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Abstract

Background—Hospitalized patients are assigned to available staffed beds based on patient 

acuity and services required. In hospitals with double-occupancy rooms, patients must be 

additionally matched on gender. Patients with methicillin-resistant Staphylococcus aureus 
(MRSA) or vancomycin-resistant Enterococcus (VRE) must be bedded in single-occupancy rooms 

or cohorted with other patients with similar MRSA/VRE flags.

Methods—We developed a discrete event simulation (DES) model of patient flow through an 

acute care hospital. Patients are matched to beds based on acuity, service, gender, and known 

MRSA/VRE colonization. Outcomes included time to bed arrival, length of stay, patient-bed 

acuity mismatches, occupancy, idle beds, acuity-related transfers, rooms with discordant 

MRSA/VRE colonization, and transmission due to discordant colonization.

Results—Observed outcomes were well-approximated by model-generated outcomes for time to 

bed arrival (6.7 vs. 6.2–6.5 hours) and length of stay (3.3 vs. 2.9–3.0 days), with overlapping 90% 

coverage intervals. Patient-bed acuity mismatches where patient acuity exceeds bed acuity, and 

where patient acuity is lower than bed acuity ranged from 0.6 to 0.9 and 8.6 to 11.1 mismatches 

per hour, respectively. Values for observed occupancy, total idle beds, and acuity-related transfers 

compared favorably to model-predicted values (91% vs. 86%–87% occupancy, 15.1 vs. 14.3–15.7 
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total idle beds, and 27.2 vs. 22.6–23.7 transfers). Rooms with discordant colonization status and 

transmission due to discordance were modeled without an observed value for comparison. One-

way and multi-way sensitivity analyses were performed for idle beds and rooms with discordant 

colonization.

Conclusions—We developed and validated a DES model of patient flow incorporating 

MRSA/VRE flags. The model allowed quantification of the substantial impact of MRSA/VRE 

flags on hospital efficiency and potentially avoidable nosocomial transmission.
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INTRODUCTION

Over the last several decades, the number of hospital beds in the United States has decreased 

from 1.5 million to 0.9 million, with a stable number of admissions and decreasing length of 

stay [1]. Outpatient visits, inclusive of Emergency Department (ED) visits have increased 

over three-fold, as have wait-times [2]; more than half of all teaching hospitals report EDs at 

or above capacity [3], raising concerns about the impact on clinical outcomes [4–6].

The bed allocation process requires matching patients to available staffed beds based on 

clinical needs, and may delay patient flow. Patients must be matched to specific units and 

beds based on acuity, or severity of illness, and services required (i.e., medical or surgical). 

In double-occupancy rooms, additional matching is required based on gender, as well as 

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

Enterococcus (VRE) colonization. Patients who are colonized with MRSA/VRE, which are 

endemic in hospital settings [7–9], can act as reservoirs for contact transmission to other 

patients within the hospital. Infected or colonized patients are identified, or flagged, so 

appropriate infection control measures can be instituted.

The Centers for Disease Control and Prevention (CDC) recommends policies aimed at 

decreasing the likelihood of transmission of MRSA/VRE, including placement in a single-

occupancy room, institution of Contact Precautions (CP), and active surveillance for 

MRSA/VRE in high-risk populations, such as those admitted to intensive care units (ICUs). 

If single-occupancy rooms are not available, cohorting patients with the same organisms 

(e.g., MRSA with MRSA) is an acceptable arrangement [10].

We designed and validated a discrete-event simulation (DES) model of hospital bed 

allocation, incorporating CDC recommendations related to MRSA/VRE. The main 

objectives were to develop and demonstrate a model of patient flow in a general hospital, 

specifically incorporating MRSA/VRE flags and true colonization. The model allows for 

presentation of conclusions important for optimization of patient flow and prevention of 

MRSA/VRE transmission.

