gammex 
and CIRS plugs, stoichiometric calibrations were therefore performed according to both Eq. (1) 
(three-parameter fits) and Eq. (7) (two-parameter fits) in the unweighted cases, and according 
to both Eq. (5) (three-parameter fits) and Eq. (8) (two-parameter fits) in the weighted cases.  

Table 2 summarizes the essential components of the 20 tests referred to in Materials and 
Methods sections B to I above, each of which was analyzed both with a three-parameter fit and 
a two-parameter fit, yielding a total of 40 calibration curves for intercomparison. 
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III.	Res ults & DISCUSSION 

A. 	 Extraction of HU data
Figure 2(b) illustrates the variation of the uncertainty in the measured HU of a plug with the 
size of the ROI employed in the CT image for five of the Gammex plugs employed in the study, 
as examples. Given the 28.5 mm plug diameter and 0.98 mm pixel size, the largest square 
ROI which can be contained within a plug’s cross section is 20 pixels on a side. As might be 
expected on statistical grounds, this sized ROI can be seen to result in the lowest uncertainties 
in the mean measured HUs of these five plugs. Similar conclusions were drawn from studies 
with the other plugs also. It was therefore decided that the choice of an ROI of 20 × 20 pixels 
would be appropriate uniformly for the determination of the mean HU of all plugs in the vari-
ous scenarios. 

Table 2.  Summary of the 40 scenarios for which the stoichiometric calibration was conducted.

							       Slice
	 Test		  Plugs /	 Phantom	 Phantom	 Plug	 Thickness	
	3-par fit	 2-par fit	 Materials	 Material	 Width (cm)	 Hole	 (mm) 	 Weighted	

	 1a	 1b	 G, W	 water	 30	 center	 3	 	 nominal	

	 2a	 2b	 G, W	 water	 30	 center	 3	 	 calculated	

	 3a	 3b	 G, W	 water	 30	 center	 1.5	 	 nominal	

	 4a	 4b	 G, W	 water	 30	 inner	 3	 	 nominal	

	 5a	 5b	 G, W	 water	 30	 outer	 3	 	 nominal	

	 6a	 6b	 G, W 	 water	 40	 center	 3	 	 nominal	

	 7a	 7b	 G, W	 water	 40	 inner	 3	 	 nominal	

	 8a	 8b	 G, W	 water	 40	 outer	 3	 	 nominal	

	 9a	 9b	 G	 solid water	 33	 distributed	 3	 	 nominal	

	 10a	 10b	 G, W	 water	 30	 center	 3	 	 nominal	

	 11a	 11b	 C, W	 water	 30	 center	 3	 	 nominal	

	 12a	 12b	 C, W	 water	 30	 center	 3	 	 nominal	

	 13a	 13b	 G, C, W	 water	 30	 center	 3	 	 nominal	

	 14a	 14b	 G, C, W	 water	 30	 center	 3	 	 nominal	

	 15a	 15b	 G, W, Al	 water	 30	 center	 3	 	 nominal	

	 16a	 16b	 G, W, Al	 water	 30	 center	 3	 	 nominal	

	 17a	 17b	 C, W, Al	 water	 30	 center	 3	 	 nominal	

	 18a	 18b	 C, W, Al	 water	 30	 center	 3	 	 nominal	

	 19a	 19b	 G, C, W, Al	 water	 30	 center	 3	 	 nominal	

	 20a	 20b	 G, C, W, Al	 water	 30	 center	 3	 	 nominal

G = Gammex plugs; C = CIRS plugs; Al = aluminum plug, W = water.
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Figures 3 and 4 demonstrate, as an example, the procedure adopted to derive the calibration 
curve for each scenario listed in Table 2, here for Test 20b. Figure 3 displays for all 25 data 
points the HUs calculated from Eq. (8), based on the fitted A and B parameters, versus those 
measured, color-coded by source; Fig. 4 shows the calculated relative stopping powers (Eq. (4)) 
versus calculated HUs (Eq. (8)) for both the plugs and the 63 human tissues. For the human tis-
sues, the linear fit through the 42 “organ-like” points is colored red, through the seven “fat-like” 
points is colored green, and through the 14 “bone-like” points is colored blue. The resulting 
calibration curve (black, dashed line) was adjudged to track the red curve from -1000 to -200 
HU, the green curve from -120 to -20 HU, the red curve again from +35 to +100 HU, then the 
blue curve above 140 HU, with intermediate nodes connected by straight lines.(13) While the 
composite curve fits the  of all human tissue data to within 3% (and is much better in most 
cases), notably it can deviate from the synthetic tissue substitutes of both vendors by in excess 
of 5%. Even though manufacturing technologies have evolved over the last two decades, it 
is evident that a calibration performed directly from tissue substitutes without recourse to the 
stoichiometric procedure is still, therefore, insufficient (and this was, of course, the reason for 
its introduction in the first place). 

