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Abstract

Background—Risk adjustment is necessary to fairly compare central line-associated 

bloodstream infections (CLABSI) rates between hospitals. Until 2017, CDC methodology 

adjusted CLABSI rates only by type of intensive care unit (ICU). 2017 CDC models also adjust 

for hospital size and medical school affiliation. We hypothesized that risk adjustment would be 

improved by including patient demographics and comorbidities from electronically-available 

hospital discharge codes.

Methods—Using a cohort design across 22 hospitals, we analyzed data from ICU patients 

admitted between January 2012 and December 2013. Demographics and ICD-9-CM discharge 

codes were obtained for each patient and CLABSI were identified by trained infection 

preventionists. Models adjusting only for ICU type and for ICU type plus patient case mix were 

built and compared using discrimination, and standardized infection ratio (SIR). Hospitals were 

ranked by SIR for each model to examine the changes in rank from one model to the other.
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Results—85,849 ICU patients were analyzed and 162 (0.2%) developed CLABSI. The 

significant variables added to the ICU model were coagulopathy, paralysis, renal failure, 

malnutrition, and age. The C-statistics were 0.55 (95% CI: 0.51–0.59) for the ICU-type model and 

0.64 (95% CI: 0.60, 0.69) for the ICU-type plus patient case mix model. When the hospitals were 

ranked by adjusted SIRs, 10 hospitals (45%) changed rank when comorbidity was added to the 

ICU type model.

Conclusions—Our risk adjustment model for CLABSI using electronically-available 

comorbidities demonstrated better discrimination than the CDC model. Comorbidity-based risk 

adjustment should be strongly considered by the CDC to more accurately compare CLABSI rates 

across hospitals.

Central line-associated bloodstream infections (CLABSI) are responsible for substantial 

morbidity and mortality among hospitalized patients. Patients with CLABSI are at a higher 

risk of death, have longer hospital stays, and incur more healthcare costs than patients 

without CLABSI.1 Since January 2012, hospital reimbursement by the Centers for Medicare 

and Medicaid Services (CMS) is dependent on public reporting of CLABSI rates. CMS 

hospitals use the operational system of the Centers for Disease Control and Prevention’s 

National Healthcare Safety Network (CDC NHSN) to facilitate reporting.2

The CDC employs risk adjustment in order to fairly compare CLABSI rates across hospitals. 

Until 2017, CDC NSHN adjusted CLABSI rates only by type of intensive care unit (ICU). 

In 2017, the CDC added hospital size (i.e. licensed beds) and medical school affiliation as 

additional risk adjustment variables.3 However, neither of these CDC models adjust for 

individual patient level factors including comorbid conditions. We hypothesized that risk 

adjustment could be improved by including demographics and comorbid conditions from 

electronically-available hospital discharge codes.

Methods

Using a cohort design, we retrospectively analyzed ICU patients admitted between January 

1, 2012 and December 31, 2013 from 22 US hospitals. Facilities were recruited as part of a 

partnership between Premier, Inc., the Society for Healthcare Epidemiology of America 

(SHEA) Research Network, and the University of Maryland, School of Medicine. For those 

facilities volunteering to participate in the study, Institutional Review Board IRB and facility 

consent were obtained.

Using Premier’s Quality Advisor™ database, we obtained demographic and International 
Classification of Diseases, Ninth Edition, Clinical Modification (ICD-9-CM) discharge 

codes on each adult ICU patient. Patients with CLABSI were identified by trained infection 

preventionists at each hospital using CDC NHSN definitions.4 We also obtained information 

on the size of the hospital (i.e., number of beds) and whether the hospital was associated 

with an academic medical school.

Risk adjustment models were built using discrete survival analysis, a method that accounts 

for time at risk.5 Specifically, acquisition of CLABSI on each day in the ICU was used as 

the outcome of a binary regression model with a complementary log-log link. A random 
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intercept for hospital was included in the model to account for the clustering of patients 

within hospitals.

Two models were constructed: 1) a model containing only ICU-type (CDC methodology 

prior to 2017) and 2) a model containing ICU-type plus patient case-mix variables model. 