Discrete event simulation models focused on hospital capacity have provided important 

insights into optimal hospital expansion [11], tradeoffs between using a first-in-first-out 
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model of resource allocation compared to other methods of prioritization [13], and 

minimization of overcrowding [14, 15], among other examples [16–19]. We sought to extend 

this literature to focus on the impact of infection control on the flow of hospital patients and 

allocation of resources.

METHODS

Modeling Framework

Our choice of model was influenced by the need to model simultaneous interactions between 

individuals and their environment. We applied a constrained-resource model assuming a 

fixed capacity of staffed beds available, with competing access resulting in queues.

We used the following model outcomes to assess the validity of the model: 1) time to bed 

arrival; 2) length of stay; 3) patient-bed acuity mismatches; 4) occupancy; 5) idle beds (due 

to either MRSA/VRE flags or lack of available staffing); and 6) acuity-related within-

hospital transfers. Two additional outcomes, rooms with discordant colonization (double-

occupancy rooms with two patients discordant for MRSA/VRE true colonization) and 

incident MRSA/VRE colonization due to transmission in discordant rooms were included, 

but unable to be validated on historical data. The outcomes include commonly accepted 

metrics of hospital operations that would be expected to be influenced by alterations in 

infection control policy, and tests of key features of the model’s function. Model 

programming details are provided (Supplement Section A).

Modeling Patient Flow

Our simulation model was based on the Massachusetts General Hospital (MGH), a tertiary 

care academic medical center in Boston, Massachusetts. Content experts worked in 

collaboration to develop a conceptual approach to how patient- and bed-level characteristics 

were considered when assigning patients to beds. A schematic of the simulation model is 

provided (Figure 1).

Bed Allocation—Bed allocation first requires matching patients to beds based on acuity 

and service required. Bed acuity is graded in order of level of care required: increasing from 

Observation Unit, General Care Unit, Step-Down Unit, to ICU. Patients then require either 

medical or surgical service, and each unit assigned one or the other designation. Patients 

awaiting admission are prioritized ahead of patients who are already occupying inpatient 

beds but require a bed transfer.

In the setting of single-occupancy rooms, neither patient gender nor MRSA/VRE flags 

influence bed allocation. For double-occupancy rooms only, an incoming patient must either 

be matched to a room in which current occupant is of same gender and same MRSA or VRE 

flag, or queue until a match becomes available. In the absence of sufficient staffing, beds 

cannot be used for patient care, and remain unfilled. For each bed at each time step, this 

information is modeled as a probability of closure and a distribution of closure duration in 

hours. When queues exist, unfilled beds are considered idle, and are attributed to either 

MRSA/VRE flags or staffing constraints.
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Patient Movement—Once admitted to an inpatient bed, patients can be transferred if they 

experience: 1) a change in acuity resulting in discordance between their acuity and the bed 

acuity; or 2) a change in MRSA or VRE flags (e.g., they are found to be positive for MRSA 

or VRE) resulting in discordance with their current roommate. In both cases, the model will 

resolve the acuity or flag discordance by entering a proxy patient in the appropriate acuity/

service queue to await appropriate bed placement. The proxy patient represents a bedded 

patient in the hospital bed queue, searching for an available transfer bed.

Time—The model runs in 1-hour time steps. Transfers can occur at each time step, with the 

exception of 7 PM to 8 AM, during which a rule was imposed based on discussions with 

internal subject matter experts.

Model Inputs

Patient characteristics, arrivals, work-up time distribution, delays to bed arrival distribution, 

acuity changes, discharges, and hospital structure were derived from hospital-based clinical 

and administrative data sources, and combined into a single database [20]. The cohort 

includes patients admitted to ED observation units.

Patient Characteristics—Patient characteristics include acuity on admission, service 

(medical or surgical), gender, and historical colonization with MRSA/VRE, denoted as flags. 

The cohort consisted of 95,091 patients of which 48% were female, 70% were admitted to a 

General Care Unit, and 52% required a medical service bed. Patient acuity on admission was 

derived from the level of care of the first bed assigned, but once admitted was subject to 

change based on the acuity transition probability matrix (see below Acuity Changes). 