Figures 5–8 show relative differences in the calibration curve of  as a function of calcu-
lated HU based on intercomparisons of pairs of calibration curves, each constructed piecewise 
by the method described above (and with joins at the same intermediate nodes: -200, -120, 
-20, +35, +100 and +140 HU) from a specific combination of measurement setup and data 
processing technique (Table 2) and extending over the typical anatomical range of HUs (-1000 
to +1500). Figure 5 is based on measurements made with just the Gammex plugs, analyzed 
with unweighted fits; Figs. 6–8 derive from those made with both vendors’ plugs and also the 
custom-made Al plug, analyzed with both unweighted and weighted fits.

Fig. 3.  Measured HUs versus those calculated using the results of the fit of Eq. (8) in Test 20b (Table 2). Errors on the 
calculated HUs were propagated from those on the fit parameters (A and B). The diagonal line indicates what would be 
ideal agreement.
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Fig. 4.  Stoichiometric calibration using the data of Test 20b (Table 2). The composite calibration curve is pieced together 
from separate fits to the points for organ-like, fat-like, and bone-like tissues. Errors on the calculated HUs were propagated 
from those on the fit parameters (A and B). The points for the Gammex and CIRS tissue-surrogate plugs are plotted for 
comparison with the real tissues. The lower plot magnifies the area of the upper plot in the dashed, boxed region, from 
-200 HU to +200 HU.
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Fig. 5.  Fractional differences in relative proton stopping power as a function of HU for stoichiometric calibrations car-
ried out with (a) electron densities derived from measurement rather than the vendor’s nominal values (Test 2 vs. Test 1),  
(b) 1.5 mm rather than 3 mm CT slice thickness (Test 3 vs. Test 1), (c) plugs scanned at different off-axis locations (0, 
6 cm and 12 cm) and with the tank in two alternative orientations (presenting 30 cm or 40 cm width), rather than in the 
center hole and the standard orientation (presenting 30 cm width) (Tests 4–8 vs. Test 1), and (d) the Gammex tissue char-
acterization phantom with all plugs scanned simultaneously, rather than the water tank with plugs scanned individually 
(Test 9 vs. Test 1). The results of both two- and three-parameter fits (solid and dashed lines, respectively), all unweighted 
and excluding the Al plug, are shown.



214    Ainsley and Yeager: Proton therapy CT calibration	 214

Journal of Applied Clinical Medical Physics, Vol. 15, No. 3, 2014

Fig. 6.  Fractional differences in relative proton stopping power as a function of HU for stoichiometric calibrations carried 
out with either Gammex or CIRS plugs relative to the combined set of both. The results of using both two- and three-
parameter fits (solid and dashed lines, respectively) are shown: (a) weighted fits, including also the Al plug (Tests 16 and 
18 vs. Test 20), (b) unweighted fits, including the Al plug (Tests 15 and 17 vs. Test 19), (c) weighted fits, excluding the Al 
plug (Tests 10 and 12 vs. Test 14), and (d) unweighted fits, excluding the Al plug (Tests 1 and 11 vs. Test 13).
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Fig. 7.  Fractional differences in relative proton stopping power as a function of HU for stoichiometric calibrations carried 
out with weighted fits compared to those carried out with unweighted fits: (a) including the Al plug (Tests 19, 15 and 17 
vs. Tests 20, 16 and 18, respectively), (b) excluding the Al plug (Tests 13, 1 and 11 vs. Tests 14, 10 and 12, respectively); 
and for calibrations carried out including the Al plug compared to those excluding it: (c) weighted fits (Tests 14, 10 and 
12 vs. Tests 20, 16 and 18, respectively), (d) unweighted fits (Tests 13, 1 and 11 vs. Tests 19, 15 and 17, respectively). 
The results of using either the combined set of Gammex and CIRS plugs or one or other set alone are shown, as are the 
results of using either two- or three-parameter fits (solid and dashed lines, respectively).
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B. 	 Electron density
Figure 5(a) demonstrates that, over this span of HUs, the result of calculating the relative elec-
tron densities of the plugs from measurements of mass densities and vendor-provided elemental 
composition tables for use in Eqs. (1), (4), and (7) yields  values (Eq. (4)) that vary by less 
than ~ 1% from those based on the vendor’s nominal electron densities. This is true both for 
two-paramater (Eq. (7)) and three-parameter (Eq. (1)) fits. Thus, we conclude that the use of the 
nominal vendor-provided  values is adequate, assuming the elemental composition tables 
themselves are reliable (discussed further in Results & Discussion section F below). 

C. 	 Slice thickness
Figure 5(b) illustrates that the calibration procedure is independent of CT slice thickness, and 
so does not need to be carried out multiple times if this parameter varies across an institution’s 
scanning protocols. All further studies were, hence, conducted with the same 3 mm slice thick-
ness only, in order to minimize noise. 

