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Abstract

Lung ischemia-reperfusion (IR) injury contributes to post-transplant
complications, including primary graft dysfunction. Decades of
reports show that reactive oxygen species generated during lung IR
contribute to pulmonary vascular endothelial barrier disruption and
edema formation, but the specific target molecule(s) that “sense”
injury-inducing oxidant stress to activate signaling pathways
culminating in pathophysiologic changes have not been established.
This review discusses evidence that mitochondrial DNA (mtDNA)
may serve as amolecular sentinel wherein oxidative mtDNA damage
functions as an upstream trigger for lung IR injury. First, the
mitochondrial genome is considerably more sensitive than nuclear
DNA to oxidant stress. Multiple studies suggest that oxidative
mtDNA damage could be transduced to physiologic dysfunction
by pathways that are either a direct consequence of mtDNA damage
per se or involve formation of proinflammatory mtDNA

damage-associated molecular patterns. Second, transgenic animals
or cells overexpressing components of the base excision DNA repair
pathway in mitochondria are resistant to oxidant stress–mediated
pathophysiologic effects. Finally, published and preliminary
studies show that pharmacologic enhancement of mtDNA repair
or mtDNA damage–associated molecular pattern degradation
suppresses reactive oxygen species–induced or IR injury in multiple
organs, including preclinical models of lung procurement for
transplant. Collectively, these findings point to the interesting
prospect that pharmacologic enhancement of DNA repair during
procurement or ex vivo lung perfusion may increase the availability
of lungs for transplant and reduce the IR injury contributing to
primary graft dysfunction.
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Lung transplant is the only cure for
end-stage lung diseases. Worldwide,
almost 30,000 lungs were authorized for
procurement, but only 10 to 15% of
donated lungs were deemed suitable for
transplant (1). The low proportion of lungs
ultimately transplanted is due to a
selection process that relies on highly
conservative criteria and physician
experience to identify those lungs most
likely to achieve a positive clinical
outcome. Among the challenges
confronting the lung procurement process,

two are particularly prominent. First,
the number of transplantable lungs
remains low, resulting in long wait times
and unnecessary morbidity and mortality,
and second, despite the rigorous nature
of the lung selection process, 10 to 20%
of lung transplants are complicated by
primary graft dysfunction (PGD).

Outcomes of lung transplant depend
on a complex interplay between donor
health, premortem treatments, causes of
death, recipient condition, and many
other factors. One pathway that seems to

be critical to overall lung transplant
success is ischemia-reperfusion (IR) injury.
In this context, mitochondrial dysfunction,
and specifically increased mitochondrial
reactive oxygen species (ROS) production
(2, 3), is characteristic of IR injury, but
ROS production has been considered to
be a nonspecific effect of a dysfunctional
respiratory chain interacting with oxygen
during reperfusion (4–6). Recently,
however, increased mitochondrial ROS
production driving IR injury has been
ascribed to activation of metabolic
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response pathways conserved across
multiple organs wherein an expanded
succinate pool, rapidly reoxidized by
succinate dehydrogenase, drives extensive
oxygen radical generation by reverse
electron transport at mitochondrial
complex I (7). In the context of PGD,
the IR injury–related increase in ROS
generation almost certainly occurs in
resident and itinerant lung cells and
triggers a complex cascade
of inflammatory events resulting in
pulmonary edema, hypoxemia, and
alveolar damage in the first 72 hours (8).
The targets of increased ROS generated
in the setting of lung IR injury have not
been thoroughly elucidated.

The introduction of ex vivo lung
perfusion (EVLP) has the potential to
alleviate the shortage of lungs available
for transplant and perhaps to reduce the
incidence of PGD (9). Particularly for
marginally suitable lungs, EVLP provides
a means to engender a degree of recovery
from premortem and procurement-related
insults as well as an opportunity to employ
quantitative indices of physiologic
performance as part of the selection criteria
(10). In addition, use of EVLP raises the
possibility of applying pharmacotherapeutic
strategies between lung procurement and
transplant, also with the dual aims of
increasing the number of physiologically
acceptable lungs available for transplant and
minimizing risk of PGD (11). Against this
background, this focused review describes
evidence that ROS-induced mitochondrial
DNA (mtDNA) damage may be a key event
initiating lung cell dysfunction in the setting
of IR injury, and highlights the possible
utility of agents enhancing mtDNA repair
or promoting degradation of mtDNA
fragments for increasing the availability of
lungs for transplant and reducing the
severity of PGD.

mtDNA as a Sentinel Molecule
in Oxidant-mediated Injury

Among the potential molecular targets
of ROS produced in IR injury, the
mitochondrial genome is particularly
interesting for several reasons. First,
mtDNA, structurally similar to bacterial
DNA, is about 50-fold more sensitive than
the nuclear genome to oxidative damage
(12–14). Second, studies in cultured cells
reveal a conspicuous association between

mtDNA damage and ROS-mediated cell
death; cell types displaying a slower rate of
mtDNA repair are more prone to oxidant-
induced mtDNA damage and cytotoxicity
than cell types that rapidly repair mtDNA,
which are resistant to oxidant-induced
mtDNA damage and cell death (13, 15, 16).
Third, transgenic enhancement of mtDNA
repair blocks IR and other forms of
cellular injury.