Frequencies of patients in each combination of all characteristic variables are drawn from 

the assembled database. These frequencies were used as inputs to the model, with the model 

pulling from relative frequencies when selecting simulated patients on arrival at each time 

step. MRSA/VRE flags are based on the patient history of MRSA/VRE prior to admission. 

Such designations are commonly used by healthcare systems to facilitate implementation of 

infection control measures as recommended by the CDC [10] and are often based on either 

surveillance or clinical isolates, as they are in the historical data used for this model. These 

flags may be discordant with true colonization, as patients can acquire or clear colonization 

without detection, and without changes to their flag. Thus, for patients in the model, true 

colonization with MRSA/VRE, conditional on their flag, was derived from the literature and 

imposed upon all patients [21–23]. For patients without flags (e.g., no prior history of 

MRSA/VRE), published estimates of population prevalence were used as inputs for true 

colonization with MRSA/VRE [20]. In the model, as at MGH, active surveillance for 

MRSA/VRE is conducted for patients admitted to ICUs using culture methods, based on 

CDC recommendations. Universal surveillance outside of ICUs is not conducted. A new 

positive test results in updating the MRSA/VRE flag. Sensitivity and specificity of the 

MRSA assay were 0.88 and 0.98 respectively, and for VRE were 0.85 and 0.98, respectively, 

based on published literature [24, 25]. Selected admission cohort characteristics and data 

sources are provided (Table 1).
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Patient Arrivals—Arrival of patients into the model depends on hour of day and day of 

week (weekend vs. weekday, see Supplement Figure 1S). The average number of patients 

arriving by day and time was calculated; at each clock hour for each day, the model pulls the 

corresponding number of patients into the model as the expected value of a Poisson 

distribution (Figure 2). All modeled arrivals result in admissions.

Work-Up Time—Work-up time is the time between initial patient arrival and admission of 

the patient to the hospital. Input data to generate this distribution were only available for ED 

patients. The mean work-up time (hours) for patients requiring an Observation, General 

Care, Step-Down, and Intensive Care bed were 3±12, 4±16, 3±12, and 3±10, respectively. 

The work-up time distribution was applied to all patients awaiting their first inpatient bed 

assignment (Figure 3). When patients enter the acuity/service queue, they draw from a 

distribution of work-up time specific to their acuity.

Delays to Bed Arrival—Delay to bed arrival is the time required for clinician-to-clinician 

pass-offs, transport, and other non-clinical administrative tasks prior to patient arrival in an 

initial or transfer bed, defined as any bed to which a patient was admitted after their initial 

admission location. The mean delays to initial and transfer beds were 2±5 and 3±10 hours, 

respectively (Figure 4).

Acuity Changes—Patient acuity change is determined by an acuity transition probability 

matrix based on the observed frequency of acuity changes in the observed data. The matrix 

reflects a patient’s relative likelihood of remaining in their current acuity or transitioning to 

other acuities and is dependent upon how long a patient has already been in their current 

acuity. Details regarding the construction of the matrix, which is modeled as a Markov 

chain, with hourly time steps, are provided (Supplement Section B).

Patient Discharges—Patient discharge is a probability dependent on hour of day, day of 

week, and current acuity, and is calculated by dividing the observed hourly frequency of 

discharges by the total number of patients, adjusted for acuity. The discharge date and time 

represents the physical departure time stamp, incorporating any administrative delays. Once 

a patient draws to be discharged, he/she then draws for their discharge destination (to home, 

facility, or death) derived from the observed data. Patients are eligible for discharge at any 

point during their encounter.

Hospital Structure—Each hospital unit was designated as either Observation, General 

Care, Step-down, or ICU, and characterized as medical or surgical. The final model included 

14 Observation, 613 General Care (52% medical, 48% surgical), 57 Step-Down (63% 

medical, 37% surgery), and 98 ICU (35% medical, 65% surgery) beds (Figure 5).

