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ABSTRACT
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are
necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host.
These Yops are effectively translocated directly from the bacterial into the target cell cytosol by
the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are
characterized by their ability to autonomously cross cell membranes and to transport cargo –
independent of additional translocation systems. The recent discovery of bacterial cell-
penetrating effector proteins (CPEs) – with the prototype being the T3SS effector protein YopM
– established a new class of autonomously translocating immunomodulatory proteins. CPEs
represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this
review, we give an update on the characteristic features of the plasmid-encoded Yops and,
based on recent findings, propose the further development of these proteins for potential
therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value
as bacteria-derived biologics.
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Introduction

In the course of an infection pathogenic bacteria produce
a plethora of virulence factors to modulate and under-
mine the host’s countermeasures for their own survival
and proliferation. Particularly, secretion systems such as
the intriguing type 3 secretion system (T3SS) have been
recognized as fascinating nanomachines which inject
fine-tuned effector proteins in a one-step or two-step
process into the cytosol of targeted host cells.1 These
effector proteins affect nearly all areas of cellular life by
modulating, inhibiting or even exploiting essential cellu-
lar mechanisms for the benefit of the microbe and in
doing so might act in concert.2-4 Furthermore, bacterial
effector proteins might target more than one cellular sig-
naling mechanism so that the currently known targets
might not be comprehensive. A mechanistic understand-
ing of these interactions will provide important insights
into the strategies of bacterial pathogens for survival in
and colonization of the host. Due to the importance of
secreted and injected effector proteins during bacterial
infection and the spreading resistance against current
antibiotics, many studies focused on effector proteins as
putative targets for combating bacterial infections. How-
ever, exploiting these effector proteins for the

development of novel biologics might also offer innova-
tive possibilities for therapeutic interventions in sterile
inflammation (reviewed in, refs. 5, 6).

In essence, many secreted bacterial virulence factors
are highly adapted regulators of the human immune sys-
tem. The so-called “Drugs from Bugs” concept aims at
taking advantage of these immunomodulatory effects
and combines it with the technology of cell-penetrating
peptides or proteins (CPPs), which are able to autono-
mously cross biological membranes. As a result, one
would have a self-delivering therapeutic at one’s disposal,
e.g. to treat diseases dominated by a dysregulated
immune system or other failing cellular functions. Sur-
prisingly, over the past years, quite a few bacterial effec-
tor proteins were found to harbor already an intrinsic
cell-penetrating ability. Consequently, these factors were
designated cell-penetrating effectors or CPEs.5 These
include the Escherichia coli effectors Tir,7 TcpC,89 and
NleC,10 SspH1 of Salmonella,11 IpaH 9.8 of Shigella
(Norkowski et al., personal communication),12 and
YopM of Yersinia.13,14 The latter three effectors share
high sequence homology in their N-terminal regions,
which are dominated by an a-helical structure, followed
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by leucine rich repeats.11,13,15 Besides, a growing number
of biologic or synthetic cell-penetrating peptides is avail-
able, which can be fused either genetically or chemically
to heterologous cargo-proteins for delivery into target
cells and also specific target cell compartments of interest
(for a review see refs. 16, 17). How these CPEs – or even
CPP in general – actually cross eukaryotic membranes is
an area of intense research as it appears that transloca-
tion mechanisms may also vary according to the particu-
lar CPE or the CPP-cargo pair. For CPEs such as YopM
endocytic uptake followed by endosomal escape has been
shown to be a major uptake route.5,6,13,14 Employing
these technologies we will be able to develop bacterial
immunomodulators for therapeutic purposes.

The type III secretion system-associated, plasmid-
encoded effectors of the human-pathogenic Yersinia
species were among the first effector proteins to be
molecularly characterized (for reviews see refs. 18-25).
Plasmid-encoded Yersinia outer proteins (Yops)
encompass the following six proteins: YopE, YopM,
YopO, YopT, YopP, and YopH. In addition, recent
findings indicate that YopQ/K (YopQ in Y. enterocoli-
tica and YopK in Y. pseudotuberculosis and Y. pestis)
– a translocated regulator of type-3-secretion – might
also have an impact an host cell proteins like
Rac1.26,27 Since there is only very little data available
on this Yop, it will, however, not be discussed in any
detail in this review. Ongoing research efforts gener-
ate novel insights and continuously enhance our
understanding of intracellular targets and the

mechanisms of action for most Yops (summarized in
Fig. 1). Here, we want to give an update of the cur-
rently known status of the molecular functions of the
individual Yops, their presently known targets, and
discuss potential fields of therapeutic applications for
recombinant, autonomously cell-penetrating Yersinia
effector proteins. As the multifunctional ‘low-calcium
response protein LcrV’ shows links to Yop effectors it
has also been included in this review.

YopM – A cell-penetrating scaffold protein

Structure and function

The Yersinia outer protein M (YopM) is the only known
Yop where a catalytic activity appeared to be lacking. In
general, YopM belongs to the LPX family of bacterial
T3SS-secreted effectors, which is a subgroup of the leu-
cine-rich repeat (LRR) superfamily and includes the Yer-
sinia protein YopM, different IpaH (invasion plasmid
antigen H) proteins of Shigella spp. as well as the Salmo-
nella effectors SspH1, SspH2, and SlrP (Salmonella leu-
cine-rich repeat protein).28 These proteins consist of a
N-terminal a-helical domain, which is followed by a
varying number of LRRs and except for the YopM
protein, they all possess a C-terminal NEL domain.28

However, just recently it has been suggested that the
N-terminus of YopM harbors a novel E3 ubiquitin ligase
that induces necrotic cell death by targeting NLRP3.29

This is quite surprising as an E3 ubiquitin ligase domain
has not been found previously in YopM and thus this
finding needs to be confirmed.

The horseshoe shaped 13–21 leucine rich repeats
(LRRs) of YopM act as a scaffold to bind host cell pro-
teins and thus interfere with interactions in which these
proteins are involved.30 In vitro tetrameric complexes of
YopM were observed, which form a hollow cylinder of
yet unknown function.30 As the number and exact com-
position of the LRRs varies between Yersinia species and
strains,31 YopM proteins vary in size between 41–55 kDa
which might also be a reason for the partially contradic-
tory results reported in different studies. Two distinct
nuclear localization signals are contained within the
highly conserved LRRs 1–3 as well as the C-terminus.31

The N-terminus consists of two anti-parallel a-helices,
which contain not only the signal for secretion and
translocation via the T3SS,32 but harbor also two distinct
synergistically active transduction domains which allow
for the autonomous translocation of (recombinant)
YopM into a huge variety of eukaryotic host cells in vitro
and in vivo.13,14,33,34 Whether an autonomous cell-pene-
tration of effector proteins might have a direct effect dur-
ing bacterial infections has remained elusive.

