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ABSTRACT
Since the hypermucoviscous variants of Klebsiella pneumoniae were first reported, many cases of
primary liver abscesses and other invasive infections caused by this pathogen have been
described worldwide. Hypermucoviscosity is a phenotypic feature characterized by the
formation of a viscous filament �5 mm when a bacterial colony is stretched by a bacteriological
loop; this is the so-called positive string test. Hypermucoviscosity appears to be associated with
this unusual and aggressive type of infection, and therefore, the causal strains are considered
hypervirulent. Since these first reports, the terms hypermucoviscosity and hypervirulence have
often been used synonymously. However, new evidence has suggested that hypermucoviscosity
and hypervirulence are 2 different phenotypes that should not be used synonymously.
Moreover, it is important to establish that a negative string test is insufficient in determining
whether a strain is or is not hypervirulent. On the other hand, hypervirulence- and
hypermucoviscosity-associated genes must be identified, considering that these phenotypes
correspond to 2 different phenomena, regardless of whether they can act in synergy under
certain circumstances. Therefore, it is essential to quickly identify the genetic determinants
behind the hypervirulent phenotype to develop effective methodologies that can diagnose in a
prompt and effective way these hypervirulent variants of K. pneumoniae.
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Introduction

In the mid-1980s, a new hypervirulent variant of Klebsiella
pneumoniae was described for the first time in Taiwan.1

This new variant of hypervirulent K. pneumoniae (hvKpn)
differs from the classical K. pneumoniae (cKpn) in its
ability to produce invasive infections even in apparently
healthy adults. The hvKpn variants tend to spontaneously
form abscesses (especially liver ones) and develop metasta-
ses (with or without secondary bacteraemia), particularly
in the brain and eyes, from the primary sites of infection.2-4

These clinical features, which are rarely caused by cKpn,
together with a hypermucoviscous phenotype appearing
when they are grown in various culture media (determined
by a positive string test) are the hallmark of hvKpn
variants.

Since the hypermucoviscous clones of K. pneumo-
niae were described for the first time, they have been
associated with hypervirulence, although no locus or
loci have been clearly identified as being responsible for
this trait. At first, capsular serotypes K1 and K2 were
described as highly pathogenic to humans; they were

more frequently associated with this phenotype and
characterized by producing mucous colonies. However,
hvKpn clones with a hypermucoviscous phenotype and
belonging to different capsular serotypes have been
now described worldwide.5-7 Hypermucoviscous clones
belonging to the same capsular serotype do not produce
a homogeneous pattern of infection despite sharing the
same virulence factor profile.6,8

After the first cases of invasive infections caused by
K. pneumoniae were reported, the hypermucoviscous
phenotype was considered a marker of hypervirulence.
This partnership is still widely accepted. Furthermore,
it is common for these terms to be considered
synonyms in the medical literature. However, is the
hypermucoviscous phenotype an indicator of hyper-
virulence? Based on the information currently available,
the aim of this review was to explore this question and
identify unresolved questions that need to be investi-
gated for a better understanding of hypermucoviscosity
and hypervirulence.

CONTACT Humberto Barrios-Camacho humberto.barrios@insp.mx Departamento de Diagn�ostico Epidemiol�ogico, Instituto Nacional de Salud P�ublica,
Av. Universidad #655, Col. Sta. Ma. Ahuacatitl�an. C.P. 62100. Cuernavaca, Mor., M�exico.
© 2017 Taylor & Francis

VIRULENCE
2017, VOL. 8, NO. 7, 1111–1123
https://doi.org/10.1080/21505594.2017.1317412

https://crossmark.crossref.org/dialog/?doi=10.1080/21505594.2017.1317412&domain=pdf&date_stamp=2017-10-28
mailto:humberto.barrios@insp.mx
https://doi.org/10.1080/21505594.2017.1317412


Hypermucoviscous and hypervirulent variants of
Klebsiella pneumoniae (hmvKpn/hvKpn)

Since they were described for the first time, K. pneumoniae
hypermucoviscous clones have been considered hyperviru-
lent.9 Like all capsulated bacteria, K. pneumoniae produces
mucoid colonies in a nutritive medium. This mucoid phe-
notype differs from a hypermucoviscous phenotype in
that hypermucoviscosity is defined by the formation of a
viscous filament �5 mm after stretching a Klebsiella spp
colony with a loop on an agar plate in the so-called string
test (Fig. 1). Not all mucoid colonies of K. pneumoniae
show a positive string test. This phenomenon highligths a
distinct difference between mucoid capsular strains and
the hypermucoviscous variants.10 The first reports from
the Far East indicated that these variants could produce
invasive infections causing primary liver, prostate, bone,
kidney, and lung abscesses; some cases of necrotizing fasci-
itis have also been described.2,4,11-13 Metastatic complica-
tions to the brain and eyes from these primary sites of
infection have also been documented.2,14-16 Therefore, the
invasive capability and the hypermucoviscous phenotype
account for the main differences between the hvKpn and
cKpn variants (Fig. 2).2 However, the hypermucoviscous
K. pneumoniae phenotype without a hypervirulence geno-
type has been poorly studied. The infections caused by
these hypervirulent/hypermucoviscous K. pneumoniae
(hvKpn/hmvKpn) variants have been observed in immu-
nocompromised Asian patients and diabetics with poor
glycemic control. Moreover, most of these strains belonged
to the K1 serotype, the most prevalent one in the Far East-
ern region.2,16,17,18 In addition to the serotype K1/K2, other
serotypes have also been associated with the hvKpn/
hmvKpn phenotypes.6,19 Similarly, hvKpn/hmvKpn
strains are sensitive to several classes of antibiotics, except