Measuring Model Outcomes

The model outcomes were defined and reported: time to bed arrival, length of stay, 

occupancy, idle beds, acuity-related transfers, rooms with discordant colonization, and 

transmission due to discordant colonization. Log-normal descriptors for the patient-level 

outcomes of time to bed arrival and length of stay were used, summarizing the distributions 
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with the geometric means (i.e., anti-log transformation of the mean of the log-transformed 

times). Where applicable, the 90% coverage intervals for observed and model outcomes are 

reported (90% CI: 5th percentile to 95th percentile).

Time to Bed Arrival—The time to bed arrival output is a function of patient arrival, the 

distribution of patient characteristics, and the allocation algorithm. The model-generated 

geometric mean time to bed arrival and 90% CI are reported in hours.

Length of Stay—Length of stay is not pre-specified in the model. Instead, the model 

produces the length of stay, which is a function of patient arrival, the acuity transition 

probability matrix, and patient discharge. The model-generated geometric mean length of 

stay and 90% CI are reported in days.

Patient-Bed Acuity Mismatch—A patient-bed acuity mismatch occurs when patient 

acuity changes resulting in a mismatch with bed acuity. The model generates the mean 

number of patient-bed acuity mismatches per hour, stratified by mismatches where the 

patient requires a higher bed acuity and mismatches where the patient requires a lower bed 

acuity. These mismatches trigger entry into transfer queues and contribute to system 

congestion, preventing optimal allocation of resources.

Occupancy—Model occupancy is the number of bedded patients divided by the total 

number of beds. The mean occupancy (expressed as a percentage) and 90% CI are reported.

Idle Beds—Idle beds are reported as mean number of idle beds per hour, along with the 

90% CI over 24 hours, and further categorized as attributable to MRSA/VRE flags or 

staffing constraints.

Acuity-Related Transfers—An acuity-related transfer is defined as a transfer of a bedded 

patient from one bed to another bed of a different acuity, and is a function of the patient 

characteristics and acuity transition probability matrix.

Rooms with Discordant Colonization—A room with discordant colonization is a 

double-occupancy room in which both occupants are matched on MRSA/VRE flags, but due 

to spontaneous clearance of colonization or unknown acquisition, they have discordant true 

colonization. Discordance between the flag and colonization can occur if: 1) a patient with 

no history of MRSA/VRE flag has true colonization; 2) a patient with a MRSA/VRE flag 

has cleared colonization spontaneously at some point prior to admission but they remain 

flagged; or 3) a false positive or false negative MRSA/VRE test result. Discordance between 

the flag and true colonization depends in part on how recently the patient was known to be 

colonized or infected [26] and test characteristics. This output is a function of patient 

characteristics, the proportion of patients recently flagged, and the bed allocation algorithm. 

The model generates the mean number of rooms with discordant colonization in each hour 

step. These rooms are unobserved; no validation metric is available.

Transmission due to Discordant Colonization—Transmission can occur in the 

setting of rooms with discordant colonization. We reviewed the literature on MRSA/VRE 
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acquisition based on exposure to colonized roommates in double-occupancy rooms [27–31] 

and applied a conservative estimate of hourly probability of MRSA and VRE acquisition, 

0.0005/hour exposed and 0.0006/hour exposed, respectively. We report the incident cases of 

MRSA/VRE colonization resulting over the course of a year.

Model Validation: face validity, internal validation, and external validation

Through an iterative and consultative process with content experts, the face validity of the 

model was established. During this process, bed allocation heuristics used internally by 

Admitting Services were introduced to the extent possible. For example, patients who were 

waiting for initial bed placement (i.e., in the emergency department or post-anesthesia care 

unit) had priority over already bedded patients for available inpatient beds and patients 

requiring ICU level care were prioritized over those requiring lower level care. Within-

hospital transfers of patients undertaken to free up an idle bed due to MRSA/VRE flags were 

limited to a maximum of three patient moves within a single unit. Partially dependent 

external validation was performed to assess the fidelity of the model-simulated outcomes to 

the observed outcomes. Observed data were used to build part of the model but by 

themselves did not fully determine the outcomes to be validated [32]. For each observed 

outcome, the means over the two-year period included in the observed data were reported 

and compared to the mean simulated value and range.