Figure 1. Intracellular functions of Yersinia outer proteins (Yops).
YopE, YopT, and YopO inactivate RhoGTPases, thus mainly inhib-
iting phagocytosis, together with YopH, which dephosphorylates
components of focal adhesion complexes. YopP (YopJ in Y. pestis
and Y. pseudotuberculosis) blocks NF-kB- and MAPK-signaling
probably by acetylation of important signal transducers. YopM
associates with PRK and RSK and regulates pro- and anti-inflam-
matory gene transcription via a yet unknown mechanism. The
figure was generated using Servier Medical Art.
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Among the few established interaction partners of
YopM, mature a-thrombin was the first to be discovered.35

When complexed with YopM, a-thrombin is no longer
able to induce platelet aggregation.35 However, this inter-
action did not contribute to the overall virulence in a
mouse infection model of Y. pestis.36 The serine protease
inhibitor a1-antitrypsin is also bound by YopM, yet with-
out altering its inhibitory effect.37 Nevertheless, it is
remarkable that YopM, which is normally directly translo-
cated into the host cell cytosol by the T3SS, specifically
interacts with extracellular host proteins indicating a possi-
ble extracellular role of this protein. This is supported by
the identification of YopM in culture supernatants of
HeLa cells infected with Y. pestis.38

In the cytoplasm, YopM forms a hetero-trimeric com-
plex with the two serine/threonine kinases ribosomal S6
protein kinase (RSK) and protein kinase C-related kinase
(PRK, also called PKN), which are subsequently acti-
vated.33,39,40 However, formation of the RSK1-YopM-
PRK2 trimer is dispensable for the anti-inflammatory
effect of (recombinant) YopM and, furthermore, does
not even influence physiological functions of the PRK/
PKN and RSK kinases such as cell proliferation and
migration.33 This is also mirrored in the unaltered phos-
phorylation of the downstream targets BAD, Jun, CREB
or Akt.39,40 On the other hand, interaction with PRK2
seems to be important to dampen pyrin inflammasome
activation triggered by YopE- and YopT-induced RhoA
inactivation (Fig. 1).41 Consequently, YopM appears to
be less important for colonization by YopE/T-negative
mutants.41 After trafficking from the cytosol to the
nucleus of the cells, T3SS-delivered YopM was recently
shown to form yet another heterotrimeric complex,
namely with RSK1 and the DEAD Box Helicase DDX3.42

DDX3 mediates nuclear export of YopM, thus control-
ling YopM activity (Fig. 1).

Furthermore, inhibition of caspase-1 containing
inflammasomes by YopM, either through direct binding
to caspase-1 or indirectly through blocking the potential
caspase-1 activator IQ motif-containing GTPase-activat-
ing protein 1 (IQGAP1) has been proposed.43,44

Although the underlying mechanism for the observed
effects of YopM has remained elusive, YopM has been
clearly shown to be an important virulence factor with
anti-inflammatory activities. Depending on the Yersinia
strain, the route of infection, and the examined animal
model, YopM-dependent colonization of spleen, liver
and lungs,45,46 depletion of natural killer cells,47 reduc-
tion of pro-inflammatory cytokine secretion (including
interleukins 1b, 12, 15, and 18, interferon-g and tumor
necrosis factor-a),13,47 induction of caspase 3-mediated
apoptosis,48 or inhibition of apoptosis and migration
were observed.49 Additionally, YopM was also suggested

to induce elevated levels of the anti-inflammatory cyto-
kine interleukin-10.46

Potential therapeutic uses

As YopM is one of the first identified CPEs, possible
therapeutic applications for recombinant YopM are cur-
rently under investigation. The most promising thera-
peutic application to date is a topical administration of
YopM for the treatment of the auto-inflammatory skin
disease psoriasis, with already two granted patents
(Fig. 1).50,51 Like many other inflammatory disorders,
psoriasis is characterized by elevated levels of TNF-a,
which in turn drives the production of many other cyto-
kines.52 Consequently, today’s mostly used therapeutic
strategy relies on the systemic application of anti-TNF-a
antibodies.53 Clear advantages of a cell-penetrating
YopM-based topical treatment would be the lack of sys-
temic distribution of the drug (allowing lower dosage
and most probably causing less detrimental side effects),
a more convenient administration route (creaming
instead of injection), a shift toward an earlier and non-
stoichiometric intervention (inhibition of the expression
of TNF-a, not of the cytokine itself), and a broader target
spectrum (inhibition of TNF-a-independent pro-inflam-
matory cytokine production, with simultaneous induc-
tion of the anti-inflammatory cytokine IL-10). However,
although these exciting results are very promising, as
details of the molecular mechanism are still under inves-
tigation, recombinant YopM as a novel biologic has not
reached human patients or the clinics yet.

YopE – A GTPase activating protein

Structure and function

Being the first Yop effector protein to be translocated by
the T3SS,54 the 23 kDa YopE plays a major role in the
initial bacterial defense against phagocytes. It does so by
its GAP (GTPase activating protein) activity targeting
the small Rho-GTPases Rac1, RhoG and partially also
RhoA, thereby disrupting actin cytoskeleton dynamics
(Fig. 1), which is manifested by rounding up of affected
cells and their inability to form phagocytic cups.55-58 Fur-
thermore, YopE is able to activate the GTPase domain of
Cdc42 in vitro.59

Amino acid sequence similarities of YopE to eukary-
otic GAPs can only be found in an arginine finger motif,
typical for this class of enzymes. However, YopE shares a
striking similarity to its eukaryotic orthologues in struc-
ture.60 The first 15 amino acids of YopE contain a secre-
tion and translocation signal, which is necessary and
sufficient for translocation into host cells via the T3SS
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when YopE is bound to its specific chaperone SycE via aa
15–50.61 Amino acid residues 50–77 contain an inhibi-
tory sequence for translocation (reversed by SycE bind-
ing)61 which - in the host cell - functions as a membrane
localization signal (MLS).62 Depending on the Yersinia
serogroup, this MLS harbors two lysine residues which
can be ubiquitinated by the host cell, marking YopE for
proteasomal degradation.63,64 This represents an inter-
esting mechanism for fine-tuning not only YopE activity
but also the entire Yersinia virulence, since YopE also
acts as a negative regulator for Yop translocation during
infection via a yet unknown mechanism.65,66 Interest-
ingly, some Yersinia strains even secrete a chromosom-
ally-encoded, T3SS-independent A-B toxin, the
‘cytotoxic necrotizing factor of Yersinia’ (CNF-Y), which
counteracts YopE-mediated inactivation of RhoA and
Rac1 and therefore promotes Yop translocation.67,68