for ampicillin, to which K. pneumoniae is intrinsically
resistant. Although the rate of mortality associated with
these variants is low, the disabling consequences resulting
from the invasion of the central nervous system and the
eye are usually devastating.2 Since most of hvKpn variants
are sensitive to several classes of antimicrobials, the timely
and prompt administration of appropriate antibiotics
avoids the development of catastrophic disabilities and
death.20 The main differences between cKpn and hvKpn
are summarized in Table 1.

Over the years, infections caused by hvKpn/
hmvKpn K. pneumoniae have been detected all over
the world. Unlike the first cases reported, the most
affected people have been young adults without
apparent immunodeficiency and people of Asian
descent.6,21-26 Infections in children have also been
described,27,28 and cases of invasive infections in ani-
mals have been reported.29,30 Lee et al. (2016) tried to
determine whether the development of invasive infec-
tion was due to genetic predisposition or geospecific
strain acquisition. They analyzed 70 patients living in
Singapore and belonging to 4 ethnic groups (Chinese,
Malay, Indian and Caucasian) from which demo-
graphic and clinical profile information was recorded.
In these groups, type 2 diabetes mellitus was the
comorbidity more frequently found at a lower preva-
lence in the Chinese group. Lee et al. (2016) found
that the Chinese had a higher probability of being
infected and developing invasive infection by K. pneu-
moniae K1 serotype than did non-Chinese groups. In
accordance with this result, the Chinese were rarely
infected by non-K1 serotypes compared with non-
Chinese ethnic groups. This particular result may be
because the Chinese have a higher rate of intestinal
carriage of K. pneumoniae K1 serotype compared
with Malay, Indian and Caucasian groups. On the
other hand, non-Chinese groups were more frequently
infected by K2 and other non-K1 serotypes, but the
development of invasive infection was associated with
some comorbidity, especially type 2 diabetes mellitus.
In conclusion, environmental factors (diet, water and
direct contact with K. pneumoniae K1 carriers) that
lead to the acquisition of K. pneumoniae with certain
serotypes, genetic predisposition and comorbidities
represent the principal factors determining the differ-
ential susceptibility to the development of invasive
infection, independent of living in the same geograph-
ical area.31

Thus, hypervirulence in K. pneumoniae could be
defined as the ability of the bacteria to produce invasive
infections (metastatic dissemination) after a primary
focus of infection in apparently healthy adults. The
emergence of multidrug-resistant strains with hvKpn/

Figure 1. String test. A hypermucoviscous phenotype is seen
when a viscous filament �5 mm is produced after stretching a K.
pneumoniae colony with a loop on an agar plate (positive string
test).
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hmvKpn phenotypes is a cause for concern.32-35 Siu et al.
(2014) have shown that the transferability of plasmidic
blaKPC (KPC-2 and KPC-3) into a virulent K. pneumo-
niae K2 serotype isolated from a liver abscess is possible.
Despite the plasmid harboring carbapenemase, the recip-
ient strain conserved its virulence attributes and gained a
multidrug-resistant phenotype.36 Zhang et al. (2015)
have shown the emergence of a K1 hypervirulent strain
of K. pneumoniae harboring blaKPC-2 carbapenemase in
China.35 The hypervirulent K1 K. pneumoniae strain
harboring plasmid-mediated colistin resistance mcr-1
gene has also been identified, which is even more alarm-
ing.37 So far, the number of strains showing multidrug-
resistant and hypervirulent phenotypes has constantly
increased.

Virulence factors behind the hypervirulent/
hypermucoviscous phenotype: From polysaccharide
capsule to nowhere?

Due to the characteristic hypermucoviscous aspect of the
colonies produced by these hvKpn variants, it was
proposed that the polysaccharide capsule was the main
virulence factor responsible for the hypervirulent pheno-
type.38 As observed in all encapsulated bacteria, the poly-
saccharide capsule represents a major virulence factor in
K. pneumoniae. The capsule acts as a protective shield
that protects bacteria from phagocytosis by immune
cells, avoiding the bactericidal action of complement and
antimicrobial peptides by preventing its deposition on
the bacterial surface. Furthermore, the capsule blocks the

Figure 2. Venn diagram showing differences and similarities between hypermucoviscous and hypervirulent phenotypes. New evidence
suggests that hypermucoviscosity and hypervirulence are 2 different phenomena. The green region shows the main characteristics of
the hypermucoviscous phenotype that differ from those of the hypervirulent phenotype. The intersection highlights the elements that
have been strongly associated with both phenotypes.

