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SUMMARY

Herpes Zoster (shingles) causes significant morbidity in immune compromised hosts and older 

adults. While a vaccine is available for prevention of shingles, its efficacy declines with age. To 

help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, 

multifactorial response network (MMRN) of immunity in healthy young and older adults 

immunized with the live attenuated shingles vaccine Zostavax®. Vaccination induces robust 

antigen-specific antibody, plasmablasts and CD4+ T cells, yet limited CD8+ T cell and antiviral 

responses. The MMRN reveals striking associations between orthogonal datasets such as 

transcriptomic and metabolomics signatures, cell populations and cytokine levels, and identifies 

immune and metabolic correlates of vaccine immunity. Networks associated with inositol 

phosphate, glycerophospholipids and sterol metabolism are tightly coupled with immunity. 

Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and 

T follicular cell responses. Our approach is broadly applicable to study human immunity, and can 

help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.
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INTRODUCTION

Recent advances in high-throughput technologies have enabled the collection of detailed 

data of immune response in humans, especially via controlled studies of vaccination (Davis, 

2008; Kidd et al., 2014; Mooney et al., 2013; Pulendran and Ahmed, 2011; Pulendran et al., 

2010; Zak and Aderem, 2015). Blood transcriptomics, albeit complex, has been very 

informative about early events of the immune response. For example, the transcriptomic 

signatures after vaccination have been used to predict vaccine-induced antibody and T cell 

responses in multiple studies, and different classes of vaccines induced distinct gene 

expression programs (Franco et al., 2013; Furman et al., 2013; Gaucher et al., 2008; Kazmin 

et al., 2017; Li et al., 2014; Nakaya et al., 2016; Nakaya et al., 2015; Nakaya et al., 2011; Qi 

et al., 2016; Querec et al., 2009; Sobolev et al., 2016; Tsang et al., 2014; Zak et al., 2012). 

These studies contribute to the emerging field of systems vaccinology, and open up new 

ways to understand the molecular mechanisms of vaccine induced immunity, and to facilitate 

the development of new vaccines (Pulendran et al., 2010).

Herpes zoster (HZ) vaccination provides a unique case to investigate the stimulation of 

immune memory. HZ (shingles) is the clinical manifestation of varicella zoster virus (VZV) 

reactivation. After acute infection, VZV remains dormant in sensory neurons. Viral 

reactivations in immune compromised hosts and older adults may result in HZ accompanied 

by significant morbidity. Zostavax® is licensed as a vaccine for the prevention of HZ in 

individuals 50 years of age and older. Zostavax® is a live attenuated virus vaccine with the 
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same Oka/Merck vaccine strain, but 14 times the dose, used in the varicella (chickenpox) 

vaccine. Zostavax® was shown to confer ~50% overall reduction in HZ, and ~66% 

reduction in HZ-associated pain (Oxman et al., 2005). Interestingly, the efficacy against HZ 

was 63.9% in subjects who were 60–69 years old, but only 37.6% in subjects older than 70 

years, highlighting the age related decline of vaccine efficacy in the elderly (Oxman et al., 

2005). This varying efficacy, whilst far from optimal in generating robust antiviral immunity, 

nevertheless provides an opportunity to understand how individuals respond differently to 

the same vaccine.

In this study, we measured the magnitude and quality of innate and adaptive immune 

response to Zostavax® vaccination for up to 180 days. Complementing these assays with 

transcriptomics and metabolomics, our integrative computational analysis reveals a highly 

interconnected immune network of gene and metabolic pathways that correlate with the later 

adaptive response. The findings are of considerable interest for the understanding of human 

immunology, in the context of immunity to a live virus vaccine.

RESULTS

Study design for integrative profiling of immunity to Zostavax® vaccination in humans

A longitudinal study of Zostavax® vaccination was conducted in healthy adults between 

August 2011 and November 2012. Seventy-seven participants were enrolled in Atlanta, 

Georgia and Denver, Colorado, USA. The cohort contained two age groups: 33 young adults 

between the age of 25 to 40 years, and 44 so called elderly subjects between the age of 60 to 

79 years (Table S1). The subjects’ blood samples were collected at baseline prior to 

vaccination and at days 1, 3, 7, 14, 28, 90 and 180 post-vaccination (Figure 1A). Throughout 

the course of study, we measured VZV specific antibody titers, antigen-specific B and T cell 

populations, and various cell populations involved in innate immunity, including dendritic 

cells and monocyte subsets. Cytokines were assayed by a 27-plex Luminex platform. VZV 

DNA in the whole blood was measured by polymerase chain reactions (PCR). 

Transcriptomics of PBMCs and high-resolution metabolomics of plasma were obtained at 

early time points. As a result, each subject was profiled by multiple technologies in a time 

series (illustrated in left panel, Figure 1A). This rich collection of immune profiles, 

including high-dimensional data from transcriptomics and metabolomics, provided a unique 

opportunity to construct an integrated view of the immune response to Zostavax® in 

humans. This also poses major challenges in computational analysis concerning approaches 

to integrate data across different technologies, and to dealing with the redundancy in omics 

data. In the current paper, we will first present each data type separately. Then, the 

integrative analysis is presented in a framework of “multiscale, multifactorial response 

network” (MMRN). We will use MMRN to interrogate the mechanisms of Zostavax® 

induced immune response, and to interpret predictive models of adaptive response.

Zostavax®-induced significant CD4+ T cell and antibody responses

Since Zostavax® comprises a live-attenuated virus, we were surprised to observe a weak 

CD8+ T cell response in peripheral blood, as measured by the downregulation of the pro-

survival molecule (Bcl2) and upregulation of Ki67 (expressed in proliferating cells, (Miller 
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et al., 2008) (Figure 1B), unlike the robust CD8+ T cell responses seen with other live 

vaccines such as yellow fever and smallpox (Akondy et al., 2009; Miller et al., 2008). In 

contrast significant CD4+ T cell responses were detected in the majority of subjects (Figure 

1B), consistent with a recent report (Qi et al., 2016). To understand this CD4+ T cell 

response in more detail, we assessed the phenotype of the cells, including blood follicular T 

cell (Tfh)-like CD4+ T cells. Activated Tfh cells are important in providing B cell help and 

express the chemokine receptor CXCR5, ICOS (a co-stimulatory molecule expressed on 

activated T cells), PD-1 and secretion of IL-4 and IL-21 (Crotty, 2011; Yusuf et al., 2010). 

Blood Tfh-like cells that expressed CXCR5 and CXCR3 (a chemokine receptor on Th1 

CD4+ T cells (Groom and Luster, 2011)) and ICOS, measured seven days after influenza 

vaccination correlated with the antibody response (Bentebibel et al., 2013). Figure 1C shows 

an increase in CD4+CXCR5+CXCR3+ICOS+ T cells after Zostavax® in both the young and 

elderly adults. Significant increase in CD4+ T cells that are positive for IFN-γ, IL-4 and 

IL-21 were also detected, indicating a mixed Th1/Th2/Th21 profile (Figure 1C). We then 

examined the phenotype of VZV-specific CD4+ T cells by gating on Ki67+/Bcl2− CD4+ T 

cells. These cells express T-bet, CXCR3, PD-1 and some ICOS whereas they express less 

RORγT and CCR7 (Figure S1A). Finally, we assessed if CD4+ or CD8+ T cells were 

producing IFN-γ after vaccination. Figure S1B shows that depletion of CD4+ T cells, but 

not of CD8+ T cells, abolished IFN-γ production in the ELISPOT assay.

To further assess the antigen specific CD8+ T cell response, we stimulated PBMCs with 

known VZV-specific HLA-A2 restricted peptides in a subset of HLA-A2+ individuals (Chiu 

et al., 2014; van der Heiden et al., 2009). Despite detectable VZV-specific CD8+ T cell 

responses at baseline, the CD8+ T cells did not respond to the vaccine peptides with the 

exception of two individuals (ZV113 and ZV118, Figure 1D). Interestingly, when we 

examined VZV DNA in the blood, although residual amount of viral DNA was seen in some 

subjects at day 1 (Table S2), only three showed positive viral replication in the blood, 

including both the CD8+ responders (Figure 1D). The subject that had prolonged DNAemia 

at day 14 (ZV118) also showed the highest CD8+ response to the vaccine peptides (Figure 

1D). Overall, these results demonstrate that Zostavax® induces a a mixed Th1/Tfh-like 

profile (Th2/Th21) profile. The CD8+ T cell response was limited, but clear in the few 

participants with positive replication of VZV.

