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Abstract

Mucosal tissues represent surfaces that are exposed to the outside
world and provide a conduit for internal and external
communication. Tissues such as the intestine and the lung are
lined by layer(s) of epithelial cells that, when organized in three
dimensions, provide a critical barrier to the flux of luminal contents.
This selective barrier is provided through the regulated expression of
junctional proteins and mucins. Tissue oxygenmetabolism is central
to the maintenance of homeostasis in the mucosa. In some organs
(e.g., the colon), low baseline PO2 determines tissue metabolism and

results in basal expression of the transcription factor, hypoxia-
inducible factor (HIF), which is enhanced after ischemia/
inflammation. Recent studies have indicated that HIF contributes
fundamentally to the expression of barrier-related genes and in
the regulation of barrier-adaptive responses within the mucosa.
Here, we briefly review recent literature on the topic of hypoxia
and HIF regulation of barrier in mucosal health and during
disease.
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Surfaces lined by epithelial cells provide a
selective barrier between biologic surfaces,
preventing the free mixing of luminal
antigenic material with the underlying
tissues. The maintenance of this selectively
permeable barrier occurs through
interactions of multiple transmembrane
proteins found in select domains of
the plasma membrane (e.g., adherens
junctions [AJs] and tight junctions [TJs])
and between the epithelium and the
extracellular matrix (1). These membrane
domains define the three-dimensional
structure of the tissue and establish the
polarized protein and lipid organization
within the plasma membrane (i.e., the
“fence” function of the epithelium).

Mucosal tissues also maintain a rich
and complex vasculature. The gastrointestinal
tract, for example, adapts to profound
fluctuations in blood perfusion on a daily
basis (2). At baseline, epithelial cells lining the
gastrointestinal mucosa experience PO2 levels

approaching anoxia, a homeostatic state
termed “physiologic hypoxia” (3). Analysis of
oxygen exchange within the intestine has
revealed that arterial blood–derived O2

diffuses across the villus to parallel venules,
resulting in graded regions of significant
hypoxia (4). In the colon, a gradient of O2

emanating from the submucosa toward the
anaerobic lumen establishes one of the more
complex microenvironments found in
mammals (5). In these settings, even small
perturbations in blood flow can result in
relatively large decreases in O2 delivery with
resultant ischemia/hypoxia. These changes in
blood flow can be particularly profound
during injury. The high-energy requirements
of the mucosa, in combination with the role
of the epithelium in maintaining homeostasis,
has driven the evolution of a number of
mechanisms to cope with this low oxygen
state. Here, we discuss how the mucosa
adapts to changes in blood flow in health and
disease.

Oxygen Utilization in
the Mucosa

A comparison of the various mucosal tissues
reveals marked difference in oxygen
distribution. The healthy lung alveolus,
for example, supports a surface PO2 of
100–110 mm Hg (6). Conversely, the tip of
villi in healthy colon exits at a PO2 of less
than 10 mm Hg (5, 7). Such differences
reflect a combination of O2 sources, the
anatomy of blood flow, and the presence of
large numbers of commensal microbes in
the colon (8). Inflammatory lesions are
profoundly hypoxic (or even anoxic),
comparable to levels observed in some large
tumors (7). Although there are multiple
contributing factors (i.e., increased O2

consumption, vasoconstriction, edema) that
result in decreased O2 delivery and
resultant hypoxia (7), it was recently shown
that a major component of deep-tissue
hypoxia in active inflammation is derived
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from nicotinamide adenine dinucleotide
phosphate oxidase–dependent O2

consumption by activated leukocytes,
particularly neutrophils (9).

Numerous studies have shown that the
transcription factor, hypoxia-inducible
factor (HIF), regulates the expression of
target genes that enable the epithelium to
function as an effective barrier (10, 11). The
two a isoforms of HIF, namely HIF-1 and
HIF-2, represent period–aryl hydrocarbon
receptor nuclear translocator–single-
minded members of the basic helix-loop-
helix family of transcription factors, and
function as central regulators of tissue O2

metabolism (12). HIF stabilization in the
cytoplasm depends on modifications to the
O2-dependent degradation domain expressed
on the HIF-1a and HIF-2a subunits with
subsequent nuclear localization to form
a functional complex with the common
b subunit HIF-1b, also called the aryl
hydrocarbon receptor nuclear translocator
(13). When O2 supply is sufficient, O2- and
iron-dependent hydroxylation of two proline
motifs within the O2-dependent degradation
domain of the a subunit of HIF initiates
von Hippel-Lindau tumor suppressor
protein–dependent ubiquitylation and
degradation by the proteasome (14).