Table 1. Main differences between cKpn and hvKpn strains.

Feature cKpn hvKpn

Infections Urinary tract infections, pneumonia, bloodstream
infections, wound surgical infections and meningitis,
mainly in alcoholics, elderly adults, patients
undergoing invasive procedures or have significant
comorbidities and immunocompromised patients.
These infections are mainly nosocomial-acquired

Liver, lungs, kidney, bones, prostate abscesses and
necrotizing fasciitis have been already described.
Invasive infections to eye and central nervous
system from this primaries sites of infection even
in healthy adults. These infections are usually
acquired in community.

Antimicrobial susceptibility Multidrug-resistant strains represent the main threat in
this variants of K. pneumoniae. Strains harboring
extended-spectrum b-lactamases (ESBLs) and
carbapenemases genes are a clear example.

The first cases of these variants showed a
susceptibility phenotype to several classes of
antimicrobials. Worryingly, hypervirulent and
multi-drug resistant strains have now been
described. hvKpn strains harboring ESBLs,
carbapenemases or mcr-1 genes have been
described.

Virulence-associated genes Mainly enterobactin, aerobactin, yersiniabactin and
salmochelin.

rmpA, rmpA2, aerobactin, yersiniabactin, pld1, KpnO
porin and higher content of capsular sialic acid
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bacterial opsonization with antibodies and prevents the
activation of the innate immune response.39-41 In accor-
dance with this mechanism, acapsular variants of
K. pneumoniae seem to be less virulent than capsular
ones.40,41 Moreover, the polysaccharide capsule is
responsible for the appearance of mucus (but not neces-
sarily the hypermucoviscous phenotype) when the
microorganism is grown in different culture media.2

So far, 78 serotypes have been described, of which K1,
K2, K5, K20, K54 and K57 have been identified as the
most frequent, pathogenic and prevalent in human infec-
tions caused by K. pneumoniae. Among them, serotype
K1 is predominant in Asia, and serotype K2 has been
more frequently isolated in America and Europe; these
serotypes are the most pathogenic to humans.42 The
genes involved in the synthesis and transport of the cap-
sular antigen in K. pneumoniae are coded at the cps
locus. Among others, this locus contains the genes
required for the polymerization and translocation of the
capsular antigen, and this operon is located within the
bacterial chromosome.43-45

The magA gene (“mucoviscosity-associated gene A”)
was identified as the gene responsible for the hypermu-
coviscous phenotype by means of site-directed mutagen-
esis studies of the genes present in the locus.46,47

Subsequent studies showed that the magA gene encodes
a polysaccharide polymerase enzyme that is specific to
capsular serotype K1 and is responsible for the formation
of the characteristic structure of the capsule.48 It was
later discovered that this polymerase is specific to each of
the currently known 78 capsular serotypes. Therefore,
mucoviscosity-associated gene magA was renamed as
wzy_K1, and this nomenclature was applied to the
remaining serotypes.49 For example, the polymerase
gene specific to serotype K2 is called wzy_K2, the poly-
merase gene specific to serotype K3 is called wzy_K3,
and so forth.48,50 This polymerase is essential for the syn-
thesis of the capsule. Deletion of the wzy gene prevents
the production of the polysaccharide capsule.51 These
features, along with the classical limitations of serotyp-
ing, have turned molecular typing by wzy-PCR into the
gold standard for the characterization K. pneumoniae
clinical isolates.52,53 However, strains with the hyperviru-
lent/hypermucoviscous phenotype that do not belong to
the K1 serotype (wzy_K1 (magA)-negative) have also
been described.54 Therefore, another virulence gene
(or genes), different from those present in the cps cluster,
could be associated with the hypervirulent/hypermuco-
viscous phenotype.

Capsular polysaccharide (CPS) in Klebsiella is similar
to Escherichia coli group I CPS in primary structure and
biosynthesis mechanisms.55 In E. coli, the 2-component
system (TCS) RcsBCD plays an important role as a

regulator system for the synthesis of colonic acid, which
simultaneously functions as a model for group I CPS
biosynthesis. In this system, protein RcsC acts a sensor
kinase, which is autophosphorylated when it senses envi-
ronmental stimuli. It subsequently transfers the stimuli
to RcsD, a phosphotransfer histidine-containing protein,
which is located in the inner membrane. Later, the signal
is relayed to RcsB, a cytoplasmic response regulator pro-
tein. When RcsB is phosphorylated, it interacts with
RcsA, which acts as an auxiliary transcriptional regula-
tor. Finally, RcsA binds to promoters in the cps cluster,
and then the biosynthesis of colonic acid capsule is
activated.55,56,57