By inhibiting the important Rac1 pathway, YopE not
only attenuates phagocytosis and Yop translocation, but
also contributes to the general immunomodulatory activ-
ities of the Yersinia outer proteins. In epithelial cells, the
response to translocon integration is mainly initiated
through RhoA signaling.69 Following integrin-mediated
signaling, Rac1 can activate the MAPKs p38 and JNK,
leading to IL-8 production,70,71 which was found to be
inhibited by YopE.72 Furthermore, Rac1 can trigger cas-
pase-1-dependent IL-1b maturation, which is also inhib-
ited by YopE.73 In addition, several Rho-GTPases are
involved in the production of reactive oxygen species
(ROS)74,75 and by inhibiting these enzymes, YopE was
found to reduce ROS levels in macrophages, which
appears to be a pre-requisite for splenic colonization by
Yersinia.76 Polymorphonuclear neutrophils (PMNs),
another important cell type for defense against Yersinia
infections,77 are also inactivated by YopE in vivo.78 On
the other hand, sustained inactivation of Rho-GTPase
function by YopE might be sensed as a danger signal by
macrophages, leading to increased killing of intracellular
bacteria.79 Further studies showed that chemical or
genetic inactivation of RhoA and Rac1 even leads to
higher levels of secreted pro-inflammatory cytokines
after additional TLR stimulation,80,81 again indicating
that a prolonged action of YopE might not be favorable.

Potential therapeutic uses

Based on the molecular mechanism described above,
potential areas of medical application for a recombinant,
cell-penetrating YopE protein are inflammatory bowel
diseases (IBD, Fig. 2). This conglomerate of several auto-
inflammatory disorders of the gastrointestinal tract is
among others characterized by massive infiltration and
pro-inflammatory activity of neutrophils.82,83 By hitting

Rho-GTPases, YopE not only attenuates the production
of IL-8 (CXCL8), an important chemoattractant and
activator for neutrophils,84 but should also severely affect
neutrophil migration, which is largely dependent on
Rho-mediated signaling.85 An increasing number of
research projects is directed toward an inhibition of neu-
trophil migration and/or activity as well as modulation
of Rho-GTPases for the treatment of IBD or auto-
inflammatory disorders in general.85-89

In line with this, YopE – together with YopT – has
been proposed as an inhibitor of caspase-1 activation,
since chemical inhibitors of Rho-GTPases also had a
negative effect on caspase-1. Indeed, transfected YopE or
YopT was able to block IL-1b secretion by HEK293T
cells through inhibition of the Rac1-LIMK-1-pathway,
leading to impaired activation of caspase-1.90 This find-
ing led to a patent for the treatment of caspase-1 related
diseases, such as inflammatory bowel disease, Crohn’s
disease, or rheumatoid arthritis, with YopE and/or
YopT.90

YopT – An irreversible inhibitor of Rho-GTPases

Structure and function

In host cells, YopT, a 36 kDa cysteine protease, induces a
very similar phenotype as YopE.91 Accordingly, YopE
and YopT share the same intracellular targets, however,
they have different affinities and follow different mecha-
nisms. In vitro, YopT cleaves the small Rho-GTPases
RhoA, RhoG, Rac1 and Cdc42 directly in front of the C-
terminal CAAX motif (C D cysteine; A D aliphatic aa; X
D any aa), which carries the isoprenyl membrane anchor
(Fig. 1).92 In contrast to YopE, YopT therefore leads to
an irreversible inhibition of Rho-GTPases by inducing
their redistribution from the membrane to the cytosol
where they do no longer come into contact with their
likewise membrane-associated interaction partners.93

The cleavage occurs regardless of the activation state of
the Rho-GTPases,93 but is dependent on preceding endo-
proteolytic processing of the CAAX motif by Rce1,
which removes the AAX residues.94 In vivo, the preferred
target of YopT is RhoA.95

YopT is the prototype of a new protein fold subfamily
of proteases, which among others encompasses toxin B
from E. coli or the avirulent protease AvrPphB of the
plant pathogen Pseudomonas syringae.96 This classifica-
tion was based on predictions and homology analysis,
although the actual 3D-structure of YopT has not been
resolved yet. However, the crystal structure of the sub-
family member AvrPphB revealed a papain-like core.97

Consequently, given the relatedness of YopT to
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AvrPphB, the in vitro activity of YopT can be blocked by
E64, an inhibitor of papain-like proteases.96

Although YopT inactivates roughly the same path-
ways and leads to a comparable (yet milder) phenotype
as YopE, it cannot fully replace YopE’s anti-phagocytic
and anti-inflammatory effects. Furthermore, when YopE
is present, YopT is even dispensable for colonization in
vivo.72 In line with these results, some strains of Y. pseu-
dotuberculosis do not even encode a functional copy of
YopT.91

Potential therapeutic uses

Hyperactivated RhoA – in macrophages and endothelial
cells apparently the main target of YopT ¡95 and espe-
cially its downstream target Rho-associated protein

kinase ROCK are involved in several disease patterns,
often within the cardiovascular field. A considerable
number of studies already investigated small molecule or
endogenous inhibitors of RhoA or ROCK for treatment
of e.g., arteriosclerosis (Fig. 2). An important signaling
axis in this respect is the negative regulation of eNOS
(endothelial nitric oxide synthase) synthesis involving
RhoA and ROCK. Sildenafil, a standard therapeutic for
erectile dysfunction in the context of diabetes mellitus,
acts by stabilizing the NO induced second messenger
cGMP, resulting in vasodilatation and prolonged penile
erection.98 The same effect was observed in rats treated
with a ROCK inhibitor.99 In contrast to other indica-
tions, where a (unfavorable) systemic treatment with a
cell-penetrating variant of YopT would be necessary,
treatment of erectile dysfunction holds the possibility of