It is fair to point out that transgenic
strategies to explore the specific involvement
of oxidative mtDNA damage are challenging
because the key pathway repairing such
damage—the base excision repair
pathway—is present in both nuclear and
mitochondrial compartments; thus, total
cell knockdown or overexpression of
pathway components exerts highly
complex effects not easily attributable to
modulation of oxidative damage in one
genome or the other (17). However, authors
of several recent reports have employed
transgenic mice deficient in the first
enzyme of base excision repair
8-oxoguanine DNA glycosylase (Ogg1), a
mixed-function DNA glycosylase that
excises the common oxidative base damage
product 8-oxoguanine, with the enzyme
selectively reconstituted in mitochondria
(18–20). In these instances, Ogg1
reconstitution in mitochondria, despite
the absence of Ogg1-dependent repair in
the nucleus, inhibits pathophysiologic
responses to developmental, environmental,
or pathologic stressors.

In a comparatively larger number of
studies, however, researchers have examined
the effect of selectively increasing
mitochondrial Ogg1 activity on
pathophysiologic responses to oxidant
stress. Using transgenic constructs
overexpressing the enzyme linked to a
mitochondrial targeting sequence, it has
been shown that enhanced mtDNA repair
prevents ROS-mediated mtDNA damage,
cytotoxicity, and apoptosis evoked by
exogenous ROS in rat-cultured lung
endothelial cells and other cell types
(15, 21–24). Similarly, overexpression of
mitochondria-targeted Ogg1 protects
against asbestos-induced cytotoxicity in
human lung adenocarcinoma cells (25–27),
thus implicating mtDNA integrity in
fibrotic responses of the lung to this
environmental toxin. Although the
presence of mtDNA damage in this system
has yet to be established, provocative
evidence shows that overexpression of

mutant Ogg1 deficient in mtDNA repair
activity, acting in concert with aconitase,
retains its ability to suppress asbestos-
induced cytotoxicity. This observation
suggests that the mitochondria-targeted
DNA glycosylase may exert protective
effects via a mechanism unrelated to
mtDNA repair per se (26, 27).

Given the salutary effects of
overexpressing mitochondria-targeted
DNA repair glycosylases, we developed
recombinant fusion proteins with the goal of
pharmacologically enhancing mtDNA
repair (28). The proteins consist of a TAT
sequence to facilitate cellular uptake, the
mitochondrial targeting sequence from
manganese superoxide dismutase, and one
of two DNA glycosylases, either the
mammalian Ogg1 or the bacterial
endonuclease III. In rodent models, these
agents prevent and/or reverse oxidant-
induced lung injury, IR-induced
dysfunction in myocardial infarction and
stroke, ROS-mediated pathology in
ventilator-induced lung injury, hyperoxic
lung injury in the newborn, and bacteria-
induced acute lung injury and multiple
organ system failure (28–33). Of particular
relevance to this report, our preliminary
studies also suggest that the mitochondria-
targeted Ogg1 fusion protein attenuates
IR-mediated lung injury (28, 34). In all of
the instances noted above where mtDNA
integrity has been measured, the fusion
protein consistently decreased the extent
of oxidative mtDNA damage without
impacting nuclear DNA integrity.
Collectively, these observations support the
interesting idea that a pharmacologic
strategy directed toward enhancement of
mtDNA repair applied in concert with
EVLP could be useful in terms of salvaging
marginal lungs for transplant.

In part on the basis of the observations
summarized above, it has been proposed
that mtDNA integrity serves as a molecular
sentinel linking oxidant stress to cellular
responses, including both death of the
damaged cell and transmission of alarm
signals to nearby or distant neighbors (35).
There is also a teleologic argument for
such a function of the mitochondrial
genome: Because mtDNA has the same
chemical composition as the nuclear
genome, and because the former is more
sensitive to oxidative damage than the
latter, cytotoxicity triggered by damage to
the mitochondrial genome would seem to
be an effective strategy for eliminating cells
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threatened with nuclear DNA mutations
before they are able to replicate.