In K. pneumoniae, the mucoid phenotype A2 regula-
tor (rmpA2) gene and the truncated form of the mucoid
phenotype A regulator (rmpA) gene apparently act as
positive transcriptional regulators of the capsular poly-
saccharide synthesis; thus, they code for the counterparts
of the RcsA protein found in E. coli, leading to the associ-
ation of capsular hyperproduction with hypermucovis-
cosity and hypervirulence.56 Both can be encoded either
in a chromosome or in a plasmid, and more than one
copy can be found in a bacterial cell. Hsu et al.58 studied
a K1 K. pneumoniae strain harboring 2 rmpA genes
(plasmidic and chromosomal) and one copy of rmpA2
(plasmidic).58 Through isogenic gene deletions and com-
plementation experiments, they found that only plasmi-
dic rmpA was able to increase the expression of cps genes
and CPS production. On the other hand, cps expression
was inhibited by plasmidic rmpA2 but not chromosomal
rmpA. Surprisingly, the authors found that although the
plasmidic rmpA promoted cps gene expression and
increased CPS production, the plasmidic DrmpA
mutants did not show any differences in serum resis-
tance, proliferation in non-immune human serum or vir-
ulence in a murine model.59 A high prevalence of both
genes, combined or alone, was associated with strains
that had a hypervirulent/hypermucoviscous pheno-
type.56,58,60 For example, plasmid pLVPK (219-Kb) har-
bors the rmpA and rmpA2 genes, as well as others that
code for virulence factors, such as several siderophore
systems and genes associated with resistance to tellurite,
copper, silver and lead. This virulence plasmid has been
associated with virulent strains of K. pneumoniae.61 Like-
wise, numerous studies have reported that the presence
of some of these transcriptional regulators, regardless of
the capsular serotype, is strongly associated with hyper-
virulent/hypermucoviscous K. pneumoniae.58,62 How-
ever, similar to the wzy_K1 gene, the strains lacking the
rmpA/rmpA2 genes with the hypervirulent/hypermuco-
viscous phenotype were also described.6,46 Moreover,
strains positive for the rmpA and rmpA2 genes and with-
out a hypermucoviscous phenotype or capsular serotypes
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K1 or K2 were also isolated.6 Some authors suggest that
frameshift mutations (insertion or deletion) in the
rmpA/rmpA2 genes in these strains can produce altered
RmpA/RmpA2 proteins that lead to a non-hypermuco-
viscous phenotype.63 Therefore, hypervirulent/hypermu-
coviscous K. pneumoniae strains that do not belong to
capsular serotypes K1 or K2 and that may or may not
harbor the rmpA/rmpA2 genes represent a great enigma
regarding the genetic factor or factors responsible for its
particular phenotype.

Sialic acid, also known as N-acetylneuraminic acid
(NANA), is a monosaccharide that is present in the K.
pneumoniae polysaccharide capsule. Recent studies have
shown that the hypervirulent/hypermucoviscous variants
of K. pneumoniae have a significantly higher concentra-
tion of sialic acid in their capsular extracts than do those
strains that do not display the hypermucoviscous pheno-
type.64 Moreover, these strains have a phagocytosis-resis-
tance phenotype, in contrast to those strains with smaller
concentrations of sialic acid in their capsules and without
a hypermucoviscous phenotype. Sialic acid in the K. pneu-
moniae polysaccharide capsule inhibits the infected host’s
innate immune response by modulating the inflammatory
responses. In addition, the depletion of sialic acid in the
capsules produced by K. pneumoniae may result in a loss
of hypermucoviscosity and, therefore, a decrease in the
resistance to phagocytosis by neutrophils.64 Given that
only a small number of studies have analyzed the concen-
tration of sialic acid present in the capsules of these
hypervirulent/hypermucoviscous K. pneumoniae variants,
it would be interesting to study a larger number of hyper-
mucoviscous strains to determine whether the concentra-
tion of sialic acid plays a fundamental role in the
expression of the hypervirulent phenotype.

As was noted above, the genetic factors associated
with the synthesis of the polysaccharide capsule were the
first analyzed. However, the role of the virulence factors
described in cKpn was also studied. Among these, the
siderophore system was the most analyzed. Siderophores
play an important role in the ability of K. pneumoniae to
cause invasive disease in human hosts with a functional
immune system.65 Russo et al. (2014) found that hyper-
virulent/hypermucoviscous variants of K. pneumoniae
produced more siderophores than did the classical (not
hypermucoviscous) ones.65 In addition, they found that
aerobactin was the most-produced siderophore under
certain experimental conditions and that the increase in
siderophore production was not related to gene copy
number.65 Moreover, they found that aerobactin was the
primary factor in a conditioned medium that increased
the growth/survival of bacteria in human ascites or
serum. An increase in the virulence of an in vivo infec-
tion of a mouse pulmonary challenge model was also

identified.66 It is noteworthy that these effects were not
observed in the case of salmochelin, enterobactin and
yersiniabactin siderophores.65,66 These data suggest that
aerobactin plays an important role as a fundamental vir-
ulence factor in the development of the hypervirulence
of K. pneumoniae. In silico studies performed by Holt
et al. (2015) showed a higher prevalence of siderophores
in the invasive variants of K. pneumoniae than in the
classical K. pneumoniae. In this study, yersiniabactin was
the most prevalent siderophore found in the hyperviru-
lent/hypermucoviscous variants of K. pneumoniae.
Unlike the findings made by Russo et al. (2014), in rela-
tion to aerobactin, Holt et al. (2015) found that yersinia-
bactin showed no significant association between any of
the other siderophores and the expression of the invasive
phenotype.67