Finally, we asssed the antibody response induced by Zostavax®. We detected a transient 

peak of antigen-specific plasmablast cells 7 days after Zostavax® administration (Figure 

1E), consistent with the plasmablast responses observed to other vaccines such as influenza 

(Wrammert et al., 2008). The magnitude of this cellular response was higher in the younger 

group (Figure 1E), consistent with previous studies with influenza vaccine (Sasaki et al., 

2011). The measurement of VZV glycoprotein-specific IgG over the course of the study 

showed significant increases induced by Zostavax® in both the young and elderly adults 

(Figure 1E). All subjects had VZV antibodies prior to vaccination (as per study inclusion 

criteria). The IgG antibody peaked between two and four weeks after vaccination, and 

dropped by 180 days after vaccination. Direct comparison between the two groups indicates 

that the younger group had a greater increase of VZV-specific antibody after vaccination 

(Figure 1E). We also assayed the IgG response against total VZV infected cell lysate and the 

results were consistent with those using VZV glycoproteins (Figure S1C–D). Additionally, 
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we measured plasma VZV-specific IgA, which was significantly increased in both groups. 

However, there was not a significant difference between the young and elderly groups 

(Figure S1E). Taken together, these results show that Zostavax® induces a robust 

plasmablast and antibody response that is greater in the younger adults compared to the 

elderly. The increase of VZV-specific IgG after vaccination showed an inverse correlation to 

the baseline IgG (Figure 1E). Such inverse correlation to baseline titer was also reported in 

influenza vaccine studies (Nakaya et al., 2015; Nakaya et al., 2011; Tsang et al., 2014).

Transcriptomic signatures of Zostavax® vaccination

We assessed the gene expression changes in PBMCsinduced by Zostavax® vaccination. 

Besides the interferon induced antiviral genes, such as MX1 and IFI44L, a phosphoserine 

phosphatase, PSPH, was highly upregulated at day 1/0 and day 3/0 (Figure S2A). At day 7, 

immunoglobulin genes were highly upregulated, as well as TNFRSF17 and MZB1, two 

genes extensively reported for their roles in antibody production (Li et al., 2014; Nakaya et 

al., 2011; Querec et al., 2009) (Figure S2A). We have previously reported a set of blood 

transcription modules (BTMs) as a tool for transcriptomic analysis (Li et al., 2014). In this 

study, the activity of each BTM module was taken as the mean value of its member genes. 

BTM analysis of the response to Zostavax® revealed signatures seen with several other 

vaccines, including the seasonal influenza vaccines and the meningococcal vaccine such as a 

strong plasmablast signature at day 7 (Figure S2B), consistent with the robust plasmablast 

response at this time point (Figure 1E).

Surprisingly however, several BTMs related to innate immunity including those relating to 

antigen presentation, dendritic cells, antiviral innate immune sensing including cytosolic 

DNA sensing, RIG-I receptor signaling and type I IFN responses were weakly induced by 

Zostavax® relative to YF-17D, which is another live viral vector (Figure S2B). This 

suggests that Zostavax® is a weak stimulator of innate responses and DC activation. We 

tested this by stimulating human PBMCs with Zostavax® in vitro. We could detect VZV 

glycoprotein in a substantial proportion of monocytes, myeloid DC (mDC) and plasmacytoid 

DC (pDC) by intracellular FACS staining, suggesting uptake of virus by these cells (Figure 

S3A). However, there did not appear to be activation of these cell types in response to 

stimulation of PBMCs with Zostavax®, as evidenced by the failure to upregulate CD80 

(Figure S3A), or release of proinflammatory cytokines in the supernatants (Figure S3B). 

Intracellular FACS staining of cytokines in these cultures revealed that Zostavax® failed to 

induce IFNα in pDCs (Figure S3C) or IL-6 in monocytes or mDCs (Figure S3D). However, 

Zostavax® induced several chemokines, such as CXCL8, CCL2, CXCL9 and CXCL10 in 

PBMCs (Figure S3E). Thus, although Zostavax® contains live VZV which infects 

monocytes and DCs, it fails to induce significant innate activation of such cells.

Metabolomic signatures of Zostavax® vaccination

Using untargeted high-resolution metabolomics, thousands of metabolite peaks were 

detected in vaccinee plasma samples (Figure 2A, B). Matched by accurate mass-to-charge 

ratio (m/z) and retention time in liquid chromatography (Figure 2A), a small subset of 

metabolite peaks were also found in the Zostavax® vaccine itself (Figure 2B). Since 

metabolomics is a rapidly evolving field and the primary goal of this study is to 
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quantitatively model immune response, we decided to filter the metabolite peaks by only 

keeping the peaks that were detected in over 90% of all samples. This resulted in 4,048 

peaks from the negative ionization and 2,216 peaks in the positive ionization. Compared to 

the baseline, both negative and positive ionization data indicated the largest numbers of 

differential metabolites at day 1 and day 14 (under negative ionization, 429 and 425 peaks at 

FDR < 0.1, respectively). Few overlap peaks were found between the day 1/0 significant 

metabolite peaks and chemicals in the vaccine (data not shown), indicating that the human 

metabolomic changes were not simply due to carryover from chemicals in the vaccine. We 

used the mummichog software, a pathway tool designed for untargeted metabolomics data 

(Li et al., 2013), to evaluate the day 1/0 significant metabolic pathways shown in Figure 2C. 

Strikingly, TCA cycle (and overlapping glycolysis and gluconeogenesis) and propanoate 

metabolism was also identified in the day 3/0 transcriptomics data (Table S3). Ascorbate and 

aldarate metabolism and tryptophan metabolism were also upregulated in transcriptomics 

but with marginal significance (Table S3). This concordance between the vaccine-induced 

metabolite pathways at day 1 and transcriptional signatures in PBMCs 2 days later at day 3, 

is intriguing. We thus sought to test the association between metabolomics and 

transcriptomics systematically.

Integration of metabolomics, transcriptomics and flow cytometry

To integrate metabolomics and transciptomics data, we used a method similar to genome-

wide association study, and constructed a regression model that accounted for age, gender 

and race, to test the association of the relative change in each metabolite feature with that of 

each BTM activity in response to vaccination. Mummichog pathway analysis was then 

performed on the significantly associated metabolite peaks per BTM. The results for all gene 

modules are combined into circular plots, whereas BTM modules and metabolic pathways 

are highlighted for the most significant associations (Figure 2D). At day 1 after vaccination, 

both NK signature and T cell modules were associated with a number of metabolites (Figure 

2D). Based on their regression coefficients, these were negative association, and the 

corresponding pathways, including purine metabolism and lysine metabolism (Figure 2D), 

largely overlapping with the day 1/0 significant pathway in Figure 2C. At day 3/0, strong 

association to transcriptomics was seen in many metabolic pathways, including linoleate 

metabolism, methionine and cysteine metabolism, glycerophospholipid metabolism, 

glycosphingolipid metabolism. (Figure 2D). They were most strongly associated with gene 

expression for MHC-TLR7-TLR8 cluster, antigen presentation and myeloid, DC activation 

via NF-κB, and with B cell signatures. By day 7/0, no significant association was observed 

between transcriptomics and metabolomics (Figure 2D).

Besides significant correlation with metabolomics, further analysis of the transcriptomics 

data also revealed many correlations with cell populations, manifesting a high degree of 

redundancy (Figure S4A). For example, in Figure S4B, the gene module for “plasma cells 

and immunoglobulins” was correlated with antibody secreting cells at day 7/0, and the “T 

cell activation and signaling” gene module was correlated with total CD3+ T cells at day 3/0. 