Sensitivity and Scenario Analyses

One-way and multi-way sensitivity analyses were conducted through systematically altering 

selected inputs and assessing the impact on model outputs. Length of stay was additionally 

investigated through imposition of discharge holds on patients during the first several hours 

of admission. Finally, in order to investigate the impact of bedding arrangements on model 

outcomes, we created a version of the model with exclusively single-occupancy rooms.

Role of the Funders

The funding sources had no role in the study.

RESULTS

Internal Validation

The model accurately assigned patients to beds based on acuity, service, gender, and 

MRSA/VRE flags. It also accurately responded to changes in patient acuity and flags by 

resolving discordance between patient and bed characteristics.

External Validation

The model produced simulated results matched closely to observed data for the system 

outcomes tested.

Time to Bed Arrival—The distribution of the observed and model-generated time to bed 

arrival is shown (Figure 6). The observed geometric mean time to bed arrival was 6.7 hours 

and the model output ranged from 6.2 to 6.5 hours (90% CI: 2.0 to 18.0; Figure 2S).
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Length of Stay—The distribution of the observed and model-generated length of stay is 

shown (Figure 7). The observed geometric mean length of stay was 3.3 days and the model 

output ranged from 2.8 to 3.0 days (90% CI: 0.2 to 16.5; Figure 3S).

Patient-Bed Acuity Mismatches—Across runs, the mean number of patient-bed acuity 

mismatches where patient acuity exceeds the bed acuity ranged from 0.6 to 0.9 mismatches 

per hour. The mean number of patient-bed acuity mismatches where patient acuity is lower 

than the bed acuity ranged from 8.6 to 11.1 mismatches per hour. This reflects a snapshot of 

the prevalence of mismatches at any given time step.

Occupancy—The observed mean occupancy was 91%. Across runs, the model-generated 

mean occupancy ranged from 86% to 87% (90% CI: 81% to 93%; Figure 4S).

Idle Beds—The observed mean number of idle beds for any reason was 15.1 at each hour 

step, with 11.7 attributable to MRSA/VRE flags and 3.4 to staffing constraints. The model-

generated mean total idle beds ranged from 14.3 to 15.7, with 10.7 to11.6 attributable to 

MRSA/VRE flags and 3.6 to 4.2 to staffing (Figure 8A).

Acuity-Related Transfers—The observed mean number of acuity-related transfers was 

27.2 transfers per day. The model-generated mean ranged from 22.6 to 23.7 (90%CI: 14.6 to 

31.5; Figure 8B).

Rooms with Discordant Colonization—The model-generated mean number of rooms 

with discordant colonization at each hour step ranged from 21.8 to 24.6.

Transmission due to Discordant Colonization—The model-generated mean number 

of newly colonized patients per year with MRSA and VRE was 48.2 and 74.3, respectively.

Sensitivity and Scenario Analyses

Time to bed arrival was most influenced by increasing the proportion of General Care 

patients on admission (6.3 to 72.6 hours), and extremes of both the work up time (4.1 to 25.1 

hours) and delay to initial arrival distributions (5.1 to 26.0 hours; Figure 5S). Length of stay 

was most sensitive to alterations in the distribution of the delays to initial bed arrival (Figure 

6S). Occupancy was most influenced by alterations in volume of arrivals (79% to 96%), and 

extremes of both the work up time (76% to 88%) and increasing discharge probability on 

weekends (78% to 87%; Figure 7S). Acuity-related transfers were most sensitive to 

alterations in volume of arrivals (1.5 to 23.6 transfers), and delays to initial and transfer bed 

arrival (16.4 to 23.5 and 17.9 to 23.9 transfers, respectively; Figure 8S).