Fig. 8.  Fractional differences in relative proton stopping power as a function of HU for stoichiometric calibrations car-
ried out with three-parameter fits compared to those carried out with two-parameter fits. The results of using either the 
combined set of Gammex and CIRS plugs or one or other set alone are shown: (a) weighted fits, including also the Al plug 
(Tests 20, 16 and 18: a vs. b), (b) unweighted fits, including the Al plug (Tests 19, 15 and 17: a vs. b), (c) weighted fits, 
excluding the Al plug (Tests 14, 10 and 12: a vs. b), and (d) unweighted fits, excluding the Al plug (Tests 13, 1 and 11: a 
vs. b). “a vs. b” implies a comparison between data analyses performed for a particular test with either a three-parameter 
fit (type “a” test, Table 2) or a two-parameter fit (type “b” test, Table 2). 
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D. 	 Phantom size/plug location
Figure 5(c) demonstrates that, for a given phantom size, the calibration curve is largely inde-
pendent of the plug placement within the scanner’s field of view (for plugs placed at 0, 6, and 
12 cm off-axis), but that significant deviations may arise, which increase with HU, when the 
phantom size changes. This is an important point. Although it is not the purpose of our present 
work to study this variation exhaustively, our measurements in 30 cm and 40 cm width phan-
toms alone suffice to suggest that, in order to avoid incurring proton range errors in regions of 
high HU, one may wish to consider implementing multiple (two or more) calibration curves in 
practice, with the most appropriate one selected in a given situation according to the size of the 
relevant anatomy. For sites much smaller than 30 cm (e.g., child’s extremity) or much larger 
than 40 cm (e.g., adult’s pelvis), the distortions from the baseline curve may be unacceptably 
large and, if unaccounted for through choice of an appropriate calibration curve selection, the 
3.5% range uncertainty margin in treatment planning will likely be inadequate in cases where 
a large amount of high-density material is traversed. The finding is the same whether two-
parameter or three-parameter fits are used.

E. 	 Simultaneous data acquisition
Figure 5(d) illustrates that when the vendor-provided 33 cm diameter solid water phantom 
holder is used and all plugs are scanned simultaneously, as opposed to one by one in the center 
of a square water-filled tank of width 30 cm, the variation in  across the span of HUs is less 
than 1%. This is also a useful practical finding, since it implies that a simplified setup up may be 
used to derive the calibration curve for a particular phantom size. It is also consistent with the 
results of Fig. 5(c), which showed that plug position within the field of view has little bearing 
on the outcome, permitting all plugs to be scanned at once at different off-axis positions. The 
general applicability of this conclusion, however, likely depends on the adequacy of the user’s 
reconstruction algorithm in removing beam hardening-related (e.g., “cupping” and “capping”) 
artifacts; so, although the case here, this may not necessarily always be so. 

F. 	 Plug manufacturer
Figure 6 shows a comparison of calibrations carried out using either the Gammex or CIRS plugs 
exclusively (together with the corresponding vendors’ tables of nominal relative electron density 
and elemental composition), analyzed with (upper plots) or without (lower plots) the addition 
of the Al plug, and with (left-hand plots) or without (right-hand plots) weighting of the data 
according to HU measurement uncertainty. In each plot, the result for each independent vendor 
is shown relative to that based on both vendors’ data combined. The mutual compatibility of 
the different vendor’s curves, independent of the method of data handling, serves to provide a 
degree of comfort in the otherwise tacit assumption that the vendors’ nominal tables of electron 
density and elemental composition for the plugs are reliable. In the high HU region, fits to the 
CIRS plug data are likely more sensitive to the inclusion of the datum for the Al plug than fits 
to the Gammex plug data (upper plots) because the former comprise fewer data points, and 
especially so in this very region. Nevertheless, the deviation between the two never exceeds 
~ 1.5% at +1500 HU, so we conclude that the vendors’ data are consistent with one another and 
that an institution can opt to use either with equal confidence (or, indeed, combine both).

G. 	 Fit weighting
Figures 7(a) and (b) demonstrate that the effects of weighting versus not weighting the HU data 
according to the measurement uncertainties are small, at least when the independent variable is 
presented as in Eq. (1) (three-parameter fit) or Eq. (7) (two-parameter fit) (i.e., the quantity on 
the left-hand side of the equation is linear in HUi). However, it should be noted that one could 
conceivably rearrange these equations any number of ways and still retain mathematical equality 
(e.g., making  the independent variable in Eq. (1), etc.); without includ-
ing and propagating correctly the weights, the fitting results would be dependent on the precise 
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formulation used. (The weight is proportional to the inverse square of the factor by which HUi 
is divided, so the example arrangement above would, for instance, be tantamount to weighting 
the data points implicitly by ( )-2, skewing the fit strongly in favor of the measurement 
of plugs with small  if explicit weights are not properly included.) Since weighting the data 
requires little extra effort, we therefore advise that it should be incorporated into the procedure 
to avoid such pitfalls (i.e., Eqs. (5) and (8) should be preferred over Eqs. (1) and (7)).