Even though transcriptomics was measured on PBMCs, the gene module of “recruitment of 

neutrophils” did correlate with the number of neutrophils measured by flow cytometry in 

whole blood at day 7/0 (Figure S4B). Across time points, early gene expression for calcium 
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signaling and steroid metabolism is correlated with later CD4+ T cell activation (Figure 

S4C). Moreover, there were striking correlations between the most variable gene modules 

and cell populations on a temporal course, as shown in Figure S4D. For example at baseline, 

there was a correlation between transcriptional signatures of the KIR clusters and the 

frequencies of NK cells. Furthermore, at baseline the transcriptional signatures of cytosolic 

DNA sensing, chemokines and inflammation were positively correlated with nuclear 

receptor 4 family, with the number of neutrophils, but negatively correlated with day 1/0 

genes of myeloid and dendritic cells activation via NF-κb. In addition, day 3/0 B cell 

signature genes are correlated with the number of day 7/0 CXCR3+ Tfh like cells (Figure 

S4D). The data in Figure S4D also suggest that major cell populations were stable for each 

study subject, which was confirmed by plotting the correlations between time points (Figure 

S4E), consistent with previous findings (Tsang et al., 2014). The majority of cytokines and 

metabolite clusters also exhibited high stability within each subject, while gene modules 

showed a more mixed range (Figure S4E). Therefore, many individual characteristics, 

including metabolic phenotypes, persisted through the study.

A Multiscale, Multifactorial Response Network (MMRN)

Effective integration of multiple data types requires dimension reduction and needs to 

account for their different variance structures. We constructed a multiscale, multifactorial 

response network (MMRN) as illustrated in Figure S5. Gene expression was reduced to 

BTMs, and metabolite peaks were grouped by unsupervised clustering (Ben-Dor et al., 

1999). We computed the correlation network of all BTMs, using Pearson correlation with 

Bonferroni correction (p < 0.001). The correlation network was partitioned into sub-graphs 

that are closely correlated, using an established topological algorithm (Kalinka and 

Tomancak, 2011). Each resulting subgraph, grouping multiple BTM modules of similar 

profiles, was treated as a gene network. Similarly, the same network partition method was 

applied to metabolite clusters, cytokines and cell populations (Figure S5). Of note, these 

resulting networks are not meant to infer regulatory relationship, but serve as units of 

dimension reduction.

To deal with the different variance structure across data types, we used partial least square 

(PLS) regression. PLS finds the principal components with the best covariance between two 

matrices. The statistical significance of such association can be thoroughly assessed by 

permutation. This approach has been successfully applied to the modeling of signaling 

networks that were measured by multiple technologies (Janes et al., 2005). In this study, data 

matrices from the four types of networks (genes, metabolites, cytokines and cells) were used 

as input to PLS regression, and the significantly associated networks were connected to a 

multiscale, multifactorial response network (MMRN, Figure 3A). The MMRN was a dense 

network of 608 nodes and 3476 connections (at p< 0.01; 261 nodes and 771 connections at p 

< 0.001; Data S1). It should also be noted that each node in MMRN is a network of its own 

right. This hierarchical structure allows an overview of the super-network and multiple zoom 

levels for additional details.

A few examples are highlighted from the MMRN (Figure 3A). For example, the cell 

network SN.1 consisting of cell populations, including BDCA1+ myeloid DCs and CD11c+ 
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myeloid cells, is significantly associated with a gene network on T cell activation and 

differentiation (SN.66) and a gene network on DC activation (TN3.64) at day 3/0 (Figure 

3B). As another example, the largest stable gene network (SN.125) and the largest stable 

metabolite network (SN.3) were connected across all time points (Figure 3A). The network 

SN.125 contains many gene modules on TLR and inflammatory signaling, which also 

showed a tight correlation with the gene module on glycerophospholipid metabolism (Figure 

3C). The metabolite network SN.3 consisted of three clusters (Figure 3D). Using 

mummichog, the metabolic pathways in this network were enriched for TCA cycle, 

nucleotide metabolic pathways, and phosphatidylinositol metabolism (Figure 3D, left). The 

metabolite network SN.3 at day 3 is also associated with the largest transient gene network 

at day 7, TN7.86, which is shown in Figure 3E. Interestingly, this gene network contains the 

same metabolic pathways (Figure 3D) that were seen in the metabolite network SN.3 (Figure 

3D). A subset of genes in the TN7.86 gene network is shown in Figure 3F, illustrating how 

our network nodes represent concerted yet redundant variables. Not surprisingly, these genes 

also indicate close correlation between TLR2/4 signaling and NF-κB pathways. As a third 

example, largest transient metabolite network appeared at day 1/0 (TN1.1, Figure 3G), 

which contains multiple pathways associated with steroid hormones (Figure 3G). Of note, 

the day 3/0 gene network associated with TN1.1 (TN3.76) consisted of B cell and plasma 

cell genes and targets of the sterol regulatory element binding (SREBF1) transcription factor 

(Figure 3H).

Thus the MMRN provides a means to contextualize orthogonal variables, and construct 

networks which integrate multiple data types. Here we query an outcome on MMRN by 

combining two methods: a) the GSA algorithm (Efron and Tibshirani, 2007), where each 

node network is treated as a gene set and its significance is estimated by permutation; b) 

context lookup, where a node network is selected because it contains individual features that 

are significantly associated with the outcome. Node networks selected by these two methods 

are then connected via edges in MMRN, and a parsimonious network is presented as the 

query result. For example, the upregulation of PSPH gene (Figure S2A) is an interesting and 

unique observation in this study, as it’s not seen in other vaccine studies. The PSPH gene is 

not even in any BTM module. By querying MMRN, the day 3 upregulation of PSPH is 

found to be associated with a number of node networks, most significantly a baseline 

network of inositol phosphate metabolism, transmembrane transport and ubiquitination 

(Figure S6A). The expression of PSPH at day 3 relative to day 0 was inversely correlated 

with day 1/0 G-protein coupled receptors (Figure S6B), viral sensing genes and NK 

signature (not shown), and IL-2 and MIP-1β at day 1/0, and IL-17 at day 3/0 (Figure S6B). 

Taken together, these data suggest that PSPH is extensively connected with inositol 

phosphate metabolism. Given the activity of a phosphatase to revert phosphorylation, the 

upregulation of PSPH may counteract the kinases in NF-κB or MAPK signaling that 

resulted from VZV infection.

MMRN reveals networks associated with age, sex and viral load

An age related network was obtained by querying the MMRN using the above method 

(Figure 4A). It was striking that the majority of age related networks were from day 0 prior 

to vaccination. The most significant gene network consisted of gene modules related to 
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inflammation, cytosolic DNA sensing and NK cells, which were significantly higher in the 

elderly group (Figure 4B), consistent with our recent results(Nakaya et al., 2015). In fact, 

this difference was driven by a subset of elderly vaccinees (Figure 4C), indicating biological 

heterogeneity amongst individuals within a chronological category. Among the few different 

networks at day 3/0 is an IL-7 cytokine network (Figure 4D). Interestingly, there was lower 

expression level of IL7R gene in the elderly group (Figure 4C, by red arrow), suggesting a 

potential compensatory mechanism. Furthermore, difference in NK cells measured by flow 

cytometry (Figure 4E) was consistent with the transcriptomics data, and Luminex data 

supported the higher level of IL-7 in the elderly group (Figure 4F). In stark contrast to the 

age network, the sex related network shows the majority of activities that were higher in 

females at day 3/0 (Figure S6C), with many T cell related gene modules (Figure S6D). Such 

differences may account for slightly higher IgG response in females by day 28/0 (Figure 

S6D).

The presence of VZV DNA in the blood of vaccinees is compounded by temporal 

differences (Table S2), and could be due to viral replication or DNA carryover from the 

vaccine injection. If day 1 viral DNA is deemed as carryover from vaccine injection, eight 

individuals showed clear viral replication (PCR+). The comparison between these 8 PCR+ 

subjects and 27 PCR− individuals revealed significant differences at all time points (Figure 

S6E). The PCR+ group had higher baseline levels of plasma cells signature genes and BCR 

signaling, although these signatures were unlikely to have derived from VZV specific 

plasmablasts; they also had higher gene expression for heme biosynthesis and inositol 

phosphate metabolism (Figure S6E). By day 7/0, the PCR+ group had higher activity in 

cytoskeleton remodeling (enriched for SRF targets), cell adhesion, platelet activation and G 

protein mediated calcium signaling (Figure S6E), possibly indicative of a response to viral 

replication. The PCR+ group also had lower activity in plasma cells signature genes at day 

7/0 (Figure S6F), indicating a compromised antibody response. Interestingly, the day 7/0 

cytokine RANTES is significantly higher in the PCR− group (Figure S6F).