Figure 2. Overview of potential therapeutic uses of Yops. The most promising therapeutic application of YopM is the treatment of the
auto-inflammatory diseases such as psoriasis, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Based on the molecular
mechanism described before, potential areas of medical application for a recombinant, cell-penetrating YopE protein are IBD. YopT and
especially its downstream target Rho-associated protein kinase ROCK are involved in several disease patterns, often within the cardio-
vascular field e.g., arteriosclerosis but also erectile dysfunction and traumatized neurons might be a target for a cell-penetrating YopT.
A cell-penetrating effector YopO might be beneficial for the treatment of diseases associated with hyperactivated Rho-GTPases similar
to YopE and YopT, but also for targeting mediators of auto-immune diseases like inflammatory bowel diseases. YopJ and its impact on
signaling cascade displays potential therapeutic potential for inflammatory disorders, such as Psoriasis, RA, and IBD, but also for cancer
control. RA also appears to be a promising area of application for recombinant YopH. Moreover, cancer progression also relies on signal-
ing pathways tackled by the effector protein. The figure was produced using Servier Medical Art.
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a topical treatment with potentially less systemic side
effects than even the established oral therapeutics.

Furthermore, local ROCK inhibition was able to
decrease inflammation in inflamed synovial tissues
in rheumatoid arthritis.100 Finally, Tan et al. and
Lord-Fontaine et al. developed a cell-penetrating RhoA
inhibitor based on the C3 toxin from Clostridium botuli-
num and demonstrated in vitro and in vivo its potential
use for regeneration of traumatized neurons, which is
strongly retarded by active RhoA (Fig. 2).101,102 Also
patients suffering from Alzheimer’s disease might even-
tually profit from a downregulation of the RhoA/ROCK
pathway.103

A cell-penetrating variant of YopT might thus be a
valuable tool for the treatment of pathologies caused by
RhoA hyperactivation. Topical treatment of erectile dys-
function, local treatment of traumatized neurons or
inflamed synovial tissues would present interesting
options for therapeutic applications here. Still, one has to
consider that a more specific inhibition of the ROCK
pathway would be superior in most cases.

YopO – A multidomain effector protein

Structure and function

The anti-phagocytic effector YopO (also called Yersinia
protein kinase A, YpkA, in Y. pseudotuberculosis and Y.
pestis) was the first bacterial kinase to be described as a
secreted virulence factor.104 Moreover, it shares striking
sequence homologies with catalytic motifs of known
eukaryotic Ser/Thr kinases, such as protein kinases A
and C (PKA and PKC) or casein kinase 2 (CK2).104

YopO is secreted via the T3SS in an inactive state and
is redirected by its N-terminal sequence to the host cell
plasma membrane, where binding to an actin monomer
leads to auto-phosphorylation and activation of the
kinase domain.105-107 To date, the a subunit of a hetero-
trimeric G protein, Gaq, which controls activation of
phospholipase C,108 as well as several regulators of actin
polymerization including the vasodilator-stimulated
phosphoprotein (VASP),109 the Wiskott-Aldrich Syn-
drome protein (WASP), the Ena/VASP-like protein
(EVL), gelsolin, and the formin diaphanous 1 were iden-
tified as direct targets of YopO (Fig. 1).107 By intervening
with the regulation of actin polymerization, YopO activ-
ity leads to disappearance of stress fibers and rounding
of the cells.110 Disruption of the actin cytoskeleton dras-
tically impairs the phagocytosis of bacteria by macro-
phages – probably the most important function of YopO
during infection.106

However, using transfected Henle407 cells as well
as yeast cells, it was shown that loss of kinase activity

in YopO only attenuates—but not fully abolishes—its
ability to disrupt actin polymerization.110,111 This is
due to a second functional domain in YopO that
resembles eukaryotic GDP dissociation inhibitor
(GDI) domains, which associate with GDP-bound
small Rho-GTPases, thereby keeping them in an inac-
tive state.112 Indeed, YopO was found to interact
directly with RhoA and with slightly higher affinity
with Rac1 and Rac2, additional regulators of actin
dynamics, and this interaction greatly contributes to
the actin destabilizing effect of YopO.112

Thus, YopO comprises three domains (membrane
localization, Ser/Thr kinase, and GDI domain) that act
synergistically in order to prevent phagocytosis of the
invading bacteria by host cells. The importance of this
mechanism was shown in animal experiments, where
mutants of Yersinia pseudotuberculosis expressing trun-
cated versions of YopO were almost completely attenu-
ated in their virulence.104

Taken together, pathogenic Yersinia manipulate
Rho-GTPase signaling via four different mechanisms:
acceleration of GTP conversion (YopE), inhibition of
GDP dissociation (YopO), release of Rho-GTPases
from the membrane (YopT) and deamidation of a
catalytic glutamine residue (CNF-Y). This illustrates
the importance of RhoGTPases in the defense against
invading Yersinia, which includes organization of
phagocytosis,113 activation of MAPK-dependent IL-8
production,70,71 caspase-1 dependent IL-1b matura-
tion,73 and the production of reactive oxygen species
(ROS) among others.74,75

Potential therapeutic uses

YopO targets both Rho-GTPases as well as Gaq. Exam-
ples of diseases associated with hyperactivated Rho-
GTPases have been mentioned in the YopE and YopT
sections above (Fig. 2). By hitting Gaq in addition,
YopO could, however, also have adverse effects. There is
growing evidence that Th17 cells are crucial mediators in
auto-immune diseases like inflammatory bowel diseases
(Fig. 2).114 Gaq activity in turn has lately been linked to
reduced differentiation of Th17 cells and disease progres-
sion.115 Thus, YopO might have beneficial effects regard-
ing neutrophils in this disease background, but adverse
effects regarding Th17 cells. Gaq is also known to play a
role in hypertension and the formation of thrombi, and
inhibitors of Gaq are already under investigation for
these indications.116,117 Being of bacterial origin, a
recombinant, cell-penetrating YopO would, however,
have to face once more the challenge of systemic applica-
tion without inducing an acute immune reaction.
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YopP – A highly potent anti-inflammatory
effector protein

Structure and function

YopJ/P (termed YopJ in Y. pestis and Y. pseudotuberculo-
sis and YopP in Y. enterocolitica) is probably the most
effective Yop in terms of suppressing pro-inflammatory
signaling pathways in host cells. At the same time, many
different isoforms of YopJ/P have been described, which
differ in their translocation and/or substrate binding effi-
ciencies and therefore in their contributions to viru-
lence.118-121 In a mouse infection model, Y. pestis EV76
strains which expressed either YopJ or YopP, exhibited
remarkable differences in virulence.122 Hence, general
statements concerning the actions of YopJ/P have to be
taken with caution. Known targets and effects are listed
in Table 1.

