Skip to main content
. Author manuscript; available in PMC: 2018 Oct 1.
Published in final edited form as: Int J Comput Assist Radiol Surg. 2017 Jul 19;12(10):1819–1828. doi: 10.1007/s11548-017-1648-8

TABLE 1.

Comparison of AUC values and corresponding standard deviations of 8 different prediction schemes by using 2 dense breast region segmentation methods.

Feature fusion method New dense breast region segmentation method Previous dense breast region segmentation method
Scheme 1 (Taking maximum value of the selected features) 0.603±0.043 0.603±0.043
Scheme 2 (Taking minimum value of the selected features) 0.690±0.040 0.606±0.043
Scheme 3 (Taking mean value of the selected features) 0.640±0.043 0.621±0.043
Scheme 4 (one-stage classification scheme) 0.813±0.034 0.641±0.042
Scheme 5 (asymmetry feature based classifier) 0.807±0.035 0.623±0.043
Scheme 6 (mean feature based classifier) 0.657±0.043 0.603±0.043
Scheme 7 (maximum feature based classifier) 0.704±0.040 0.616±0.043
Scheme 8 (two-stage classification scheme) 0.830±0.033 0.633±0.043