Predictors of the adaptive responses form a redundant and dynamic network

An important goal of systems vaccinology is to identify predictors of the adaptive response 

to the vaccination. The antibody response induced by Zostavax® was strongly influenced by 

the baseline antibody level (Figure 1E). Age, sex and study site also had small but 

significant contributions to the IgG response (Figure S7A). We used a multivariate 

regression model, accounting for gender, age, study site and baseline VZV IgG, to test 

independent contribution from each variable of gene modules, metabolite clusters, cytokines 

or cell populations. All significant predictors of day 28/0 IgG response by this model (p < 

0.05) are listed in Figure S7B. These include the gene modules for plasma cells, 

immunoglobulin and B cells at day 7/0; a module on membrane and ER proteins at day 3/0, 

and small GTPase mediated signaling as a negative predictor at day 1/0. Among the cell 

populations, day 7 IFN-γ+ T cells are the most significant predictor of IgG response (Figure 

S7B). Similarly, the significant predictors of T cell responses at day 7/0 from multivariate 

regression are listed in Table S5.
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Collinearity is an inherent limit of such regression models. Indeed, the majority of these 

predictors of antibody response and of T cell responses were highly connected or even 

overlapping in the MMRN (Figure 5A). For example, multiple B cell related networks are 

both predictors of the IgG response and the Tfh like cell response (Figure 5A). The putative 

SREBF1 (sterol regulatory element binding transcription factor) target network at day 1/0 

and day 3/0 was predictive of Tfh response, and the same network at day 7/0 was predictive 

of IgG response (Table S5, Figure 5A). Many features of similar correlations to the adaptive 

responses were captured by MMRN subnetworks, with examples shown in Figure S7C–E. 

The dynamics of the predictor networks is further illustrated in Figure 5B–C: the plasma and 

B cell modules were correlated with each other, and with SREBF1 targets and inositol 

phosphate metabolism at all time points, but the correlation pattern and strength differed. 

Taken together, the MMRN elevates the statistical prediction beyond linear models by 

network connections that accommodate indirect steps and temporal developments.

Sterol metabolism integrates humoral and cellular responses

The predictive power of SREBF1 target genes on adaptive responses was brought by a gene 

module that we identified in a previous study (Li et al., 2014) (Figure 6A). This module 

contains 6 genes that were putatively identified as SREBF1 targets at the time, but all 10 

member genes are now verified SREBF1 targets according to the TRANSFAC database 

(gene-regulation.com). SREBF1 (also known as SREBP1) is a transcription factor that 

modulates cellular cholesterol homeostasis, and emerging evidence suggests an important 

role for it in the immune system (Spann and Glass, 2013; York et al., 2015). In this study, we 

found that day 3/0 SREBF1 targets was predictive of Tfh response (Figure 6A), and day 7/0 

SREBF1 targets was predictive of antibody response (Figure 6B). Post-vaccination, the 

expression of this gene module showed good correlation between time points, indicating that 

it captured a stable metabolic characteristic of the individuals; the induced response was 

inversely correlated to the baseline level (Figure 6C). Furthermore, the activity of these 

genes was well correlated with several modules on T and B cells, inositol phosphate 

metabolism and glycerophospholipid metabolism (Figure 6D).

The MMRN subnetwork queried by SREBF1 activity revealed broad associations between 

genes and metabolites (Figure 6E). The examples in day 7/0 (Figure 6F) include chemokine 

signaling (CCL23, CCL19, CCR3), TNF/MAPK signaling (TNFSF11, VACM1, DUSP6), 

complement genes (C1QA, C1QB), killer cell immunoglobulin like receptors (KIR3DL3, 

KIR2DL3, KIR2DS5), and lipid metabolic enzymes (ACSM2A, ACSM2B, DGAT2). The 

corresponding metabolite features were matched to several sterol classes in the LIPID 

MAPS database (lipidmaps.org), while many the peaks showed closely related 

chromatographic time and correlated intensity, suggesting that they belong to the same lipid 

category (Figure 6F). Interestingly and reassuringly, the queried network returned many 

additional SREBF1 target genes, totaling 133 known target genes. The top genes, ranked by 

importance in PLS regression, include CAMK2D, a kinase downstream of calcium 

signaling, SOCS2, suppressor of cytokine signaling, POU2AF1, an essential regulator of B 

cell response, and ALOX5, an enzyme for synthesizing leukotrienes (Figure 6G). Taken 

together, SREBF1 activity integrated a broad array of both intracellular programs and 

extracellular signals from cytokines and metabolites.
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Inositol phosphate metabolism provides deep immune phenotyping

A gene module of inositol phosphate metabolism (M129, day 1/0) is a significant predictor 

of T cell response (Table S5). Metabolites related to this pathway were significantly changed 

1 day after vaccination (Figure 2C), and were extensively associated with gene signatures 

(Figure 3). Indeed, when we examined the contributing factors to the day 7/0 transcriptome 

by variance analysis (Nath et al., 2012), BCR signaling, phosphatidylinositol signaling and 

inositol phosphate metabolism were on the top of the list, besides house-keeping genes such 

as mRNA processing (Figure 7A). Inositol phosphate (IP) metabolism is known to overlap 

with phosphatidylinositol signaling and glycerophospholipid metabolism (Figure 7B), and 

these pathways account for many messenger metabolites essential to immune signaling, 

including phosphoinositide, diacylglycerol and arachidonic acids (Fritsche, 2006; 

Okkenhaug, 2013; Zhong et al., 2008).

As discussed previously the most upregulated gene PSPH was associated with IP 

metabolism (Figure S6A). However, a closer examination revealed a dichotomous pattern: 

for the majority of subjects, the expression of PSPH gene at day 3/0 displayed a linear 

correlation with the baseline gene module on IP metabolism (blue dots in Figure 7C), but a 

subset of subjects had a hyper-upregulation of PSPH over 23 folds (orange dots in Figure 

7C). Combining data from all time points, groups of subjects of low or high IP metabolism 

emerged from unsupervised clustering (Figure 7D). Interestingly, all the subjects with hyper-

PSPH activity fall into the H5 cluster of high IP metabolism (Figure 7D). This pattern in IP 

metabolism penetrated into the expression of plasma cell signature genes (M156.1), whereas 

the group of high IP metabolism showed high expression of immunoglobulins at day 1/0, but 

low expression at day 7/0 (Figure 7D–E). The Zostavax® specific IgG at day 28/0 followed 

a similar pattern as day 7/0 M156.1, but the difference between subject groups did not reach 

statistical significance (Figure 7E). Similarly, the group of high IP metabolism had 

significantly lower number of activated CD4+ T cells (Figure 7F). Lower level of plasma 

metabolite cluster Neg257, which is tentatively matched to glycerophospholipids, was also 

seen in this group, together with differences in neutrophils and cytokines (Figure 7F).

These data suggest that high activity in IP metabolism was detrimental to both T cell and B 

cell responses. More importantly, IP metabolism manifested a fundamental phenotype in the 

immune response to Zostavax®. When we examined the association of all nodes in the full 

MMRN, while 9% was significant for age and 21% for sex, 67% (608/909) of MMRN was 

significantly associated with IP metabolism (Figure 7G).