For this latter model, we identified candidate comorbidity variables using expert consensus, 

which has been reported elsewhere.6 Using a modified Delphi method, nine infectious 

disease and infection control experts were asked to rate the 35 comorbid conditions found in 

the Charlson and Elixhauser Comorbidity Indices from 1 (not at all related) to 5 (strongly 

related), based on perceived relatedness to CLABSI. These experts rated the following 14 

conditions in terms of causality with CLABSI as 3 (somewhat related) or higher: 

coagulopathy, dementia, diabetes without complications, diabetes with complications, drug 

abuse, hemiplegia or paraplegia, HIV/AIDS, lymphoma, malignancy, solid tumor with 

metastasis, severe liver disease, obesity, renal disease, and weight loss (malnutrition). These 

14 conditions (identified using ICD-9-CM codes), along with ICU type, age, gender, race, 

hospital size, and medical school affiliation were entered into the model as potential 

predictors of CLABSI. Hospital size was defined in the 2017 CDC NHSN model as a binary 

variable indicating the number of beds in the hospital ≥276.3 Variables were retained using 

backwards selection if they met the significance level of alpha <0.05.

For both models, we estimated the marginal predicted probabilities of a CLABSI for each 

patient-day in the ICU without including the random effect in the prediction so that hospital 

characteristics did not influence these values. These predicted probabilities were then used 

to generate the C-statistic and 95% confidence interval (CI) for both models. The C-statistic 

is a measure of discrimination, or the model’s ability to discriminate between those with and 

without the outcome. The C-statistic is the chance that the model will assign a higher 

probability to patients with CLABSI than without.7 Values for the C-statistic range from 

0.50, a probability no different from chance, to 1.0, which is perfect prediction. Calibration, 

which is the model’s ability to accurately quantify the probability of the outcome, was 

assessed with a calibration plot. The predicted probabilities were plotted against the 

observed proportion of CLABSI in deciles and a 45-degree line was added to visually 

inspect how well the model was calibrated. In a perfectly calibrated model, the points would 

rest exactly on the 45-degree line, implying that the predicted risks are equal to the observed 

rate.8,9

Unadjusted CLABSI rates were calculated for each hospital by dividing the number of 

CLABSI by the total number of ICU days. To calculate risk-adjusted rates, the predicted 

probabilities from the risk adjustment model were summed to estimate the expected number 

of CLABSI events for each hospital. Standardized infection ratios (SIR) for each hospital 

were calculated by dividing the observed number of CLABSI by the expected number 

predicted by the ICU-type plus patient case mix model. An SIR above 1 indicates the 

hospital reported a greater number of CLABSI than expected, while an SIR below 1 

indicates the hospital reported a lower number of events than expected by the model.10 

Hospitals were then ranked by the case mix risk-adjusted SIRs and compared to the rankings 

when ordered by the ICU-type only risk adjusted SIRs.
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All analyses were conducted using SAS version 9.4 (The SAS Institute, Inc., Cary, NC). The 

calibration plots were generated using the “ggplot2” package in R studio (Version 0.99.902).

Results

Twenty two hospitals contributed ICU data. The analysis included 85,849 ICU patients of 

whom 162 (0.2%) developed a CLABSI. Sixteen (73%) of the hospitals were large (≥296 

beds), 11 (50%) were affiliated with medical schools, and 20 (90%) were located in urban 

areas. Across hospitals, 22,560 (26%) patients were from nine medical cardiac critical care 

units, 18,157 (21%) from eight medical critical care units, 34,537 (40%) from 14 medical/

surgical critical care units, and 10,595 (12%) from six surgical critical care units based on 

CDC ICU definitions. All patients had a minimum of nine ICD-9-CM codes with a median 

of 27 and a maximum of 65 codes.

Table 1 presents a bivariate analysis of the relationship between CLABSI and patient 

demographics and comorbidities. ICU type, age, coagulopathy, paralysis, liver disease, renal 

failure, and malnutrition were significant at the p<0.10 level in the bivariate analysis. Using 

the medical cardiac care ICU as the reference category, medical/surgical critical care 

(p=0.06) and surgical critical care (p=0.03) ICUs were predictive of CLABSI, but the 

medical critical care (p=0.40) ICU was not. Table 2 presents the results of the ICU-type plus 

patient case mix model. The variables added to the ICU-type only model were coagulopathy 

(p<0.01), paralysis (p=0.03), renal failure (p<0.01), malnutrition (p=0.01), and patient age in 

10 year increments (p<0.01). Facility hospital size (p=0.33) and medical school affiliation 

(p=0.152) were not significant predictors of CLABSI and were therefore dropped from both 

models.