Especially in the domains harboring the catalytic cen-
ter, YopJ/P shares structural (but not sequence) homol-
ogy to Clan CE cysteine proteases, which encompass
many de-ubiquitinating and de-sumoylating enzymes.123

Indeed, recombinant YopJ was shown to be able to cleave
ubiquitin chains (but not SUMO modifications) from an
artificial substrate in vitro, and cells expressing YopJ con-
tained lower levels of ubiquitinated TRAF2, TRAF6, the
inhibitor of kB a (IkBa) as well as the stimulator of
interferon genes (STING).124,125 This observation was

confirmed in two additional studies for TRAF6 (plus add-
ing TRAF3) in transfected as well as Y. enterocolitica-
infected cells.123,126 TRAF2 (downstream of the tumor
necrosis factor-a-receptor (TNF-R)), TRAF6 (down-
stream of the toll like-receptor 4 (TLR-4), T- and B-cell
receptor (TCR/BCR) as well as interleukin-1 receptor
(IL1-R)), and STING (downstream of receptors for cyto-
solic DNA) get fully activated by K63-linked ubiquitina-
tion.127-129 IkBa, in turn, upon activation is marked for
proteasomal degradation by K48-linked ubiquitination,
thus unmasking NF-kB, which then consequently can
translocate into the nucleus to induce transcription of
pro-inflammatory genes (Fig. 1).130 The outcome of
TRAF3 ubiquitination is highly dependent on the circum-
stances and may be pro- as well as anti-inflammatory.131

However, direct de-ubiquitination of cellular proteins
by YopJ/P has not been observed. In fact, there is
increasing evidence of an intrinsic acetyltransferase
activity of YopJ, which is specific for serine, threonine
and lysine residues (Table 1). Experiments performed in
vitro and in cellulo demonstrated acetylation of the acti-
vation loop of MAPK kinases 2 and 6 (MEKs 2/6).132,133

In co-transfection experiments, MEKs 4 and 7, trans-
forming growth factor b-activated kinase 1 (TAK1; a
MAPK kinase kinase), RICK (a caspase recruitment-
domain containing kinase), and IkB kinase (IKK) were
also found to be acetylated on critical residues in the

Table 1. Known functions and molecular targets of YopJ/P sorted by host cell types and stimuli. Unless stated otherwise, all listed
targets are negatively regulated by YopJ/P. Targets for which direct interaction with YopJ/P was not shown in the respective references,
are marked with (?).

Activity Cell type & stimulus Direct target Indirect target Reference

De-ubiquitinase Transfected cells (YopJ) /
Infected cells (YopP)

TRAF2, TRAF3, TRAF6,
IkBa, STING, IL-8
transcription

123,124,125,126

Acetyl-transferase Transfected & stimulated HeLa
cells (YopJ)

MEK 2 132

Transfected & stimulated HEK
cells (YopJ)

IKKa, IKKb MEK6, IKKb,
not IKKa

132,
133

Transfected HEK cells (YopJ) MEK4, MEK7, TAK1, RICK 134,135
Transfected HEK cells and
infected HeLa cells (YopP)

Tab1 TAK1, IL-8 transcription 136

Not determined Infected HUVECs (YopP) IL-6 and IL-8 secretion,
ICAM1 expression

144

Infected murine macrophages
(YopJ/P)

MEK2, p38(?), JNK(?) TNF-a secretion 119,145,155

Infected murine Dendritic cells
(YopP)

Antigen uptake, CXCL1,
TNF-a, IL-10, IL-12,
ICAM1, MHCII, CD80,
CD83 expression

146,
151

InfectedC IL-12 & IL-18 stim.
murine natural killer cells
(YopP)

p38(?), JNK(?),Tyk2(?),
STAT4(?)

IFN-g expression 153

Infected murine C human
macrophages (YopJ/P)

Induction of apoptosis…
by RIP1/3 kinase
dependent activation
of caspase 8

119,147,148,149,150,152,154,155
156,157

Infected murine dendritic cells
(YopP only)

Induction of apoptosis, 119,151

1130 B. GRABOWSKI ET AL.



presence of catalytically active YopJ.132,134,135 Inhibition
of TAK1 was likewise demonstrated for YopP, although
it was not able to bind TAK1 in vitro but rather bound
to TAB1, a regulatory protein in active TAK1 com-
plexes.136 Since YopJ in addition directly binds MEKs
1/3/5,137 which also contain Ser and Thr residues in their
activation loops, these kinases might also be acetylated
by YopJ/P. Binding of inositol hexakisphosphate (IP6) to
YopJ induces conformational changes resulting in the
formation of an acetyl-CoA binding pocket, which
greatly boosts acetyltransferase activity in vitro as well as
inside the host.138-140

In summary, it is intriguing to see that YopJ/P
apparently is able to block activation of central pro-
inflammatory pathways at three consecutive levels: (1)
TRAF2 and TRAF6, which are among the first pro-
teins to be activated by their respective receptors; (2)
TAK1, a MAPKKK which is activated (directly and
indirectly) by TRAF2 and TRAF6; (3) the down-
stream MAPKKs 4, 6, 7, as well as IKK/IkBa, which
in turn control the activation of the MAPKs p38 and
c-jun amino-terminal kinase (JNK), or NF-kB respec-
tively – all of which can finally elicit a strong inflam-
matory response (Fig. 2; pathways reviewed inref.
141). Inhibition of MAPKKs by YopJ was also pro-
posed in studies using transfected yeast cells.142 On
the other hand, not all of these levels might be tar-
geted by all YopJ isoforms and not in all cell types.143

In line with these findings on intracellular signaling,
key pro-inflammatory cytokines are downregulated by
YopJ/P. This includes inhibition of IL-8 transcription in
human embryonic kidney (HEK) cells by YopP after
MAPKKK overexpression or IL-1 stimulation and by
YopJ after TLR-2 or TLR-4 activation,123,136 inhibition of
IL-6 and IL-8 secretion by human umbilical vein endo-
thelial cells (HUVECs) after YopP translocation,144 as
well as reduction of TNF-a secretion by murine macro-
phages caused by YopP.145 Furthermore, antigen uptake
by dendritic cells and expression of intercellular adhe-
sion molecule 1 (ICAM1) in endothelial cells might also
be negatively regulated by YopP.144,146