Searching for the genetic determinants behind the
hypervirulent phenotype has identified new factors asso-
ciated with virulence. A phospholipase D family protein
(PLD1) encoded by the pld1 gene that is located within a
type 6 secretion system (T6SS) locus has been described
by Lery et al (2014). These authors found that, in an
intranasal murine model of infection, Dpld1 mutants
were avirulent in comparison with wild-type strains,
while virulence was restored in complemented strains.68

In concordance, phospholipase D family proteins have
been identified as key factors for virulence in Legionella
pneumophila because they promote host cell invasion
and consequent bacterial dissemination.69 Interestingly,
an in silico analysis of pld1 in 171 Klebsiella genomes
found that this gene was widely distributed in
K. pneumoniae subsp rhinoscleromatis, the only intracel-
lular subspecies of the Klebsiella genus.68

In bacteria, porins constitute one of the major pro-
teins of the outer membrane (OM). These also called
OM proteins (OMPs), which interact with the bacterial
environment and act as pores through which certain
molecules can diffuse. Moreover, these proteins have
been implicated in bacterial pathogenesis. A novel OMP,
the KpnO porin, was identified by Srinivasan et al
(2012). These authors found that DkpnO strains pro-
duced less capsular polysaccharide, which was reflected
in non-mucoid and smaller colonies in comparison with
the hypervirulent wild-type strains. In addition, using a
Caenorhabditis elegans infection model, the authors
found that kpnO mutants were less virulent than the
hypervirulent wild-type strains. Complemented strains
recovered virulent and hypermucoviscous phenotypes.70

As we observed, a large number of virulence factors have
been associated with the hypervirulent phenotype; thus,
hypervirulence seems to be a consequence of a complex
interplay of several genetic determinants rather than a
phenomenon originated by a single gene.
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Hypervirulence-associated clonal groups

Bialek-Davenet et al. (2014) analyzed 694 highly con-
served genes using a core-genome multilocus sequence
typing scheme (cgMLST). These authors reported that
serotype K1 hypervirulent variants belonged to clonal
group 23 (CG23), where ST23 was predominant. Serotype
K2 hypervirulent variants, on the other hand, belonged to
the following clonal groups: CG86 (the most widely dis-
tributed), CG65, CG375 and CG380. These results suggest
that invasive infection-causing serotype K2 isolates are
more genetically diverse than serotype K1 ones.71 Interest-
ingly, these researchers found that tellurite resistance
(due to the presence of the terW gene) is strongly associ-
ated with CG23, CG65 and CG86.72 Globally, CG23
(associated with the K1 serotype) is the most prevalent
CG associated with hypervirulence, followed by CG86. To
date, all these clonal groups have been described as causal
agents of invasive infections around the world.17,71

Hypermucoviscosity and hypervirulence: Two
different but (at times) complementary phenotypes?

In 2014 in China, Luo et al. (2014) analyzed 51 non-
repetitive K. pneumoniae clinical isolates causing primary
liver abscesses (PLAs).73 The samples were obtained from
the drainage of these PLAs. Patients from both sexes were
included in the study, and their mean age was 53 y. Most
isolates belonged to the K1 serotype, accounting for 39%
(20/51) of the isolates; 31% (16/51) belonged to the K2
serotype, and 29% (15/51) belonged to non-K1/K2 iso-
lates. Interestingly, approximately 29% (15/51) of the clin-
ical isolates causing PLAs did not show the characteristic
hypermucoviscous phenotype that was associated with
the hypervirulent K. pneumoniae variant. Almost all clini-
cal isolates belonging to the K2 serotype (93.8% (15/16))
displayed the hypermucoviscous phenotype. Nevertheless,
70% (14/20) of the clinical isolates belonging to the K1
serotype showed the hypermucoviscous phenotype,
whereas only 46.7% (7/15) of the non-K1/K2 clinical iso-
lates showed a positive string test. In accordance with
other studies, K. pneumoniae clinical isolates belonging to
the K1 serotype were grouped into clonal complex 23
(CC23); those belonging to the K2 serotype were grouped
into CC65, and non-K1/K2 isolates were grouped into
minor clonal complexes.67,71,74 In addition, virulence
genes, such as rmpA and aerobactin, kfu, and allS sidero-
phore genes showed a diverse distribution among all
clonal complexes. Overall, these results suggest that the
hypervirulent phenotype is not dependent on hypermuco-
viscosity. Therefore, hypervirulence should be defined not
only by the phenotype but also by the genotype and the
clinical characteristics of the infection. In other words,