The C-statistic (shown in Figure 1) was 0.55 (95% CI: 0.51, 0.59) for the ICU-type only 

model and 0.64 (95% CI: 0.60, 0.69) for the ICU-type plus patient case mix model, a 

statistically significant difference (p<0.001). When the hospitals were ranked by adjusted 

SIRs and compared (Table 3), 10 hospitals (45%) changed rank (4 increased in rank and 6 

decreased) when comorbidities were added to the ICU-type only model. Figures 2 and 3 

show the calibration of the ICU-type only model and the ICU-type plus patient case-mix 

model. Our final model shows better calibration than the ICU-type only model, which 

overestimates the expected rate relative to the observed CLABSI rate in some subgroups.

Discussion

In this retrospective cohort study, we illustrate the importance of adjusting for patient case-

mix variables including comorbid conditions when comparing CLABSI across hospitals. 

Other than the existing CDC model, this is the first analysis to develop risk adjustment 

models for CLABSI. Further, the CDC models do not incorporate comorbid conditions or 

other significant patient factors such as age. Though our model incorporating these factors 

showed modest discrimination, it showed better discrimination than a model with only ICU-

type (CDC risk model until 2017). The additional 2017 CDC variables of medical school 

affiliation and facility hospital size were not statistically significant predictors of CLABSI in 

our cohort.
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We further demonstrate the importance of risk adjustment by showing the change in 

rankings of the hospitals that resulted when the risk adjustment model including comorbid 

conditions was applied. Hospitals with a large burden of patients with more comorbid 

conditions are expected to have a larger rate of CLABSI and their ranking will improve once 

the risk adjustment model is applied. Likewise, hospitals that serve healthier patients with 

fewer comorbidities may decline in their performance ranks when SIRs are adjusted for 

patient case-mix. These shifts may have consequences on payments and penalties for an 

individual hospital when all U.S. hospitals are included in this ranking, as currently done by 

CMS.

CDC models prior to 2017 only adjusted for type of ICU.10 The new 2017 CDC model 

added medical school affiliation and facility hospital size as variables.3 Although these 

variables are unlikely causally related to CLABSI occurrence, they were probably selected 

as proxy variables for patient case-mix. However, while medical school affiliation may 

represent a case-mix of patients who have more comorbid conditions and higher severity of 

illness that merits risk adjustment, it may also represent more inexperienced providers that 

should not be adjusted for when the intent is to use those adjusted rates for quality of care 

comparisons. Similarly, facility hospital size is likely associated with several patient case-

mix and care delivery factors making the direction of influence on CLABSI difficult to 

predict. Indeed, in our large and diverse cohort, neither medical school affiliation nor facility 

hospital size were significantly associated with CLABSI. Therefore, we suggest that it is 

better to directly adjust for patient demographics and comorbid conditions when possible.

Our analysis has a number of strengths. Infection preventionists used standardized CDC 

NHSN criteria to identify CLABSI such that outcome assessment is comparable across 

hospitals. We were able to use comorbid conditions from discharge codes already collected 

routinely for other purposes, and therefore incorporation of these variables into current 

national risk adjustment would not require any additional data collection burden on the part 

of hospitals. In fact, ICD diagnostic codes are already routinely transmitted to CMS by 

hospitals. Use of discharge codes may also encourage the use of risk adjustment as ICD 

diagnostic codes are easier to access and are collected on every patient by trained individuals 

in a standardized fashion.

Our approach has some limitations. The majority of our sample were large, urban facilities, 

which may limit the generalizability of our findings to other hospitals. The Premier database 

did not have data on central-line days so we were unable to use this measure for our 

denominator, nor account for patients with more than one line. Our use of ICU days as the 

denominator may have underestimated the overall CLABSI rate in each unit. While this may 

have misclassified patient time at risk, we have no reason to believe that this 

misclassification is differential. Work by Horstman et al.11 has shown that ICU days 

correlates strongly with device days and that hospital performance rankings using either 

measure were also strongly correlated. A criticism of the use of ICD-9-CM codes in research 

is that they fail to capture all patient comorbidities or could reflect codes that maximize 

reimbursement.12,13 Research comparing the Charlson and Elixhauser Comorbidity Indices 

derived from ICD-9-CM codes to those same scores extracted from chart review has found 

that the sensitivity of the individual components varies greatly but that specificity is nearly 
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100%.14,15 Therefore, while some patient comorbidities may have been missed due to low 

sensitivity of the ICD codes, a condition assigned to a patient is likely to be correct.14–16 As 

such, we may be underestimating the prevalence of these conditions in our study resulting in 

smaller rank changes after adjustment. Despite this limitation, our models still demonstrated 

good discrimination. Another limitation is that we used ICD-9-CM codes and hospitals have 

recently switched to ICD-10 codes; however, this is unlikely to affect the discrimination of 

our model as the identified comorbid conditions can be directly cross-walked between 