Idle beds were similarly affected by alterations in volume of arrivals (from 5.1 to 24.1 beds) 

as well as increasing discharge probability on weekends (from 15.0 to 23.9 beds). All other 

input modifications resulted in more modest changes, but increases in MRSA/VRE flags to 

20% uniformly resulted in increases in idle beds above the base case (Figure 9). Further, 

when MRSA prevalence was increased independently from 0% to 100% the impact of the 

flag status stabilized in the range of 9–10 idle beds due to MRSA/VRE flags until a 

prevalence of approximately 80%, at which point the number of idle beds decreased (Figure 
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9S). In multi-way sensitivity analyses, a combination of increasing the MRSA/VRE flag 

prevalence to 10% and altering the volume of arrivals had the largest observed impact on 

idle beds (Figure 10S).

Rooms with discordant colonization were most affected by alterations in the volume of 

arrivals (from 17 to 33 rooms) and flags, with increasing combined MRSA/VRE flag 

prevalence to 20% resulting in the largest impact (from 21 to 31 rooms; Figure 10). In multi-

way sensitivity analyses, rooms with discordant colonization were most sensitive to a 

combination of increasing the MRSA/VRE flag prevalence to 20% and altering the volume 

of arrivals (Figure 11S).

Imposing discharge holds of patients for the first four hours after arrival resulted in a model-

generated LOS distribution similar to observed (Figures 12S and 13S), with relatively minor 

alterations in other outcomes (Table 1S).

In the single-occupancy rooms model, reductions in time to bed arrival (5.8 vs. 6.7 hours), 

length of stay (2.9 vs. 3.3 days), occupancy (73% vs. 91%), idle beds (0 vs. 15.1 beds per 

hour), and acuity-related transfers (25.2 vs. 27.2 transfers per day) were observed (data not 

shown).

DISCUSSION

We developed and validated a DES model of patient flow in a general hospital, incorporating 

MRSA/VRE flags in the allocation of patients to available beds based on CDC guidelines 

[10]. Using a historical cohort, the model was validated on operational outcomes, including 

time to bed arrival, length of stay, occupancy, idle beds, and acuity-related transfers.

One of the novelties of our model is the explicit incorporation of infection control 

designations as well as measurement of idle beds attributable to lack of patient-bed matches 

due to MRSA/VRE flags as well as staffing shortfalls. We found that capacity is most 

affected by idle beds due to MRSA/VRE, however staffing constraints are responsible for 

over 20% of these beds. We also reported on the incidence of rooms with discordant 

colonization, and this feature of the model, allows for policy makers to assess the potential 

impact of various strategies for documentation of clearance of colonization, on this 

important metric. The quantification of newly colonized patients resulting from between-

roommate transmission has both clinical and policy implications. The estimates provided 

suggest that policies that do not accurately identify patient colonization status (either as a 

result of spontaneous clearance or acquisition) may be responsible for nosocomial 

transmission. Non-colonized patients cohorted with colonized or infected patients have an 

increased risk of acquisition from their roommate [27]. Further, given recent reports of 

facilities choosing to forgo implementation of contact precautions for flagged patients [33–

35], our findings highlight the potential for such policies to result in undetected colonization 

and transmission.

Clinical studies in which patients with MRSA/VRE flags have been screened for persistent 

colonization have demonstrated that the administrative flag is a poor surrogate for 

colonization for both [21, 36–41]. The CDC, however, does not provide specific guidance on 
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when and under what circumstances patients can be considered to be no longer colonized, 

and the flag status removed [10]. We have previously documented significant and substantial 

decreases in associated idle bed hours among patients in whom rapid, active surveillance for 

clearance of MRSA colonization was implemented [20]. Multiple studies have investigated 

potential increased risk of transmission to patients cohorted with colonized patients [27] as 

well as via contamination of environmental surfaces [42–44].