hypervirulence goes beyond a capsular serotype and a
positive string test.73

Similar results were reported in Spain, where Cubero
et al. (2015) analyzed 878 cases of bacteremia caused by
K. pneumoniae.6 Only 5.4% (53/878) of the isolates col-
lected from 50 patients displayed the hypermucoviscous
phenotype identified through string test. Among these,
16/53 (30.2%) were K1 serotype and rmpA-gene positive,
12/53 (22.6%) were non-K1 serotype and rmpA gene-
positive, and 25/53 (47.2%) were non-K1 serotype and
rmpA gene-negative. Cases of bacteraemia due to hyper-
mucoviscous were more frequent in men with a mean
age of 67 y and were community acquired. The vast
majority of these patients had an underlying disease.
Moreover, these researchers identified that some rmpA
gene-positive strains belonging to the K1 serotype did
not display the hypermucoviscous phenotype. Neverthe-
less, these strains were able to produce an invasive infec-
tion. Surprisingly, they found a small number of
non-hypermucoviscous isolates that did not harbor
rmpA genes and did not belong to the K1 serotype caus-
ing liver abscesses, a type of infection that is commonly
restricted to K1/K2, rmpA-positive and hmvKpn isolates.
These results were in agreement with the observations
reported by Luo et al. (2014) in the sense that hypermu-
coviscosity detected through the string test is not enough
to render an isolate hypervirulent.73 According to these
findings, hypermucoviscosity and hypervirulence are 2
separate entities, and a hypervirulent phenotype is only
determined by genetic traits, in particular (but not solely)
by the transcriptional regulator of the cps cluster, rmpA.
Cubero et al. (2015) also identified rmpA-negative inva-
sive strains belonging to the diverse capsular serotypes.6

In Japan, Togawa et al. (2014) studied 83 bloodstream
infection cases caused by K. pneumoniae.75 Thirty-eight
percent (32/83) of the isolates were classified as commu-
nity-acquired infections and 61% (51/83) as hospital-
acquired infections. These authors reported that the
mucoid phenotypes (colonies with a higher degree of
mucoviscosity than other cKpn but with a negative string
test) and hypermucoviscous phenotypes were more prev-
alent in the community-acquired K. pneumoniae isolates.
As expected, septic shock was more frequently observed
in isolates with mucoid and hypermucoviscous pheno-
types than in non-hypermucoviscous isolates. However,
no statistically significant differences were observed
when mucoid isolates were compared with non-mucoid
ones. Interestingly, a statistically significant association
was seen between liver abscess formation and the mucoid
phenotype. Surprisingly, liver abscess formation was not
significantly associated with hypermucoviscosity. This
finding is contrary to the idea that the hypermucoviscous
phenotype is strongly associated with the development of
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liver abscesses.75 This phenomenon, which is rarely
described, needs to be studied more deeply for a better
understanding of the bacterial genetic determinants and
the host factors that could be responsible for the hyper-
virulent phenotype in K. pneumoniae.

Recently in China, Wu et al (2017) conducted a retro-
spective study to investigate the phenotypic and geno-
typic characteristics of 76 K. pneumoniae strains causing
bloodstream and at least one another site infection dur-
ing the same period of infection. Of these 76 strains, 28
were considered as hypervirulent and the remaining 48
as classic variants. Because there is no consensus about
the definition of hypervirulence, the authors used 3
microbiological characteristics that have been associated
to it: A positive string test, a positive PCR amplification
of rmpA gen and a positive PCR amplification of aero-
bactin gen. Those strains with at least 2 of these indica-
tors were considered as hypervirulent. They found that 2
of 28 strains classified as hypervirulent did not show the
hypermucosvicous phenotype. However, up to 90% of
them were positive to rmpA and aerobactin genes. Inter-
estengly, 2 strains classified as classic variants of K. pneu-
moniae harbored rmpA gen which usually has been
associated only to hypervirulent variants. Although none
of them expressed the hypermucoviscous phenotype and
only less than 10% harbored the aerobactin gen. Regard-
ing to the development of metastasis (invasive infection),
which was defined by the authors as infections occurred
at 2 or more different infection sites in one patient with
bacteremia and without injury or former invasive medi-
cal procedure around the infection sites. Two metastatic
infection cases were identified in homo-cKpn (cKpn
strains isolated from different specimens sources from
the same patient with the same PFGE pattern).Surpris-
ingly, with respect to metastasis development, no differ-
ences were observed between the homo-hvKpn and the
homo-cKpn strains.76