Although the majority of studies in the
literature have focused on hypoxia as the key
regulator of HIF activity, nonhypoxic HIF
stabilizers have also been described.
Inflammatory cytokines, such as IL-1 and
tumor necrosis factor, have long been
known to regulate the activity of HIF-1 in
both normoxia and hypoxia (15). Such
regulation can occur through increased
HIF-1 mRNA, increased protein stability,
and increased HIF-1 DNA binding (15).
Parallel studies have shown that pathways
upstream and downstream of HIF
stabilization can impact HIF activity,
including phosphoinositide-3-kinase (16),
cullin-2 neddylation (17), nuclear factor-kB
(18), and sestrin-2 (19). Likewise, microbial-
derived products found within the mucosa,
including butyrate (20) and siderophores
(21, 22), can also stabilize HIF. It is notable
that the activation of some intracellular
pathways, such as nitric oxide synthase (23),
can result in the redistribution of intracellular
oxygen to the extent that HIF is stabilized.
Thus, it remains to be determined to what
extent the nonhypoxic pathways may be
mediated by shifts in cellular metabolism that
can be “sensed” as hypoxia by the proly
hydroxylase enzymes.

HIF Targets of Barrier
Regulation

A major function of the mucosa is the
provision of a physical barrier between the
inside and outside world. This barrier is
tightly regulated in the healthy mucosa and
barrier dysfunction is associated with a
plethora of mucosal diseases. Here, we
provide examples of barrier components
regulated by HIF.

Mucin Expression and HIF
A number of mucosal surfaces extend the
barrier apically through formation of a
mucus layer. Goblet cells produce and
secrete mucins that form mixture of
glycoproteins at the epithelial surface that
prevents the direct exposure of the mucosa
to luminal contents. Depending on the tissue
origin, goblet cells secrete up to 10 distinct
surface-localized and gel-forming mucins
(24), which, in the healthy mucosa, consist of
an adherent mucus layer that is devoid of
bacteria and a superficial layer that is many
times the depth of the epithelium (25, 26).
Hypoxia and HIF regulate several
components of the mucus layer. For example,
the promoter of mammalian mucin 5AC
contains evolutionarily conserved regions
proximal to the mRNA coding region that
bind functional sma-mothers against
decapentaplegic 4 and HIF-1a binding
regions (27). In the colon, both mucin-3 and
intestinal trefoil factor-3 are prominent HIF-
1a target genes that function in concert to
provide epithelial protection and to promote
wound healing (28, 29).

Mucus also provides a reservoir for
secreted epithelial factors, such as
antimicrobial peptides (AMPs) (30).
Defensins, for example, are a class of
cysteine-rich AMPs that possess broad
antimicrobial activity (31, 32). Human b
defensin-1 (hBD1) is an example of an
AMP secreted by the intestinal epithelium
in a constitutive manner, as opposed to
other defensin-like AMPs that are released
only in response to inflammatory mediators
(8). Homeostatic expression of hBD1 was
demonstrated to depend on HIF-1a
signaling in multiple cells, where hBD1
expression correlated with other HIF target
genes in human tissues (33). A notable
feature of hBD1 is that the full spectrum
of its antimicrobial activity is most
prominently revealed with reduced
disulfide bonds (34). Thus, at multiple

levels, hypoxia and HIF appear to provide
important regulatory roles for the
expression and function of the mucus layer.

Tight Junctions and HIF
TJs form the backbone to the structural
integrity of the barrier and provide the
physical basis for permeability to solutes and
ions (35). TJs also prevent lipid diffusion
between apical and basolateral membrane
domains, the so-called “fence function”
(35). The TJ is composed of both
transmembrane and peripheral membrane
proteins tightly linked to the actin-based
cytoskeleton (36). The assembly of TJ
structure and function within the membrane
is regulated by a variety of physiological and
pathophysiological stimuli (1). Hypoxia, for
example, dramatically influences the integrity
of TJ, and can result in loss of barrier
function. These results have been observed
using a number of approaches, including
chemical depletion of ATP (37) and in vitro
hypoxia (28, 38, 39).