H. 	 Inclusion of high-density plug
Figures 7(c) and (d) illustrate that the inclusion of a high-density plug can strongly influence 
the result of the fitting procedure, especially in the high HU region. While the impact of the Al 
plug on the two vendors’ datasets has a similar trend, the size of the effect on the CIRS data may 
be greater than on the Gammex data because there are fewer other points in the data series and 
those other points also tend to fall at lower HUs (3 out of 14 Gammex plugs, but only 1 out of 
9 CIRS plugs, have HUs > ~ 200 (see, e.g., Figs. 3 and 4)), as already suggested in Results & 
Discussion section F. Nevertheless, the likely reason for the observed deviation in both cases is 
the inadequacy of the stoichiometric parameterization for high-Z (compared to tissue) materials. 
The exponents in Eq. (1) (and the others that follow) were obtained by optimization for oxygen 
for X-ray energies between 60 and 80 keV;(21) considerable discrepancies have been shown to 
appear as Z increases.(22) We would, therefore, propose that metallic plugs be avoided when 
performing the calibration.

I. 	 Fit constraining
Figure 8 shows that the application of the constraint in Eq. (6) to the fitting procedure affects 
the outcome of the calibration by at most 2%, and only then for negative or small, positive 
HUs when the Al plug is included in the fitting procedure. (Note, however, the discussion in 
Results & Discussion section H.) The trends are similar for both vendors’ datasets (and their 
combination) in each of the data handling approaches. Although these findings may only be of 
small concern, we would nevertheless recommend the adoption of the constrained (i.e., two-
parameter) fit, since Eq. (6) follows directly from the definition of the Hounsfield unit itself. 

 
IV.	 Conclusions

The calibration of the CT scanner to map Hounsfield units to relative proton stopping powers 
is a crucial component in assuring the accurate delivery of proton therapy dose distributions to 
patients. A variety of measurement setups and data handling techniques were investigated in 
order to assess the robustness of the calibration curve resulting from the stoichiometric method 
from a user-specific perspective. From the 40 separate such curves that were derived, the fol-
lowing observations can be made:

(i)	 tissue surrogates from two alternative vendors (Gammex and CIRS) yield consistent results, 
giving confidence that the companies’ nominal tables of electron density and elemental 
composition for these materials are, therefore, likely reliable;

(ii) 	 similarly sized anatomies scanned with different slice thicknesses share the same calibra-
tion curve;

(iii)	 the use of multiple calibration curves should be considered if anatomical sites of widely 
differing size are to be treated;

(iv)	 in a given scan, the same calibration curve applies equally well throughout all voxels of 
the image dataset, with minimal error;

(v)	 the tissue-surrogate HU data can be taken quickly and efficiently for a given phantom size 
with a single scan, rather than from many separate scans of individual plugs; 

(vi)	 the use of metallic materials (i.e., high-Z compared to tissue) should be avoided; and
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(vii)	fits should be conducted based on the statistical errors on the HU measurements and con-
strained so as to characterize the X-ray spectrum of the CT scanner by only two parameters 
rather than three (i.e., Eq. (8) should be preferred).

It is important to note, however, that observations (iv) and (v) may be made only if the beam 
hardening artifact reduction algorithm in the user’s image reconstruction software is adequate, 
as was found to be the case here.

Based on these findings, Test 14b (Table 2) may be singled out as our favored scenario. 
Using this as a baseline comparator and summing in quadrature the fractional differences in 
relative proton stopping power as a function of HU plotted in Figs. 5(a)–(d), 6(c), 7(b), and 
8(c), yields what may be regarded as a combined user-dependent uncertainty from this analysis, 
which is shown in Fig. 9. For this purpose, the Al plug data have been ignored (observation 
(vi)) and phantom size variations have been omitted, since separate anatomical-size-dependent 
calibrations can, in principle, be constructed and used selectively. Also shown in Fig. 9 is its 
complement — the residual uncertainty which, when added in quadrature to this user-dependent 
uncertainty, results in an overall 3.5% range uncertainty. (Implicitly included in this would be 
any component from anatomical-size-dependence, therefore.) Across this clinically relevant 
span of HUs it is evident that the user-dependent variants identified here contribute uncertain-
ties that are well contained within the total 3.5% range uncertainty commonly employed in 
proton therapy treatment planning margins. As would be hoped, therefore, so long as the caveats 
identified here are heeded, such margins are not compromised by the precise details of a given 
institution’s acquisition and handling of the calibration data.
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