Screening of patients for MRSA/VRE is costly to implement, and there is a need to quantify 

the potential benefits prior to incurring the risks and expense of full implementation. The 

general literature on simulation and modeling in health care is substantial [45], but there is a 

need for more studies focused in infection control, motivated by real-world problems that 

clearly identify the trade-offs of alternative simulated solutions [46]. This need is 

particularly true in the setting of lack of national guidance on screening strategies in which 

the timing, diagnostic modality used, number of samples, body site sampled, and policy 

action based on results, are all expected to influence the costs and benefits. Well-validated 

and transparent models can provide insight into potential policy options, and allow for 

explicit estimates of the trade-offs of competing strategies.

The model-derived time to bed arrival and length of stay distributions differed from 

observed, most notably in the early time periods. These distributions are a complex output of 

a series of model assumptions and structures, including work-up time delays, delays to 

transfer, acuity changes, among others, many of which were examined through sensitivity 

analyses. These differences, however, at an individual patient-level, may be essentially 

insignificant (i.e., a difference of 20 minutes in time to bed arrival for the average patient). 

We found that altering the prevalence of MRSA/VRE flags had substantial effects on both 

idle beds and rooms with discordant colonization. Idle beds represent an inefficient use of 

resources at a time when inpatient bed capacity has contracted. While beds remain idle, 

patients awaiting admission may be exposed to avoidable harms through extended 

emergency department boarding, and patients awaiting within-hospital transfers may utilize 

higher-acuity resources when they are no longer needed. We found that preventing discharge 

within the first four hours of arrival resulted in a LOS distribution similar to observed, 

reflecting the fact that the early hours of admission are likely the most volatile with respect 

to patient clinical status. A single-occupancy only version of the model reduced the number 

of idle beds and eliminated rooms with discordant colonization. While occupancy declined 

in the model, in reality, the operational gains would most likely result in increased volume of 

patient admissions, and allow for an approximation to close to 100% occupancy [47].

Our study has limitations. While the model was built upon the physical structure of a single 

institution, we purposely simplified the hospital into a recognizable, widely-applicable 

acuity and service hierarchy in order to retain applicability and generalizability. Bed 

allocation heuristics are likely to differ from institution to institution, and while we included 

rules that we believe are reasonable, the model is flexible enough that changes to the rules of 

allocation can be made to align with local practice. This specific institution includes a 

combination of double-occupancy and single-occupancy beds, which is similar to the 

majority of hospitals in the United States. It is possible, however, that varying combinations 

of double-occupancy and single-occupancy rooms could affect the findings. Patient 
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characteristics used as inputs to the model were based on our historical cohort, and thus may 

not be directly applicable to institutions with different patient populations. Input data for 

work-up time was available for ED patients only, however, we applied these data to all 

patients in the model, regardless of origin. We conducted sensitivity analyses across a wide 

range of possible work-up times to account for this limitation in available data. We were 

unable to validate the level of acuity of patients used for patient placement. We were also 

unable to validate the number of rooms with discordant colonization and transmission due to 

discordant colonization, as both are unknown. The model did not explore strategies to alter 

bed assignment prioritization, such as the use of buffer beds [14, 48] or first-come-first-serve 

[49]. Due to limitations of available data, and a change in the hospital structure with the 

opening of a new inpatient facility during the end of the second year of the study period, a 

full external validation was not possible.

The model presented, with explicit incorporation of MRSA/VRE flags can be used to 

investigate the potential impact of strategies that affect discordance between MRSA/VRE 

flags and true colonization and thus risk of nosocomial transmission. Models such as the one 

presented have the potential to provide support to optimize bed assignments in capacity-

constrained environments as well as to assist in analysis of the impacts of infection control 

policy.