ICD-9-CM and ICD-10.17

Our analyses demonstrate the importance of using individual demographic data and 

comorbidities in risk adjustment models. We believe that the CDC and CMS should strongly 

consider incorporating comorbid conditions obtained by electronically-available ICD codes 

into their risk adjustment models for CLABSI.
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Figure 1. 
ROC curves comparing the ICU-type only model to the ICU-type plus patient Case Mix
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Figure 2. 
Calibration curve for the ICU-type only model
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Figure 3. 
Calibration curve for the ICU-type plus patient case mix model
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Table 1

Characteristics of 85,849 patients with and without CLABSI, hazard ratios (95% confidence intervals), and p-

values admitted to the ICU between January 1, 2012 and December 31, 2013

Variable

CLABSI
n=162

Mean (SD) n (%)

Non-CLABSI
n=85,687

Mean (SD) n (%)
Hazard Ratio

(95%CI) p-value

Age in years 60.2 (17.2) 63.0 (16.9) 0.99 (0.98, 1.00) 0.012

Sex

 Female 71 (0.17) 39,094 (99.8) Reference

 Male 91 (0.18) 46,590 (99.8) 0.96 (0.70, 1.31) 0.793

Race

 Black 42 (0.29) 13,225 (99.7) 1.70 (1.15, 2.52) 0.008

 Other 17 (0.17) 6,998 (99.8) 1.44 (0.85, 2.42) 0.175

 White 103 (0.15) 65,364 (99.8) Reference

ICU type

 Medical cardiac 36 (0.14) 22,524 (99.8) Reference

 Medical critical care 32 (0.16) 18,125 (99.8) 1.52 (0.85, 2.70) 0.156

 Medical/surgical critical care 64 (0.18) 34,473 (99.8) 1.82 (1.03, 3.22) 0.040

 Surgical critical care 30 (0.24) 10,565 (99.7) 1.98 1.14 (3.46) 0.016

Coagulopathy 52 (0.39) 12,258 (99.6) 1.70 (1.22, 2.37) 0.002

Dementia 2 (0.24) 751 (99.7) 1.36 (0.34, 5.12) 0.665

Diabetes uncomplicated 39 (0.15) 23,236 (99.8) 0.87 (0.61, 1.26) 0.468

Diabetes complicated 17 (0.23) 6,696 (99.8) 1.22 (0.74, 2.01) 0.446

Drug abuse 9 (0.15) 5,726 (99.8) 0.79 (0.40, 1.55) 0.489

Paralysis 17 (0.45) 3,659 (99.5) 1.89 (1.14, 3.14) 0.013

HIV/AIDS 2 (0.45) 411 (99.5) 1.58 (0.39, 6.40) 0.524

Lymphoma 4 (0.34) 1,057 (99.6) 1.60 (0.59, 4.31) 0.355

Malignancy 9 (0.11) 6,773 (99.9) 0.63 (0.32, 1.24) 0.185

Metastatic cancer 10 (0.24) 3,538 (99.7) 1.42 (0.75, 2.70) 0.281

Liver disease 31 (0.37) 7,667 (99.6) 1.68 (1.13, 2.49) 0.010

Obesity 32 (0.20) 14,956 (99.8) 1.02 (0.69, 1.50) 0.927

Renal disease 56 (0.28) 19,822 (99.7) 1.38 (1.00, 1.92) 0.050

Weight loss (malnutrition) 55 (0.47) 10,804 (99.5) 1.74 (1.25, 2.42) 0.001

Infect Control Hosp Epidemiol. Author manuscript; available in PMC 2018 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jackson et al. Page 12

Table 2

Hazard ratios with 95% confidence intervals, p-values and the C-statistic for the ICU-type plus patient case 

mix model.

Variable HR (95%CI) p-value C-Statistic (95% CI)

ICU type 0.64 (0.60, 0.69)

 Medical cardiac Reference

 Medical critical care 1.28 (0.72, 2.26) 0.400

 Medical/surgical critical care 1.70 (0.98, 2.95) 0.060

 Surgical 1.83 (1.04, 3.20) 0.034

Coagulopathy

 No Reference

 Yes 1.65 (1.17, 2.30) 0.004

Paralysis

 No Reference

 Yes 1.76 (1.06, 2.93) 0.029

Renal disease 0.009

 No

 Yes 1.59 (1.13, 2.22)

Weight loss

 No Reference

 Yes 1.56 (1.12, 2.19) 0.007

Age (per 10 year increase) 0.88 (0.80, 0.96) 0.006
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