Potential Mechanisms Linking
mtDNA Damage to Lung
IR Injury

There are at least two general pathways by
which oxidative mtDNA damage adversely
impacts cell and organ function (Figure 1).
First, damage to the mitochondrial
genome directly disrupts transcription of
mtDNA-encoded RNA, thus reducing the
availability of electron transport chain
components. Ensuing limitations in ATP
production can lead to a bioenergetic crisis
and cell death (36). Impaired electron
transport chain efficiency also alters the
cellular redox state, with the potential to
initiate ROS-driven proinflammatory
signaling (24, 37–39). Second, oxidative
mtDNA damage also adversely impacts cell
viability and physiology by promoting
fragmentation of the molecule into
so-called mtDNA damage-associated
molecular patterns (DAMPs) (40, 41). As
discussed subsequently, mtDNA DAMPs
may lead to enhanced ROS generation and
function as “alarm signals” or second
messengers in IR and other forms of injury
(42–44). In support of the importance of
mtDNA DAMPs in human disease,
observational studies using quantitative
reverse transcriptase–polymerase chain
reactions to quantify selected mtDNA
fragments in plasma from patients with
severe illness (45, 46) or injury (47) as well
as patients at risk for PGD after lung
transplant (48) show that their abundance
is predictive of clinical outcomes.

There are many fundamental
questions about the structures of mtDNA
DAMPs, their mechanisms of action, and
pathways of intra- and extra-cellular
trafficking. To illustrate the first of these
deficiencies, conventional methods of
measuring mtDNA DAMPs employing
quantitative reverse transcriptase–
polymerase chain reactions to detect
sequences of about 200 bp in length shed
no light on their sequence composition or
mechanism of formation. Indeed, it was
recently shown that the average size of
circulating mtDNA sequences in normal
human subjects was 30–75 bp (49).
Adding to the complexity, the mechanism
of mtDNA DAMP formation also is
unknown. As noted above, although

oxidative damage appears to trigger
fragmentation of the molecule into
mtDNA DAMPs (40, 41), it is unclear
whether mtDNA fragmentation occurs

randomly, thus leading to formation of an
unpredictable spectrum of mtDNA
DAMP species, or whether damage is
targeted to oxidant-sensitive regions of the

mtDNA with
oxidative
damage
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Figure 1. Postulated feedforward cycle linking oxidative mitochondrial DNA (mtDNA) damage to
regenerative formation of mtDNA damage-associated molecular patterns (DAMPs) culminating in self-
propagating activation of proinflammatory stimulator of interferon genes 1 (STING1), Nod-like receptor
protein 3 (NLRP3), and Toll-like receptor 9 (TLR9) receptors. Critical events linking mtDNA damage to
ischemia-reperfusion injury are indicated in red. The authors postulate that this general mechanism may
contribute to lung ischemia-reperfusion injury and that its interruption by pharmacologic strategies to
suppress mtDNA damage or degrade mtDNA DAMPs could be applied in concert with ex vivo lung
perfusion as a means to increase the number of lungs available for transplant and reduce the severity of
primary graft dysfunction. Text in italic on left side of figure specifies intracellular cellular “domains” or
structures. Text or symbols in red denote key events in injury and injury propagation. See text for details.
IMS= inner membrane space; PTP = permeability transition pore; ROS= reactive oxygen species.
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mitochondrial genome (50), thus
engendering formation of mtDNA DAMP
species of predictable sequence
composition. Knowing whether the
sequence characteristics of mtDNA
DAMP species are random or predictable
is essential for understanding how they
interact with effector molecules. For
example, the degree of deoxyribose
backbone curvature (51), the presence
of specific motifs (52–54), DNase-
mediated digestion (55, 56), and the
presence of oxidized bases in the mtDNA
sequence (57, 58) all may impact the
ability of mtDNA fragments to interact
with their known receptors. These
considerations point to the unsettling
prospect that previous studies may have
failed to detect the most prevalent and/or
biologically active mtDNA DAMP
species.

mtDNA DAMPs interact with three
proinflammatory receptor types (Figure 1).
Those accumulating in the cytosol interact
autogenously with the cytoplasmic
receptors stimulator of interferon genes 1
(STING1) and Nod-like receptor protein 3
(NLRP3). mtDNA DAMPs exported into
the extracellular environment can access
the proinflammatory endosomal Toll-like
receptor 9 (TLR9) in autocrine or
paracrine manners. It is unclear whether
the two cytoplasmic receptor populations
can be accessed by extracellular mtDNA
(43). All three mtDNA receptors are
capable of evoking cytokine and
eicosanoid generation, whereas the NLRP3
initiates pyroptosis as well (43, 59). The
NLRP3 and TLR9 receptors have both
been directly implicated in IR injury (60).
Interestingly, mtDNA DAMP formation
and proinflammatory ROS production
may interact in a feedforward or
regenerative manner. In bacteria-induced
lung injury, for example, mtDNA DAMPs
released into the extracellular environment
in response to mitochondrial genome
damage trigger additional TLR9-
dependent oxidant stress, which leads to
more mtDNA damage and continued
mtDNA DAMP generation. The NLRP3
inflammasome also may be involved in
this regenerative pathway; as noted above,
NLRP3 is activated by mtDNA, and its
recruitment to the mitochondrial outer
membrane surface is associated with
enhanced mitochondrial ROS production
(61). It is thus tempting to speculate that
an mtDNA damage–dependent

feedforward cycle could propagate injury
even after removal of the initiating
stimulus.