Hypermucoviscosity has not only been described in K.
pneumoniae clinical isolates but also in Klebsiella quasip-
neumoniae subsp. similipneumoniae (initially classified
as K. pneumoniae through automated methods) with a
hypermucoviscous phenotype by Garza-Ramos et al.
(2016). This identification was performed using whole
genome sequencing and a subsequent analysis of the
rpoB gene, and it was confirmed by average nucleotide
identity (ANI). The string test was positive, and the iso-
late was identified as an extended-spectrum b-lactamase
producer encoding the extended-spectrum b-lactamase
(ESBL) SHV-12. Both in silico analysis and PCR assays
showed negative results for the rmpA and rmpA2 genes.
Regarding the “classical” virulence factors, this strain
was positive for enterobactin, urease, UDP galacturonate
4-epimerase, glycosyltransferases, pili, and several

adhesins.77 Simultaneously, a previous study (personal
communication, August 2015) analyzed a hypermucovis-
cous K2 serotype K. pneumoniae obtained from liver
abscess drainage that was positive for the rmpA and
rmpA2 genes. The PCR assay to detect the terW gen was
also positive. Furthermore, Southern hybridization
showed that this strain harbored 2 copies of the rmpA
gene: one was located in the bacterial chromosome, and
the other one was plasmidic. Southern hybridization
against the rmpA2 gene showed its plasmidic location.
Subsequent whole genome sequencing indicated that this
strain harbors the virulence plasmid pLVPK. Sidero-
phore-associated genes iucA, iroB and entB were also
detected in silico and by PCR. Finally, yersiniabactin
gene irp2 was not present in this strain. Once identified,
these 2 clinical isolates with a hypermucoviscous pheno-
type were subject to an analysis of virulence through
resistance to non-immune human serum, biofilm forma-
tion, and survival rate assays in a murine model by intra-
peritoneal inoculation of 1 £ 104 CFU/mL of both
strains. Despite its hypermucoviscous phenotype, the K.
quasipneumoniae subsp similipneumoniae isolate was
highly sensitive to the non-immune human serum; it
was sensitive to neutrophil phagocytosis and was unable
to kill the infected mice after a 14-day follow-up (per-
sonal communication, August 2015). On the other hand,
the K2 serotype K. pneumoniae clinical isolate with a
hypermucoviscous phenotype was resistant to the com-
ponents of the non-immune human serum; it evaded
neutrophil phagocytosis and killed mice 2 d after inocu-
lation (personal communication, August 2015). No dif-
ferences were observed with respect to biofilm
production: both hypermucoviscous isolates were classi-
fied as non-producers, which is consistent with previous
studies.

Moreover, other studies have described the hypermu-
coviscous phenotype in the Klebsiella genus. Arena et al.
(2015) reported the whole genome sequence of a Klebsi-
ella quasipneumoniae subsp quasipneumoniae clinical
isolate displaying a hypermucoviscous phenotype. This
strain was isolated from a bloodstream infection, and it
had a new capsular wzi allele. In silico screening of viru-
lence genes showed the absence of the rmpA and rmpA2
genes. However, this strain harbored other virulence
genes, such as the allABCDRS operon (associated with
allantoin metabolism), the kfuABC system, and the
mrkABCDFHIJ fimbriae cluster.78 Cases of PLAs and
subsequent endophthalmitis produced by K. quasipneu-
moniae subsp quasipneumoniae have also been described.
Brisse et al. (2016) reported the whole genome sequence
of a K. quasipneumoniae subsp quasipneumoniae isolate
that showed a cps gene cluster associated with a capsular
serotype K1. Interestingly, this virulent strain harbored a
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76-Kb DNA genomic island, which is closely related to
the integrative and conjugative element (ICE) ICEKp1, a
mobile genetic element described previously in the
hypervirulent/hypermucoviscous strain of K. pneumo-
niae NTUH-K2044. The mobile genetic element con-
tained the rmpA gene and genes encoding for the
siderophores yersiniabactin and salmochelin. These data
suggest that the natural horizontal acquisition of gene
clusters associated with interspecies virulence in the
Klebsiella genus is a concerning possibility. In addition,
the clusters mrkABCDFHIJ and fimABCDEFGHI
(encoding type III and type I fimbriae, respectively) and
the iutA gene (encoding the aerobactin receptor) were
also identified in the bacterial genome.79 In these 2
reports, both K. quasipneumoniae subsp quasipneumo-
niae strains were susceptible to several classes of antimi-
crobials, and only b-lactamase blaOKP (a b-lactamase
characteristic of K. quasipneumoniae subsp quasipneu-
moniae) was detected.78-80