Apart from these strong anti-inflammatory effects
of YopJ/P, probably the most captivating feature of
YopJ/P is the induction of cell death in macrophages
and dendritic cells (YopP only), but not in epithelial
or natural killer cells.119,147-153 Inhibition of the TLR-
4, MAPK and NF-kB pathways is necessary for this
effect,154,155 which involves receptor-interacting pro-
tein 1 and 3 (RIP1/3) kinase-dependent activation of
caspase-8, thus most probably triggering the extrinsic
apoptosis pathway.156,157

Paradoxically, activation of caspase-8 by YopJ/P
also promotes activation of caspase-1, which is

responsible for the maturation of the pro-inflamma-
tory cytokines IL-1b and IL-18.157 Nevertheless, a
medium level of macrophage cytotoxicity was proven
to be necessary for full Yersinia virulence in mouse
models, whereas strongly pro-apoptotic YopJ/P iso-
forms or hypersecretion of YopJ/P impair virulence,
just as YopJ/P null mutants do.119,122 If it turns out
that caspase-1 is indeed partially inactivated by (some
isoforms of) YopM, this would be another interesting
example for the interplay and fine-tuning of different
Yersinia effector proteins.

Potential therapeutic uses

In rheumatoid arthritis (RA) over-activation of macro-
phages plays a decisive role. Specialized macrophages,
termed osteoclasts, are necessary for bone homeostasis
by degrading bone tissue, but sterile inflammation can
cause a regulatory imbalance leading to excessive bone
destruction.158 TNF-a was identified as a central driver
of these inflammatory reactions and is thus today the
main therapeutic target in RA treatment, especially in
the form of neutralizing antibodies.158 In the inflamma-
tory skin disorder psoriasis, macrophages were also sug-
gested to play an important role in maintaining the
inflammation status.159,160 Psoriasis is a particularly
interesting option for a treatment with bacteria-derived
cell-penetrating proteins, since the site of inflammation
can be reached easily by topical application, which
means that potential detrimental side effects caused by a
systemic distribution of such an exogenous protein are
circumvented.

In the context of these diseases, intervention with a
cell-penetrating rYopP may have several benefits, as it
impairs TNF-a-induced signaling as well as NF-kB-
and MAPK-driven TNF-a secretion, and most impor-
tantly, it triggers apoptosis in activated macrophages,
which are the primary source of TNF-a.158 Hence,
rYopP would cut inflammation at an earlier stage
than e.g., neutralizing antibodies, which might be
more efficient and especially more sustaining. Fur-
thermore, one would not need a stoichiometric
amount of the therapeutic biologic (one neutralizing
antibody may only bind two TNF-a molecules), but
could use much less, which in turn might be advanta-
geous further in terms of minimizing side effects.

This high therapeutic potential of YopJ/P had
attracted already some attention. About 20 years ago,
Pettersson and Wolf-Watz filed a patent for the delivery
of YopJ by engineered bacteria for the treatment of
inflammatory disorders of the gut with extensive IL-8
expression.161 Wallach and Appel developed a YopP-
fusion protein encompassing a TNF-R binding peptide
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and an endosomal escape sequence for efficient delivery
of YopP into activated macrophages, which express high
amounts of the TNF-R.162 Another group constructed
self-assembling YopJ-nanoparticles which readily trans-
located into and killed human breast cancer cells.163

Hence, with increasing options for engineering also tar-
geted cell-delivery of YopJ/P, further possible applica-
tions will be developed (Fig. 2).

YopH – A versatile phosphotyrosine
phosphatase

Structure and function

Phosphorylation of either tyrosine, serine or threonine
residues is frequently utilized by eukaryotic cells for sig-
nal transduction and thus, pathogenic bacteria have
evolved an astonishing arsenal of phosphatases to
manipulate these signaling processes in their favor.164

With YopH, Yersinia secrete a highly potent and versa-
tile phosphotyrosine phosphatase.165 It consists of three
major domains: an N-terminal domain (aa 1–129) that
includes the secretion and translocation signal as well as
a chaperone binding region,166,167 a proline-rich repeat
(aa 130–192), and a catalytic C-terminal domain (aa
193–468), which comprises all invariant features of
eukaryotic phosphatases of the PTPB1 family.168 The
catalytic center forms a so-called P-loop (phosphate-
binding loop) with the typical HC(X)5R(S/T) motive,
which contains the catalytic active residues C403 and
R409, which upon ligand binding get in close proximity
to D356 to build a catalytic triad.169 D356 is part of a sec-
ond, highly flexible structure termed ‘WPD loop’.168,170

Mutation of C403 or D356 to either serine or alanine
renders YopH inactive.171,172 Residues important for
substrate binding were found in the N-terminal as well
as the C-terminal domains.173,174

Many – yet most probably not all – direct and indirect
targets of YopH in several different cell types have been
proposed or identified to date (Table 2). As with YopM
and YopJ/P, in evaluating these results one has to care-
fully take into account the particular Yersinia species
and experimental set-up (in vitro vs. in vivo, cell types,
mouse models, way of YopH delivery, etc.) before reach-
ing more general conclusions. For example, YopH of Y.
enterocolitica was reported to dampen phagocytosis in
murine dendritic cells,175 while no such effect was
observed for YopH of Y. pseudotuberculosis.176 The pre-
sumably cell-penetrating construct ANT-YopH, used at
a concentration of up to 300 mg/mL by Alonso et al.,
blocked T-cell activity in vitro, but was later also shown
to induce the intrinsic apoptosis pathway independent of
YopH activity.177

Notably, all known interaction partners of YopH are
associated with contact-dependent signaling via integrins
or the T-cell receptor (TCR), which is mainly transduced
by non-receptor tyrosine kinases of the src family.178 In
particular, most of the target proteins (p130cas, FAK,
Fyb, Paxillin, SKAP-HOM, SLP-76, PRAM-1) are part of
focal adhesion or focal adhesion-like complexes (Fig. 1),
which are an important part of integrin and TCR signal-
ing.179,180 During infection, Yersinia tightly bind to b1-
integrins via their outer membrane adhesin invasin.181

Host cells decode this binding as a danger signal that
promotes phagocytosis,182 inflammasome activation,183

and secretion of several pro-inflammatory cytokines.184

Therefore, it is of great importance for the invading Yer-
sinia to shut down this signaling axis.