DISCUSSION

This study is to our knowledge is the first to combine orthogonal datasets, including PBMC 

transcriptomics, flow cytometry of blood cell populations and plasma cytokine analysis and 

metabolomics, to identify molecular networks induced by vaccination. A striking result to 

emerge from this study is that Zostavax®, which is a live attenuated viral vaccine, induced 

negligible effector CD8+ T cell response, and a weak type I IFN antiviral response compared 

to that observed with other acute viral infections such as yellow fever or dengue (Gaucher et 

al., 2008; Kwissa et al., 2014; Querec et al., 2009). In contrast, there were substantial CD4+ 

T cell and plasmablast responses. Two factors may have accounted for the weak CD8+ T cell 
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response. First, preexisting antibody against VZV, generated by previous exposure VZV due 

to infection or vaccination against chickenpox, could attenuate viral replication and the 

ensuing CD8+ T cell response. Consistent with this, persistent viral DNA was only detected 

in in a small number of individuals that mostly exhibited CD8+ response. In addition, VZV 

may have an intrinsic impairment in its ability to stimulate pro-inflammatory cytokines and 

type I IFN from mDCs and pDCs respectively. Consistent with this, in vitro infection of 

mDCs, pDCs or monocytes by VZV also failed to induce pro-inflammatory cytokines or 

IFNα, despite the fact that a substantial fraction of these cells contained viral components 

(Figure S3). The evasion of VZV from the immune system by latency and attenuation of 

mDC responses (Abendroth et al., 2010) may also account for our observations.

Analysis of orthogonal datasets revealed highly significant correlations between distinct 

signatures identified using transcriptomics, metabolomics, flow cytometry and cytokine 

profiling. Surprisingly, there was striking biological convergence between the pathways 

identified by metabolomics and transcriptomics. For example, pathways relating to TCA 

cycle (and overlapping glycolysis and gluconeogenesis) and propanoate metabolism 

identified by metabolomics of plasma at day 1 were also identified in the day 3/0 

transcriptomics data. This surprising antecedence of the metabolic signature relative to the 

corresponding transcriptomic signature might suggest that blood cells could potentially 

regulate their transcriptional program in response to metabolic cues. A second insight 

provided by the integrated analysis of MMRN network was the significant differences 

between the young and older adults, including baseline NK cells and expression of 

inflammatory genes. Interestingly, the same gene network, consisting of heme biosynthesis, 

BCR signaling and inositol phosphate metabolism, was highly expressed in viremic subjects 

(Figure S6E) and was also strongly associated with poor IgG response (Figure S7C). This 

baseline metabolic phenotype of individuals appeared to have a large effect on their immune 

response to vaccination, where inositol phosphate metabolism was a dominating variable in 

MMRN, which also accounted for the hyper response of PSPH gene. It has been long known 

that phosphatases are required for the NF-κB/MAPK pathways downstream to TLR 

signaling (Germain et al., 2011), but which phosphatases in which step are often unknown. 

Thus PSPH emerged as a major candidate from this study.

In addition, MMRN revealed a striking association of SREBF1 target genes and Tfh cell and 

antibody responses. SREBF1 is a transcription factor that plays a central role in the 

modulation of cellular cholesterol homeostasis (Spann and Glass, 2013; York et al., 2015), 

and emerging evidences show a connection between homeostatic cholesterol sensing and 

intracellular sterol flux and immunity, such as innate responses and the integrated stress 

response in macrophages (Im et al., 2011; Shibata et al., 2013), type I IFN signaling and 

CD4 T cell activation (Bensinger et al., 2008; York et al., 2015). A recent population study 

of 712 subjects (Bartel et al., 2015) identified the SREBF genes among the most 

significantly associated with blood metabolites. Our MMRN analysis revealed a large 

number of genes and metabolites that were integrated via SREBP1 activities, key to the 

development of B and T cells. The pathways of linoleate and glycerophospholipid 

metabolism appeared to be a major mediator for antigen presenting cells, highly correlated 

with other innate pathways at day 3 (Figure 3C), then with T and B cells at day 7 (Figure 

6D, S4D). Further involvement of nuclear receptors was also supported by the data on 
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glucocorticoid receptor targets. These data also suggest a potential link between the immune 

system and the endocrine system, as steroid and xenobiotic receptors and NF-κB signaling 

suppress each other (Zhou et al., 2006). Should the cytochrome P450 enzymes be perturbed 

by vaccination (possibly via the lipids in vaccine formula), further questions can be raised on 

potential interactions with many pharmaceutical drugs, as they are the same enzymes in 

steroid hormone pathways (Morgan, 2009).

In summary, we demonstrate the utility in analyzing orthogonal data types in an integrated 

manner to create an MMRN, which provides a powerful tool to contextualize immune 

responses to vaccination, and investigate their dependency on extraneous variables such as 

age, sex and viral load. MMRN has revaled new biological insights about the immune 

response, and the network properties and the importance of metabolic phenotypes will 

facilitate future biomarker studies and vaccine development.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Bali Pulendran (bpulend@emory.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 77 subjects, screened to have a positive VZV antibody titer, were vaccinated with 

Zostavax®. Written informed consent was obtained from each subject and protocols were 

approved by Institutional Review Boards of Emory University and the University of 

Colorado School of Medicine.

METHOD DETAILS

PBMC and plasma collection—PBMCs were isolated using BD Vacutainer CPT tubes, 

washed and resuspended in complete FBS media (RPMI 1640 plus 10% FBS, 50 U/ml 

penicillin, 50 μg/ml streptomycin, 2 mM L-glutamine and 50 μM 2-mercaptoethanol) for 

either immediate use or frozen in FBS with 10% dimethyl sulfoxide for subsequent analysis. 

Plasma samples were collected and stored at −20°C.

Flow cytometry—Flow cytometry analysis was done on either heparinized whole blood or 

cryopreserved PBMCs. For whole blood assays, cells were stained with anti-CD4 APC-H7, 

anti-CD8 V500 and anti-CD3 PerCP for 20 min at room temperature followed by 

erythrocyte lysis using BD FACS lysing solution (BD Biosciences). Cells were then fixed 

and permeabilized with BD Cytofix/Cytoperm for 30 min on ice and then anti-Ki67 FITC 

and anti-Bcl6 PE added for 30 min on ice in BD permeabilization buffer. To measure blood 

follicular T helper like cells, cryopreserved cells were resuscitated and stained with anti-

CD45RA FITC, anti-PD-1 PE, anti-ICOS PerCP, anti-CXCR5 Alexa 647, anti-CD4 APC-

H7, anti-CXCR3 PE-Cy7, anti-CD3 Alexa 700 and live/dead aqua (Invitrogen). All 

antibodies except anti-PD-1 PE (Biolegend) and anti-CD3 Alexa 700 (Invitrogen) were 

purchased from BD. To determine the frequency of innate cell populations and their 

activation status, flow cytometry analysis was done on cryopreserved PBMCs. Following 

Li et al. Page 13

Cell. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



live/dead staining (Alexa Fluor 430, Life Technologies), surface staining of cells was done 

with an appropriate antibody cocktail. All samples were run on an LSR II (BD Biosciences) 

and analyzed via FlowJo software. Each cell population was quantified as percentage of total 

PBMC.

Zostavax®-specific IFN-γ, IL-4 and IL-21 ELISPOT—Ninety-six well filter plates 

(Millipore–S2EM004M99 for IFN-γ; MAIPS4510 for IL-4 and IL-21) were coated with 

either purified anti-human IFN-γ (BD Biosciences; 1:200), anti-human IL-4 (BD 

Biosciences; 1:200) or anti-human IL-21 (MABTECH; 1:50) in PBS overnight at 4°C. 

Plates were then washed once and blocked with complete FBS media for 2 hr at 37°C. 

Cryopreserved cells (3–5×105/well) were resuspended in RPMI 1640 + 10% human AB 

serum (Sigma Aldrich), penicillin, streptomycin, L-glutamine and 2-mercaptoethanol and 

added to each plate, stimulated with either media alone, 0.25 μg of VZV cell lysate 

(Meridian Life Sciences - Strain Ellen grade II detergent free) or VZV HLA-A2-restricted 

peptide pool (ILIEGIFFV (Ribonucleotide reductase subunit 2 (Chiu et al., 2014)), 

DLLYFVCLGV (ORF34; previously identified in Ahmed laboratory), ALWALPHAA (IE62 

(van der Heiden et al., 2009)), SLPRSRTPI (IE62 (Frey et al., 2003)) and SAPLPSNRV 

(IE62 (Frey et al., 2003))). The cells were then incubated overnight at 37°C. The following 

day, plates were washed with H2O for 5 min × 2, four times with PBS-0.05% Tween (PBS-

T) and then biotin anti-human IFN-γ (BD Biosciences; 1:250), anti-human IL-4 (BD 

Biosciences; 1:250) or anti-human IL-21 (MABTECH; 1:500) added in PBS + 10% FBS for 

2 hr at room temperature. Plates were washed with PBS-T and streptavidin-HRP (Jackson 

Immunoresearch) added at 1:1000 in PBS + 10% FCS for 1 hr at room temperature. Plates 

were washed four times with PBS-T, four times with PBS and developed using AEC 

substrate (3 amino-9 ethyl-carbazole; Sigma Aldrich). Developed plates were dried, scanned 

and analyzed using an automated ELISPOT counter (Cellular Technologies, Ltd).