The hypermucoviscous phenotype has also been
observed in Klebsiella variicola. K. variicola is a Gram-
negative rod bacterium closely related to K. pneumoniae
and K. quasipneumoniae species. It was initially
described as endophytic and pathogenic to humans and
subsequently identified as a symbiont in leaf-cutting
ants. In the last year, K. variicola has been broadly
described as a human pathogen in different parts of the
world.81-85 Garza-Ramos et al. (2015) sequenced the
whole genome of a K. variicola hypermucoviscous clini-
cal isolate obtained from the sputum of an elderly man
in Mexico. The in silico search of the rmpA, rmpA2 and
wzy_K1 (magA) genes was negative, but the search for
virulence genes, such as those involved in iron capture
systems (iroN, iutA, entB and kfuABC), bacterial metab-
olism (uge, ureA and wabG) and adhesion (mrkABCDF-
HIJ) was positive. A 100% nucleotide identity between
this strain and the serotype harboring the wzc-932 vari-
ant was also found.86 Currently, hypermucoviscosity has
been described even in other bacterial genera, particu-
larly in the uropathogenic Escherichia coli (UPEC).87

Therefore, these results could indicate that the hypermu-
coviscous phenotype might be a feature that can be
acquired horizontally through a mobile genetic element.
However, the results found in the Klebsiella species sug-
gest that hypermucoviscosity per se is not enough to con-
fer hypervirulence to a bacterial strain and that other
bacterial factors are required for the development of
hypervirulence.

Over time, new evidence has arisen suggesting that
the string test is not an effective means of determining
whether an isolate is hypervirulent. However, we cannot
discard the string test as a probe that give us a warning
signal that indicates the possibility that a clinical isolate

could be hypervirulent. Until now, string test together
with the clinical data and molecular probes, for example
the PCR identification of rmpA gen, represent the best
preliminary way to detect and diagnose infections pro-
duced by hypervirulent isolates. Therefore, considering
the most important advances in this field, we propose
that the hypermucoviscous phenotype is not a reliable
indicator of hypervirulence. We also postulate that the
search for the genetic traits responsible for the hypervir-
ulent and hypermucoviscous phenotypes should be
made considering these phenotypes as 2 different phe-
nomena that may act as 2 synergistic phenotypes (only
in some cases) to produce strains that display a hypervir-
ulent phenotype.

Concluding remarks/Future perspective

It has long been widely accepted that K. pneumoniae iso-
lates displaying a hypermucoviscous phenotype are
responsible for causing invasive infections in apparently
healthy people that are rarely produced by enteric Gram-
negative microorganisms. In addition, due to the appar-
ent association between this phenotype and the clinical
manifestations of the infection, these variants have been
called hypervirulent. In medical literature, the terms
hypervirulent and hypermucoviscous are commonly
used as synonyms. Moreover, a positive string test has
been considered as indicative of hypervirulence. How-
ever, recent findings show that in at least 3 Klebsiella spp
bacterial species, a hypermucoviscous phenotype per se
is not sufficient to induce a hypervirulent state, and the
identification of hypervirulent K. pneumoniae variants
that do not express the hypermucoviscous phenotype
but still can cause invasive infections in healthy people is
concerning. Thus, the absence of hypermucoviscosity is
not an appropriate way to exclude hypervirulence.
Molecular tests to detect virulence factors, such as aero-
bactin, yersiniabactin and the rmpA/rmpA2 genes associ-
ated with this phenotype, and the clinical manifestations
of the disease are necessary. However, a simple molecular
test is not enough to detect hypervirulence.

Several studies have indicated the K1 and K2 capsular
serotypes (despite the fact that hypervirulence is associ-
ated with clones rather than with serotypes74) or tran-
scriptional regulators, such as the rmpA/rmpA2 genes,
and even to some siderophores, such as aerobactin and
yersiniabactin, as the responsible factors for the hyper-
virulent phenotype. However, several studies have
reported the existence of non-K1/K2, rmpA/rmpA2-neg-
ative strains with a different distribution of siderophores
that cause invasive infections. Therefore, until the genetic
determinants associated with hypervirulence are clearly
identified, we cannot assert or rule out that a clinical
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isolate is hypervirulent. Next-generation DNA sequenc-
ing techniques, bioinformatics and transcriptomics
represent powerful tools that could help us identify the
elements underlying the hypervirulence and hypermuco-
viscous phenotypes. All of these methodologies could
also help us understand whether (under certain circum-
stances) these phenotypes act synergistically or whether
they definitely correspond to 2 different entities. Since
hypermucoviscosity is not a perfect marker of hyperviru-
lence, the available literature concerning this theme
would be imperfect too.

On the other hand, most available studies have
focused on the analysis of bacteria. Few studies have ana-
lyzed host factors that could favor the development of
the invasive infection, for example, age and health status.
The in-depth study of the host-associated factors, such
as the major histocompatibility complex (MHC) variants
that are more frequently associated with such infections,
eating habits, nutritional status, and gut microbiota com-
position, could provide important information to
enhance our understanding of the hypervirulence phe-
nomenon. The rapid spread of these hypervirulent var-
iants around the world and the emergence of multidrug-
resistant hypervirulent strains require us to act quickly
in such a way that we can appropriately face this great
threat to global public health. Finally, the evidence
exposed in this review suggests that hypermucoviscosity
and hypervirulence are 2 different phenotypes.
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