How mtDNA fragments are released
from mitochondria and trafficked to
specific targets is not completely
understood. Studies on isolated, ROS-
stressed mitochondria show that mtDNA
DAMP release is size dependent and occurs
via the mitochondrial permeability
transition pore (41), which is intriguing
because the transition pore is centrally
involved in the induction of ROS-
mediated IR injury (62, 63). mtDNA
nucleoids, which are nucleoprotein
complexes containing machinery
necessary for mtDNA transcription,
translation, and replication, are linked
to the cytoskeleton via actomyosin filaments
that span both inner and outer membranes
(64). This relationship between nucleoids
and motor proteins points to a pathway
by which mtDNA could be actively
“catapulted” from the organelle in a
manner similar to the extracellular
release mechanism for mtDNA DAMPs
in eosinophils (65), as discussed
subsequently.

Intracellular trafficking of mtDNA
fragments from damaged mitochondria to
mtDNA receptors also is largely
unexplored. Trafficking could be purely
“functional;” that is, certain mtDNA
sequences have a particular affinity for a
specific type of mtDNA receptor. Some
evidence suggests that this may be the case
for the NLRP3 inflammasome, which was
found in association exclusively with
D-loop sequences in cardiomyocytes,
despite the prospect that other mtDNA
fragments were present in the cytosol (66).
Another possibility, also not well studied,
is that mitochondria are actively
translocated to subcellular domains such
that mtDNA fragments are released in
close proximity to their molecular targets.
In general support of this concept,
transport of mitochondria to perinuclear,
plasma membrane, or endoplasmic
reticular regions has been implicated in
ROS-mediated mitochondrial retrograde
signaling (67), calcium buffering in the
vicinity of immunologic synapses (68), and
triggering endoplasmic reticulum calcium
release (69), respectively. The prospect
that mitochondrial redeployment
contributes to the actions of mtDNA
fragments in IR injury derives indirect
support from the finding that active

translocation of mitochondria to the
nucleus–endoplasmic reticulum interface
creates an optimal environment for
NLRP3 activation (70), perhaps by
targeting delivery of stimulatory mtDNA
DAMPs. Mechanisms of mtDNA DAMP
export into the extracellular domain also
are unexplored, although the process
governing their release from stimulated
eosinophils is ROS dependent and occurs
extremely quickly by a “catapult-like”
mechanism (65).

Prospects for mtDNA as a
Pharmacologic Target in
Patients with Lung Transplants

Accumulating evidence derived from
cultured cells, isolated organs, intact
animals, and human patients supports
the concept that mtDNA may serve a
sentinel function in ROS-mediated
disorders, using pathways whereby
oxidative mtDNA damage initiates
proinflammatory and cytotoxic signaling.
In an extension of this idea, it is also
tempting to suggest that pharmacologic
enhancement of mtDNA repair or
degradation could be therapeutically
advantageous in the specific context of
lung transplants. For example, as
discussed above, enhanced mtDNA repair
initiated during lung procurement or
EVLP might have the potential to increase
the availability of lungs for transplant and
perhaps reduce the incidence or severity
of PGD. Mechanisms of action of
enhanced mtDNA repair include not only
suppression of the direct consequences
of impaired mitochondrial genomic
function but also prevention of mtDNA
DAMP release (40). The prospect that
such experimental “mtDNA repair
agents” could find application in lung
transplantation or any clinical setting is
unknown. However, there is another
pharmacologic strategy already available
that takes advantage of a repurposed drug
to disrupt at least some of the
consequences of mtDNA damage.
Specifically, DNase I, used for many years
to improve mucus clearance in patients
with cystic fibrosis (71) or, more recently,
to treat pleural infections (72, 73), has
been shown in experimental situations to
degrade mtDNA DAMPs and inhibit
their biologic effects (40, 74). In addition,
whereas DNase I used for cystic fibrosis
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or pleural infection is administered
locally, early studies on its potential
benefit in lupus nephritis demonstrated
that systemic administration of the
enzyme was both safe and effective in
degrading circulating DNA (75, 76).
Against this background, we believe
that agents enhancing mtDNA repair or

mtDNA DAMP degradation, used
either alone or in combination (as has
been done in experimental myocardial
infarction [29]), should be explored
as adjunctive pharmacologic therapy
coupled with EVLP to increase the
number of lungs available for transplant
and reduce the severity of PGD. n
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