Zostavax®-specific and total IgG B cell ELISPOT—Ninety-six well filter plates 

(Millipore–MSHAN4B50) were coated with either VZV cell lysate (Meridian Life Sciences) 

at 5 μg/well or Affinipure donkey anti-human IgG (H+L; Jackson Immunoresearch) at 100 

ng/well in PBS overnight at 4°C. The plates were washed with PBS four times and complete 

FBS media added for 2 hr at 37°C. Freshly prepared PBMCs were resuspended in complete 

FBS media at 1×107/ml and added to each well, followed by threefold dilution and then 

incubated overnight at 37°C. The next day, the plates were washed four times with PBS, four 

times with PBS-T and incubated for 1.5 hr at room temperature with Biotin-SP-Affinipure 

F(ab′)2 donkey anti-human IgG (Jackson Immunoresearch) at 100 ng/well in PBS + 10% 

FCS + 0.05% Tween 20 (PBS-T-FBS). Plates were washed four times with PBS-T and 

incubated for 1.5 hr with HRP-avidin D (Vector laboratories) at 1:1000 in PBS-T-FBS. 

Plates were washed four times with PBS-T, four times with PBS and then developed using 

AEC substrate (3 amino-9 ethyl-carbazole; Sigma Aldrich). Developed plates were dried, 

scanned and analyzed using an automated ELISPOT counter (Cellular Technologies, Ltd).

Zostavax®-specific IgG/IgA ELISA—Maxisorp plates (Nalgene-Nunc) were coated 

with either 0.5 μg/well VZV cell lysate (Meridian Life Sciences) or VZV glycoprotein-only 

protein (Merck) diluted in PBS and incubated overnight at 4°C. Plates were washed with 

Li et al. Page 14

Cell. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PBS+0.1% Tween 20 and blocked with PBS+10%FBS+0.05% Tween 20 (blocking buffer) 

for 1.5 hr at room temperature. Plasma samples were serially diluted in blocking buffer and 

incubated for 1.5 hr at room temperature. Plates were washed four times with PBS+0.1% 

Tween 20 and goat anti-mouse IgG or IgA HRP added at 1:5000 in blocking buffer for 1.5 

hr at room temperature. Plates were washed four times with PBS+0.1% FBS, four times with 

PBS and developed using the OPD peroxidase substrate (Sigma Aldrich), stopped by 

addition of 1M HCL and read at 415 nm on a microplate reader. The antibody titer was 

measured at the EC50.

Viral DNA detection—The DNA was extracted with the QuickGene DNA Whole Blood 

kit per manufacturer’s recommendations (Autogen, Cat. No DB-S). Typical yield was 4–8 

μg of DNA from 200 μL blood. PCR was carried out using 200 ng of extracted DNA in 5 μL 

of water and 15 μL Master Mix containing 50 mM Tris-Cl (pH8.3), 10 mM KCl, 5 mM 

(NH4)2SO4, 2 mM MgCl2, 200 mM of each deoxynucleoside triphosphate, 0.5 μM of each 

primer, and 1.25 U of FasStart Taq DNA polymerase (Roche). VZV genome open reading 

frame 63 (ORF63) was detected with a downstream primer sequence (VZV63-f) of 5′-

CGAGATTCACGAAGATTGCG-3′ and an upstream primer sequence (VZV63-r) of 5′-

CAATTACATCCGATGGCGTAG-3′. Amplification with these primers yielded a DNA 

fragment of 292 nucleotides. In order to increase the sensitivity to detect VZV DNA ORF63, 

and to verify the PCR products having the same DNA sequence of VZV ORF63, nested 

PCR analysis was carried out on 1/40 of the volume of PCR product that did not initially 

contain detectable VZV DNA. This utilized a second pair of VZV ORF63 primers. The 

downstream nested primer (V63-315d) sequence was 5′-

GTGCTGGGAGGAATTGTTACAG-3′, and the upstream primer (V63-500u) sequence was 

5′-TCGTCGCTATCGTCTTCACCAC-3′. Amplification with these primers yielded a DNA 

fragment of 186 nucleotides. Amplification was performed with a RotorGene (RG-3000) 

real-time PCR System or the Bio-Rad CFX96 real-time PCR system, depending on 

availability. For the latter we used Bio-Rad’s STBR Green Supermix (catalog number 172–

5260) as the master mix. The primers and thermal profile were the same for both systems 

and they provided similar sensitivity in reconstruction experiments. The initial DNA 

polymerase activation step was 95°C for 6 minutes, followed by 50 cycles of 95 C for 10 

seconds, 65 C for 20 seconds, and 72 C for 30 seconds. The nested PCR initial DNA 

polymerase activation step was 95 C for 6 minutes, followed by 50 cycles of 95°C for 10 

seconds, 66 C for 20 seconds, and 72 C for 20 seconds. Melting curve analysis from either 

type of amplification was carried out from 60 C to 95 C. Each sample in either type of 

amplification was tested in triplicate. The type of VZV DNA detected was identified on 

random positive samples by partial sequencing of amplicons to include codon 958 of 

ORF62, which distinguishes vaccine strain VZV (V-Oka) from wild type varicella (Gomi et 

al., 2002). Sensitivity of the PCR assay was determined by adding cell-associated VZV from 

500 to 16000 VZV DNA copies to 1 mL of repeatedly PCR-negative control blood. The 

DNA was extracted from the reconstruction samples and tested for VZV DNA as described 

above.

Multiplex cytokine assays—Plasma samples from CPTs were stored at −80°C prior to 

cytokine analysis. Luminex assays were performed with the Beadlyte Human 10-Plex Multi-
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Cytokine Detection System (Upstate). Plasma samples were run in duplicate following the 

manufacturer’s protocol on a Bio-Plex Luminex-100 station (Bio-Rad). Data were log2 

transformed. Only cytokines above limit of detection were included in further analysis.

In vitro stimulation of PBMCs with Zostavax®—PBMCs isolated from healthy 

donors were cultured in RPMI and stimulated with Zostavax® (Zos at multiplicity of 

infection; 0.00028 or 0.0011 or 0.0045) or TLR9 ligand CpG-A (8 μg/ml, invivogen) or 

R848 (1 μg/ml, invivogen) for 20 hours. Following live/dead staining using zombie fixable 

viability kit (Biolegend), surface staining of cells was done to identify different innate cell 

populations and also for the expression of activation marker, CD80 and HLA-DR. For 

intracellular staining, cells were fixed and permeabilized (BD Fix/Perm kits) and stained for 

VZV-gI to detect the replication of VZV and that of IL-6 in CD14+ monocytes and CD1c+ 

myeloid DCs (mDCs), and IFN-α in CD123hi plasmacytoid DCs (pDCs) to analyze the 

cytokine production. Multi-color flow cytometry acquisition was performed on a BD LSR II 

and data was analyzed using FlowJo (Treestar). Cell-free culture supernatants collected were 

analyzed for cytokines and chemokines, including IL-6, TNF, CXCL8, CCL2, CXCL9 and 

CXCL10 using Cytokine Bead Array (CBA) kits (BD Biosciences, San Diego, US)

PBMC Transcriptomics analysis—The transcriptomics analysis was performed as 

previously described (Li et al., 2014; Nakaya et al., 2011). Total RNA from PBMCs (~1.5 × 

106 cells) was isolated using Trizol® (Invitrogen, Life Technologies Corporation) according 

to the manufacturer’s instructions. Samples, after quality control, were hybridized on 

Human U133 Plus 2.0 Arrays (Affymetrix).