Claudins are a large family of
tetraspannin integral membrane proteins
that function to provide the selective
permeability of TJs (35). Functionally,
claudins are categorized as “tight” or
“leaky” with regard to their influence on
barrier properties (40). Claudin-1 (CLDN1)
is a “tight” claudin that has been shown to
be dysregulated in a variety of human
diseases, including inflammatory bowel
disease (35). In a screen of TJ targets,
CLDN1 was identified to explain an
aberrant junctional morphology of HIF
deficient intestinal epithelial cell lines (41)
(see Figure 1). Using loss- and gain-of-
function approaches, this work showed that
HIF signaling maintains CLDN1 expression
through binding HIF-responsive element
sequences in the gene promoter. The
reintroduction of CLDN1 expression in
HIF-deficient epithelial cells restored barrier
function and reversed the morphologic
abnormalities. Furthermore, in vivo analysis
revealed an importance for HIF-mediated
CLDN1 expression during mucosal insult.
These results identify a critical link between
HIF and TJ structure/function, providing
important insight into mechanisms of HIF-
regulated epithelial homeostasis (41).

Adherens Junctions and HIF
Polarization and intercellular junctions
depend, in large part, on cell–cell contact
mediated by cadherin–catenin interactions
and, subsequent, assembly of the AJ (42).
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Evidence from both ATP depletion models
and ischemia described the dissolution of
AJ complexes (43), likely initiated by the
hyperphosphorylation of the catenins (44).
Because the AJ plays a crucial role for
the establishment and maintenance of
polarized epithelia, these changes constitute
a critical lesion in epithelial hypoxia (45).
During restitution, epithelia depend on
reassembly and reformation of the AJ
proteins. Within the AJ, b-catenin
signaling through T cell factor/lymphoid
enhancer factor transcription factors
regulates barrier restitution during active
mucosal inflammation (46). These studies
in the lung revealed that neutrophil
migration across epithelial monolayers
elicits an epithelial gene programming
that results in activated b-catenin
signaling and the restitution of epithelial
barrier function (46).

Original studies using ATP depletion
models revealed an important role for high-
energy phosphates in the regulation of
barrier function (47). These studies have
prompted further analysis of hypoxia
adaptation to such conditions. Notable is
the observation that cytosolic creatine (Cr)
kinase genes are HIF-2–selective targets
expressed within the AJ of confluent
intestinal epithelia. Studies in the mucosa
revealed that each of the Cr kinase subunits
(i.e., muscle, brain, and mitochondrial) is
expressed in cultured intestinal epithelial
cell lines, murine colonic epithelia, and in
human colonic epithelia (47). During
high–energy demand states, Cr and
phospho-Cr levels are regulated to near
equilibrium, providing a buffering capacity
for ATP and ADP, allowing for the proper
functioning of a numerous of cellular
ATPases (48). Active inflammation

represents a high-energy state accounted
for by functions such as cell migration,
proliferation, and the restitution of
epithelial cells after insult. Under such
conditions, energy expenditure at epithelial
cell–cell junctions is tightly linked to the
circumferential F-actin belt (36). Thus, it
would appear that Cr:phospho-Cr ratios
may serve as functional biomarkers of
cellular energy demand that could be
targetable in ways to promote tissue barrier
function and epithelial wound healing in
the mucosa.

Conclusions

Epithelial cells that line mucosal surface
normally function in diverse and often harsh
conditions. A major function of the
epithelium is the provision of a barrier as
a selectively permeable membrane that
prevents the free mixing of luminal and
serosal constituents. The stark differences in
tissue O2 tension between mucosal tissues
(e.g., compare oxygenation profiles of lung
and colon) and the potential shifts in
energy requirements during injury have
unveiled important lessons about tissue
metabolism in health and disease. In
particular, HIF-target pathways have
revealed potential targets with the tissue
barrier that could serve as templates
for new therapies. A more precise
understanding of the gene targets and
functional components of the HIF
pathway provides ample opportunities
for the development of therapies
directed at promoting mucosal wound
healing. n
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of this article at www.atsjournals.org.
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