In a murine infection model, enzymatically active
YopH was found to be sufficient for successful coloniza-
tion of the spleen by intravenously injected Y. pseudotu-
berculosis mutants.185 Intranasally administered Y. pestis
lacking functional YopH effectively colonized the lung,
but were not able to spread to the spleen and lungs of
infected mice or to prevent early cytokine responses.186

This observation was mainly linked to the inactivation of
neutrophils by YopH, although YopE could fully com-
plement a loss of YopH in one study.78 A more recent
study showed that YopH-deficient Y. enterocolitica
mutants were not able to block neutrophil recruitment
into Peyer’s patches of living mice.187 Currently it is not
clear whether an interruption of the T-cell receptor sig-
naling pathway is advantageous for invading Yersinia. In
intragastrically infected mice, a virulence plasmid-cured
Y. pseudotuberculosis strain readily colonized lymphatic
tissues, where it even associated with T- and B-lympho-
cytes.188 On the other hand, CD8C T-cells were found to
be important for the clearance of repeated Y. pseudotu-
berculosis infections.189

In times of recurring endemic outbreaks and an
increasing awareness of potential bioterroristic attacks,
YopH lately became a highly studied target for the treat-
ment of especially Y. pestis infections through small mol-
ecule inhibitors of YopH.190-193 Finally, recent data
showed that – at least in pathogenic E. coli – bacterial
proteins involved in the regulation of virulence, includ-
ing type III secretion, are also activated by tyrosine phos-
phorylation – a mechanism that was long believed to be
completely absent in bacteria.194 Whether YopH might
thus also play a regulatory role within the bacterial cell is
an exciting topic for future research.

Potential therapeutic uses

Tyrosine phosphorylation is part of many signaling path-
ways and thus dysregulation of this mechanism might be
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involved in a wide range of diseases. In particular, integ-
rin and growth factor receptor signaling rely on tyrosine
phosphorylation, which in turn is partly shut down by
YopH. Due to the apparent ubiquitous presence of tyro-
sine phosphorylation in signaling pathways, two selected
possible fields of application for a local treatment with a
cell-penetrating form of the phosphotyrosine phospha-
tase YopH are discussed in the following.

First, rheumatoid arthritis (RA) appears to be a prom-
ising area of application (Fig. 2). As already mentioned,
the gold standard for treatment of RA is simple blockage
of the central mediator of inflammation, tumor necrosis
factor a (TNF-a), e.g., by antibodies.158 Such a therapy
was found to effectively reduce bone erosion, but not the
underlying inflammation.195 Therefore, eliminating the
source of pro-inflammatory cytokines might be a better
approach. In the case of RA, the sources of pro-inflam-
matory cytokines are mainly hyperactivated monocytes
and their differentiated descendants such as macro-
phages and especially osteoclasts, which in the end cause
bone erosion.158 Due to its versatility, YopH could coun-
teract this series of events on several levels:
� YopH reduces the activation of the Akt pathway in
macrophages, probably by blocking the integrin
receptor-mediated activation of the phosphoinosi-
tide-3-kinase (PI3K) signaling.196 Recent studies
showed improved health when this signaling axis
was blocked in murine models of psoriatic
arthritis.197

� p130cas, probably the best studied direct target of
YopH, is essential for actin-remodeling after con-
tact-dependent activation of osteoclasts.198 This
remodeling in turn is essential for the bone
destructing activity of osteoclasts.199

� Finally, contact-dependent activation of T-cells by
monocytes plays an important role in the persis-
tence of inflammation in RA – a fact that is already
successfully exploited for therapy.158 YopH in turn
is very effective in shutting down T-cell responses
to antigen stimuli.172,196,200

Blocking just one of the above mentioned pathways
would probably not be sufficient to achieve a satisfactory
RA treatment. Unlike most small molecule inhibitors,
YopH might however be able to block all of them simul-
taneously, making it a highly potent candidate therapeu-
tic. Especially interesting could be a combination with
YopP, which blocks central inflammatory signaling path-
ways causing macrophage cell death.

Second, cancer progression also relies on signaling
pathways described above (Fig. 2). Integrin signaling via
focal adhesions promotes cell survival and can protect
so-called cancer stem cells from therapeutic interven-
tion.201 Focal adhesion kinase (FAK) is found

overexpressed and hyper-phosphorylated in many types
of cancers, where it facilitates angiogenesis as well as cell
migration and proliferation (and thereby metasta-
sis).202,203 Hyperactivated SKAP-HOM was linked to
increased invasion of tumor-associated macrophages,
which create a pro-metastatic environment for the tumor
cells.204 Finally, p130cas as a central mediator of integrin
and growth factor receptor signaling got into the focus of
cancer research recently. Especially in HER2-positive
breast cancer, there is increasing evidence that over-acti-
vated p130cas plays a major role in promoting cell sur-
vival, proliferation and spreading.205

As for RA, YopH (targeted by homing sequences or
injected directly into the tumor mass) might be able to
undermine tumor progression on several levels simulta-
neously. On the other hand, though, it would also be
able to suppress beneficial tumor infiltrating T-cells.206

This versatility might be seen as a general drawback of
YopH for a possible role as a novel biologic. In addition,
overshooting PTPase activity has also been linked to can-
cer progression and other disease patterns,207 which
illustrates the delicate balance that has to be maintained
and/or restored by therapeutic interventions.