Plasma Metabolomics analysis—Metabolomics analysis was performed similarly as 

previously described (Li et al., 2013). Briefly, metabolites were extracted by the addition of 

130 μL of acetonitrile to 65 μL of plasma, followed by mixing, and 30 minutes of incubation 

on ice and centrifugation (13,400 × rpm at 4°C) for 10 minutes. The supernatant was 

transferred into autosampler vials for LC-MS analysis. Mass spectral data were collected 

with a 10-minute reversed phase gradient on a Thermo Q Exactive mass spectrometer 

(Thermo Fisher, San Diego, CA) set to record from mass-to-charge ratio (m/z) 85 to 2000. 

Three technical replicates were run for each sample using reversed phase chromatography 

(Higgins Analytical, Targa C18 5 μM, 100 × 2.1 mm) using both positive and negative 

electrospray ionization. Stable isotope standards ([13C6]-D-glucose, [13C5]-L-glutamic acid, 

[15N]-L-tyrosine, [trimethyl-13C3]-caffeine, [3,3-13C2]-cystine, [15N,13C5]-L-methionine, 

Cambridge Isotope Laboratories (>98% isotopic purity)) were added to each sample prior to 

metabolite extraction, and pooled reference plasma samples were analyzed with each batch 

for quality control. Metabolite confirmation was performed with tandem MS-MS 

experiments on Thermo QE HF, Orbitrap Fusion, or Finnigan LTQ FT Ultra mass 

spectrometers. To identify vaccine-derived metabolites, the ZostavaxR vaccine was 

resuspended according to the manufacturer’s instructions, and analyzed with the same 

metabolomics protocol as for plasma.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptomics data processing and pathway/module analysis—The 

transcriptomics data were processed using RMA algorithm in BioConductor (Irizarry et al., 

2003). Enrichment tests of KEGG pathways and transcription factor targets were performed 

using GSEA (Subramanian et al., 2005). For BTM analysis, the transcriptomics data were 

summarized into module level score by taking the mean value of member genes (Li et al., 

2014). Paired t-test was used to compare genes or modules between different time points.

Metabolomics and pathway analysis—Metabolite peaks were extracted using the 

metabolomics software package apLCMS (Yu et al., 2013). Only peaks that were present in 

> 90% samples were used for further analysis. Pearson correlation coefficient R between the 

three technical replicates was used as an indicator of analytical quality. For data from 

positive ionization, 94% of all injections produced R > 0.90. Eight replicates with R < 0.76 

were removed from analysis. For each sample, data were log2 transformed and averaged 

over replicates. Twenty-three metabolites were confirmed by matching to chemical 

standards, including linoleate, methionine, cystine, 2-aminobutyrate, hypoxanthine, 

carnitine, o-acetylcarnitine, myo-inositol and glycerophosphocholine. Data from negative 

ionization were processed similarly. A total of 2216 peaks and 4048 peaks were used for 

positive and negative analysis. Using accurate m/z search under 10 ppm, 838 and 1206 

metabolites were matched in mummichog, which include metabolites from KEGG and other 

databases, from positive ionization and negative ionization respectively. Mummichog further 

tests pathway enrichment patterns using permutations, and computes the probability for each 

pathway (Li et al., 2013).

Data visualization using Circos—Figure 1A and Figure 2D were generated using 

Circos 0.66 (http://circos.ca). In Figure 1A: each column represents a subject, with each 

track as one type of data. In all tracks, higher bar or darker color corresponding to greater 

value, except in Gender, males are colored blue and females colored in red; missing data in 

white. The number of measured subjects varies by data types. N=72 for transcriptomics and 

metabolomics; N=70 for anti-VZV IgG; N=62 for flow cytometry; N=67 for VZV 

DNAemia; N=20 for cytokines. The antigen-specific T cell assays were mostly performed in 

Emory subset of subjects, and sample size is reported in individual figures.

Cytokines, examples shown for IL-12 (p70) levels on day 1.

Innate cells, examples from top to bottom: day1 CD16+ Neutrophils, D1 BDCA-1+ mDC1, 

day1 CD11c+ Myeloid cells, day1 Lin-HLA-DR+ total DCs, day3 CD56+ NK cells.

B cells, examples of CD19+ B-cell counts for days 1, 3, and 7.

T cells, examples of CD3+ T-cell counts for days 1, 3, and 7.

Specific T cells, antigen specific CD4+ T cell counts for day 7 vs. day 0.

VZV DNAemia, histogram of copy numbers for days 3, 7, and 14.
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Transcriptomics, example gene modules shown from top to bottom: Day3/0_IL2 IL7 TCR 

network (M65), Day3/0_B cell development (M9), Day3/0_T cell differentiation (M14), 

Day7/0_plasma cells immunoglobulins (M156.1), Day7/0_enriched in B cells (III) (M47.2), 

and Day3/0_enriched in T cells (II) (M223).

Metabolomics, example cluster shown from top to bottom: Day3/0_Clus_neg_25, 

Day3/0_Clus_neg_5, Day3/0_Clus_neg_195, Day7/0_Clus_neg_257, 

Day14/0_Clus_neg_10, and Day14/0_Clus_neg_1320.

IgG, antigen specific IgG increase at day 30 (bars), and baseline at day 0.

Linear regression models in MWAS and predictors—All transcriptomics and 

metabolomics data were log2 transformed. For correlation and regression analyses, 

difference to baseline samples was used. All regression models were run in R. For MWAS, 

each metabolite peak was regressed against a BTM score, taking into account age, sex and 

study site, using the lm function and Storey FDR (Storey and Tibshirani, 2003). For 

predictors of adaptive response, including IgG, IFN-γ+ T cells and Tfh-like cells, R function 

glm and epicalc library were used, accounting for age, sex and study site.

Construction and query of MMRN—As illustrated in Figure S5, for dimension 

reduction, gene expression was reduced to BTM activities, and metabolite peaks were 

grouped by unsupervised clustering (Ben-Dor et al., 1999). We computed the correlation 

network of all BTMs, using Pearson correlation with Bonferroni correction (p < 0.001). The 

metabolite peaks from metabolomics were first clustered by an unsupervised algorithm 

(Ben-Dor et al., 1999). The resulting clusters often grouped peaks that belong to the same 

metabolite (isotopes or adducts) or pathway, as evidenced by matched retention time and 

mass defect. The mean value was then taken for each cluster, used for computing all pair-

wise Pearson correlation, and constructed into a correlation network of metabolite clusters 

(Bonferroni p < 0.001). These correlation networks, as undirected and unweighted, were 

partitioned into subnetworks by linkcomm algorithm, which optimizes for partition density 

(Kalinka and Tomancak, 2011). Since the linkcomm algorithm deals with edge clusters not 

node clusters, it allows redundancy in the results, i.e., the same node can belong to multiple 

subnetworks. The resulting metabolite networks were used as input for MMRN construction. 

The same procedure was performed for BTM networks, cytokine networks and cell 

networks. Of note, these resulting networks are not meant to infer regulatory relationship, 

but serve as units of dimension reduction since their members manifested similar patterns in 

this dataset. These networks were also distinguished into two categories, whereas “stable 
networks” were derived from correlations that were observed at all time points, while 

“transient networks” were derived from correlations that were observed at a particular time 

point. “Stable” and “transient” are referring to network topology, as both types of networks 

are dynamic and their quantitative levels vary over time, but the stable networks have 

conserved members and structures.

Partial least square (PLS) regression was used to assess the association across different data 

types. PLS finds the principal components with the best covariance between two matrices 

(Janes et al., 2005). In this study, data matrices from the four types of networks (genes, 
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metabolites, cytokines and cells) were used as input to PLS regression. The p-values of 

association is computed on 1 million permutations for each pair of data types, and the 

significantly associated networks were connected to a multiscale, multifactorial response 

network (MMRN). It should also be noted that each node in MMRN is a network of its own 

right. This hierarchical structure allows an overview of the super-network and multiple zoom 

levels for additional details. A query program was written for MMRN, to extract a 

parsimonious subnetwork which connects the query nodes. To use GSA algorithm on 

member networks, t-score or Pearson correlation coefficient was used as primary score, and 

the significance is based permutation (Efron and Tibshirani, 2007). VIP of PLS regression 

was computed according to (Mehmood, 2012). The networks were visualized using 

Cytoscape 3 (cytoscape.org). The MMRN in Cytoscape format, with all source data, is 

provided in Data S1.