LcrV (V-antigen) – An essential multifunctional
virulence factor with immunosuppressive
properties

Structure and function

Low-calcium response protein V (LcrV or V-antigen,
37–39 kDa) has been identified first in Y. pestis more
than 50 years ago.208 Subsequently, this plasmid-encoded
secreted protein was also identified in all human patho-
genic Yersinia (for recent review see ref. 209). Interest-
ingly, homologs of LcrV are also expressed by several
other bacteria employing a T3SS such as P. aeruginosa,
V. cholerae, Photorhabdus luminescens and Aeromonas
spp.209 However, quite surprisingly neither any possible
intracellular target(s) nor an enzymatic activity has been
associated with LcrV yet. Furthermore, LcrV has been
intensely studied as part of candidate vaccines against
Yersinia infections and has been shown to confer protec-
tion in animal models.210-212

LcrV has been identified as a multifunctional viru-
lence factor exhibiting characteristics of translocator and
effector proteins. LcrV is involved in the regulation of
Yop production,213 the translocation of virulence pro-
teins by contributing to the needle tip,214,215 and to pore
formation in the target cell membrane since it facilitates
insertion of YopB and YopD in host cell mem-
branes.216,217 Just recently, LcrV has been described in Y.
pseudotuberculosis to be required for the early targeting
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of YopH in vivo.218 LcrV is secreted by the T3SS and has
been detected on the bacterial surface and in the cytosol
of target cells.219 Apparently, LcrV enters host cells inde-
pendently of T3S and the YopB–YopD pore, however,
appears to need direct contact of Yersinia with the target
cell since extracellularly added LcrV is not able to enter
cells.219

Nevertheless, extracellularly added, recombinant LcrV
has been found to exert also immunosuppressive proper-
ties. Treatment of mice with rLcrV leads to suppression
of TNFa and IFNg via amplification of IL-10 and inhibi-
tion of neutrophil chemotaxis.220-223 Further, in murine
peritoneal macrophages production of TNFa, IFNg, IL-
12, IL-1b, IL-6, MCP-1, MIP-1a, MIP-1b, and RANTES
were inhibited by rLcrV (and rYopB).224 Interactions of
rLcrV with CD14 and TLR2 lead to the secretion of IL-
10 in stimulated cells such as macrophages and a general
hypo-responsiveness of other TLRs. This effect can also
be induced by a short conserved N-terminal peptide of
LcrV (VLEELVQLVKDKKIDISIK).225 The importance
of these findings is further corroborated by the reduced
susceptibility for oral Yersinia infection of TLR2-defi-
cient mice, which in contrast to wild-type mice are capa-
ble to resolve an infection.225

Potential therapeutic uses

Although unmodified LcrV of Y. pestis has been reported
to be an extremely unstable protein,226 it can be pro-
duced from Y. enterocolitica as recombinant (e.g., His-
tagged) protein in sufficient amounts for therapeutic
applications.227 As the effects of LcrV appear to be
mainly based on the enhanced production of anti-
inflammatory IL-10, possible applications might be
directed primarily to the management of infection-asso-
ciated immunopathology, autoimmunity, or allergy.228

In fact, IL-10 itself has been tested since its discovery in
patients suffering from Crohn’s disease, rheumatoid
arthritis, psoriasis, hepatitis C infection, HIV infection
and for the inhibition of therapy-associated cytokine
release associated with organ transplantation.229

Although systemic applications showed promising
results in early clinical trials – e.g., in Crohn’s disease
patients – other immune pathologies were not as suscep-
tible to IL-10 treatment, which probably might also be
caused by IL-100s role as a regulatory cytokine which is
influenced further by the site of expression and the cell
type.230-232 In this respect, topical application of rLcrV
might be a suitable strategy to induce targeted, site-spe-
cific IL-10 secretion for the treatment of autoimmune
disorders. At present, however, studies addressing these
potential applications of LcrV have not been reported.

Conclusion

During the long period of coevolution mainly pathogenic
bacteria have developed perfectly adapted effector pro-
teins for manipulating cellular responses and the human
immune system in their favor. As we are uncovering
more and more molecular details of these interactions
we might be able to exploit the successful ‘research and
development’ of these bacterial pathogens and produce
our own ‘biosimilars’. The six plasmid-encoded Yersinia
outer proteins and LcrV described in this review target
several important regulators in different pathways
(e.g., Rho-GTPases, MAPKs, or mediators of integrin
signaling; Fig. 1), which are dysregulated in major
human diseases such as inflammatory bowel diseases,
rheumatoid arthritis, psoriasis, or cancer (Fig. 2).

Potentially, the addition of further targeting sequences
to either autonomously cell-penetrating effectors (CPE)
or effectors combined with cell-penetrating peptides
could enable the delivery of recombinant Yops and also
of LcrV at specific sites and into specific host cells and,
eventually, even host cell organelles of interest. Such tar-
geting might make these novel biologics more efficient
and less toxic than conventional drugs, which are often
less selective and thus have higher EC50. Furthermore,
bacterial effector proteins can target intracellular pro-
teins for which no satisfactory chemical inhibitor is avail-
able. This would provide a novel, vast pool of innovative
candidate therapeutical biologics. Besides, such con-
structs could be interesting for basic research as well to
specifically modulate proteins and pathways of interest.
YopH for example has already been suggested as a tool
in kinase research.233

However, not every level of interaction between
Yops and host proteins has been elucidated to date.
This bears the problem of potential unwanted side
effects due to modulation of yet unknown intracellular
targets by cell-penetrating Yops. Moreover, Yersinia
outer proteins are very efficient in silencing anti-
bacterial responses of eukaryotic cells, but as they
affect many signaling pathways in parallel, their use as
a specific therapeutic has to be cautiously explored.
On the other hand, as illustrated for the possible role
of YopH in the treatment of rheumatoid arthritis,
inhibiting more than one pathway can also be an
advantage over common standard therapies. Certainly,
further thorough and diligent investigations including
animal studies are needed to identify and evaluate the
severity of probable side effects in relation to the ther-
apeutic benefits of these novel biologics.

Furthermore, bacteria-derived protein therapeutics
face similar safety issues as reported for any other drug
delivery system.234,235 In this regard, several limitations
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such as poor serum stability, cytotoxicity, and immuno-
genicity of conventional CPEs need to be optimized or to
be considered in the choice of preferred application
routes to expand their usefulness for biomedical applica-
tions. Especially the usually pronounced immunogenic-
ity of bacterial CPEs might cause substantial drawbacks
for systemic applications and might limit therapeutic
options mainly to topically accessible diseases. Concern-
ing serum stability and other safety issues, the field of
CPEs can certainly profit from the extensive research on
those aspects for other protein therapeutics. For example,
Pan et al. developed a strategy to enhance serum stability
of a CPP-RNA conjugate by coupling it to diethylene
glycol (DEGylation),236 similar to the attachment of
polyethylene glycol (PEGylation) to conventional protein
therapeutics.

Apart from such obstacles, several patents and ongo-
ing studies on the use of Yops and also other bacterial
effector proteins as innovative biologics testify to the
appealing nature of this strategy. Further research on the
role of Yops during infection will also enhance and
strengthen our knowledge base for this translational
approach.
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