DATA AND SOFTWARE AVAILABILITY

The GEO accession number for the microarray data reported in this paper is GSE79396.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Zostavax® study overview, cellular and antibody responses
A) Study overview. 77 subjects as either young adults (25–40 yo, n=33) or elderly (60–79 

yo, n=44). Different samples were taken at baseline (day 0), and 1, 3, 7, 14, 28, 90 and 180 

days. Please refer to STAR methods (supplemental) for details.

B) CD8+ and CD4+ T cell activation as measured by Ki67+Bcl2- in young adults (black, 

n=13 for CD8+, n=15 for CD4+) and the elderly (orange, n=19 for CD8+, n=21 for CD4+). 

Mean values in solid lines, and shades for 90% confidence interval.

C) Increase in VZV-specific Tfh-like cells (as measured by CXCR5+ICOS+CXCR3+) in 

young adults (n=16) and the elderly (n=20). Antigen-specific IFN-γ, IL-4 or IL-21 
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production by CD4+ T cells as measured by ELISPOT in young adults (n=17) and the 

elderly (n=22). SFC = Spot forming cells.

D) Antigen-specific CD8+ T cell responses and Zostavax DNAemia in a subset of HLA-

A2+ individuals (n=13). PBMCs stimulated with previously published VZV-HLA-A2 

restricted peptides overnight and IFN-γ measured via ELISPOT. Viral DNA copies in blood 

measured by PCR

E) Representative VZV-specific IgG ELISPOT. Number of Zostavax®-specific plasmablasts 

in young adults (n=5) and the elderly (n=8). Kinetic analysis of Zostavax® glycoprotein-

specific IgG antibodies as measured by ELISA in young adults (n=16) and the elderly 

(n=21). Inverse correlation between VZV-specific IgG at baseline and day 28 response is 

shown for young (black), elderly (organge) and the total cohort (blue). Comparison between 

the two groups was done using unpaired t-test. Comparison of response between different 

time points was done using paired t-test. *p<0.05, ** p<0.01, ***p<0.005, **** p<0.0001.
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Figure 2. Plasma metabolomics and association with PBMC transcriptomics after Zostavax® 
vaccination
A) Illustration of chromatographic peaks identified in high-resolution metabolomics. The 

peaks across individuals and time points were aligned based on accurate mass-to-charge 

ratio (m/z) and LC retention time (not shown).

B) Common peaks detected in both Zostavax® vaccine and vaccinee plasma samples (across 

days 0, 1, 3, 7, 14). Data shown for negative ionization.

C) Significantly enriched pathways for Day 1 vs Day 0 (both negative and positive 

ionization), by the mummichog software (Li et al., 2013).

D) Metabolome-wide association with transcriptomics. The “chromosome” bands on the 

circular edge are 346 BTM gene modules in fixed order. Towards the center of the circle are 

scatter plots of −log10 p-values of metabolites that are significantly associated with the 

respective gene module (p < 0.01). Each dot represents a metabolite peak, blue from positive 

ionization, purple from negative ionization. Only metabolite peaks with FDR < 0.1 are 

shown on the foreground. The joined histograms outside of the BTM bands indicate the 

number of significant metabolites for each gene module.
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Figure 3. Multiscale, multifactorial response network (MMRN) of Zostavax® vaccination
A) MMRN consists of correlation networks using data from metabolomics, transcriptomics, 

cytokines and cell frequencies. Each node is a child network of one data type. The links 

between nodes were established by significant association using partial least square 

regression and permutation test. In the highlighted examples, black lines are for stable 

networks, red lines transient networks.

B–H) are examples taken from the MMRN, where black dashed outlines indicate stable 

networks, red transient networks. B) Connections between a cell network and two gene 

networks.

C) Gene network SN.125, where the callout scatter plot shows the correlation between two 

gene modules, TLR and inflammatory signaling and glycerophospholipid metabolism.

D) Metabolite network SN.3. The callout scatter plot on the right shows the correlation 

between two metabolite clusters measured by positive ionization (Pos.8) and negative 

ionization (Neg.1). The histogram on the left shows the top pathways in this metabolite 

network, ranked by −log10 p-value.

E) Gene network TN7.86, a day 7/0 transient network connected with day 3/0 metabolite 

network SN.3. The histogram under the network shows its top gene modules, ranked by the 

number of connections.

F) Selected genes from the gene network TN7.86.
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Figure 4. Age difference explained by MMRN
A) The subnetwork from MMRN related to age groups, colored by t-score in comparison 

between the young and elderly groups. Red indicates higher value in elderly. The most 

significant gene network is shown in B) and C), cytokine network in D). In C), each column 

represents a subject at day 0, colored by z-scores of gene expression values. IL7R is marked 

by a red arrow.

E) Baseline NK cell frequencies measured by flow cytometry.

F) Day 3/0 IL-7 levels measured by Luminex.
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Figure 5. Predictors of adaptive immune response are redundant and dynamic
A) The significant predictors of IgG (Figure S7B), IFNg+ T cells and Tfh like cells (Table 

S5) were identified using multivariate regression, then queried against the MMRN. The 

query results are extensively connected in MMRN, whereas different groups of predictors 

are placed in different shades. The nodes at the bottom center were not part of the predictors, 

but included due to their network connections.

B–C) The top antibody predictors are correlated with each other, while the correlation 

patterns change over time. Inositol phosphate metabolism is a predictor of T cell response, 

included here as reference. The edge width in the networks is proportional to Pearson 

correlation coefficient (0.30 to 0.99).
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Figure 6. Sterol metabolism integrates cellular and humoral responses
A–B) The BTM module M178 contains 10 SREBF1 target genes. The expression level of 

this module at day 3/0 is predictive of the increase of Tfh-like cells, at day 7/0 predictive of 

IgG response. Each dot represents one subject. Model shows predicted values using a 

regression model accounting for age, sex and study site (and baseline IgG for the last panel).

C) Scatter plots showing the expression level of M178 at different time points on both axes.

D) Correlation of M178 with other gene modules at day 7/0. The orders on X and Y-axes are 

symmetrical.

E–F) The MMRN subnetwork associated with M178. Gene and metabolite correlations are 

further shown in callout heatmaps and in F). A subset of the metabolites in F) are matched to 

sterol classes as designated in the LIPID MAPS database.

G) Top SREBF1 target genes included in the network in E), indicated by their variable 

importance by projection (VIP) at days 3/0 and 7/0.
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Figure 7. Immune phenotyping by inositol phosphate metabolism
A) Percent of variance in the day 7/0 transcriptome explained by each data types, using 

weighted average of the variance captured by the first five principal components (Nath et al., 

2012).

B) Scatter plots of day 7/0 expression of IP metabolism (M129) in relation to day 7/0 

phosphatidylinositol signaling and day 7/0 glycerophospholipid metabolism. Each dot 

represents one subject.

C) The expression of PSPH gene at day 3/0, correlated with baseline inositol phosphate 

metabolism, reveals an outlier group in the cohort.

D) Hierarchical clustering of subjects based on their gene expression of IP metabolism 

(M129). The clusters are color coded in the same way as for E–F). The expression of plasma 

cell signature genes (M156.1) is shown in the two heat maps on the bottom. Each column 

corresponds to a subject, matched in all three heat maps. The outliers in C are colored in 

orange, shown to the top of gene heat maps.

E–F) Boxplots for the clusters in D). The p-values are given by Student’s t-test comparing 

clusters L2 (low) and H5 (high in IP metabolism).

G) Association of all nodes (including unconnected nodes) in the full MMRN network with 

sex, age (young vs elderly), and IP groups (low vs high). The p-values on Y-axis are based 

on the GSA query method.
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