CONCLUSION

A DES model of patient flow in the hospital incorporating infection control designations can 

provide insights into operational impact of such designations. Diagnostic approaches for 

improving identification of patients who are no longer colonized with MRSA/VRE are 

needed.
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Figure 1. 
Model schematic. Patients experience six different events as they progress through the 

model: First, patients arrive in the hospital on an hourly basis (1). Each patient has four 

inherent characteristics that are relevant for bed allocation: acuity on arrival, service required 

(medical or surgical), gender, and MRSA and VRE flag status. The source of patient arrival 

is not modeled, nor is their physical location as they await initial bed placement. Next, on 

the basis of the combination of their four characteristics upon arrival, patients awaiting 

admission are instantly assigned to an acuity/service queue (2). The model does not begin to 

look for available beds immediately upon entrance to the queue. Instead, the model 

approximates work up time (i.e., an approximation of the time required by clinicians to 

evaluate and begin initial management of the patient) (3). During the time patients are being 

worked up, they may experience changes in acuity at each time step (i.e., if their condition 
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improves their acuity will decrease, if their condition worsens, their acuity level will 

increase). If this change occurs, a patient’s acuity is updated and informs the bed match. 

Once a bed match is made, patients do not instantly arrive in the assigned bed. In order to 

account for delays in clinician-to-clinician pass-offs, as well as transport and other non-

clinical administrative delays, the model draws from a relative distribution of delay in bed 

arrival in hours (4). At the completion of the delay to bed arrival, patients are placed in an 

inpatient bed within their required service and acuity level (5).Finally, at each hour the 

model draws from a discharge distribution to determine if each patient is ready to be 

discharged (6).

*Not all patients experience a change in patient acuity or flag status requiring a new bed. 

These patients will remain in their initial inpatient bed until discharge.
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Figure 2. 
Input admissions by arrival time of day and day of week (weekday vs. weekend). The 

distribution of admitted patients by arrival time and day of week (weekday vs. weekend) is a 

model input and is derived from the data warehouse. At each time-step, the number of 

patients arriving in the model corresponds to the appropriate time of day and day of week.
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Figure 3. 
Work-up time input distribution by acuity on admission. The distribution of work-up time in 

hours by acuity on admission is a model input derived from Emergency Department data. 

Patients in the mode are assigned a work-up time based on a random draw from this 

distribution, conditional on their acuity on admission.
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Figure 4. 
Delay to initial and transfer bed arrival input distribution. The distribution of delay to bed 

arrival in hours by initial and transfer bed is a model input derived from the data warehouse. 

Patients in the model are assigned a delay to bed arrival based on a random draw from this 

distribution, and conditional on whether or not they are queuing for their initial bed or are 

awaiting transfer to a second inpatient location.
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Figure 5. 
Model Structure. Panel A depicts the model structure including all service and acuity 

allocation boxes, and units for each acuity and allocation combination containing single-

occupancy (single box, one bed) and double-occupancy (double box, two beds) rooms. Panel 

B shows one of the six service/acuity allocation boxes (General Care, Medical). Panel C 

shows a subset of three rooms (one private and two semi private) with a total of five 

inpatient beds occupied with patients of various gender and flag status requirements. The 

first semi private room (C1) contains two female patients with no flag for either MRSA or 

VRE. The second semi-private room (C2) contains a single male patient flagged for MRSA 

or VRE and a closed bed. The private room (C3) contains a single female patient with a flag 

for MRSA or VRE.
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Figure 6. 
Distribution of time to bed arrival. The observed distribution of time to bed arrival in hours 

is compared to that of the model outcome of a randomly selected single simulation run. The 

minimum time to bed arrival in the model output is 2 hours, as all simulated patients require 

a single hour time step to arrive in the appropriate queue and are subjected to minimum 

delay to initial bed assignment of another single hour time step.
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Figure 7. 
Distribution of length of stay. The observed distribution of length of stay in days is 

compared to that of the model outcome of a randomly selected single simulation run.
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Figure 8A. 
Idle beds. The observed mean number of total idle beds (15.1), idle beds due to MRSA/VRE 

flag status (11.7), and idle beds due to staffing (3.4) is compared to the mean number of 

model output total idle beds, idle beds due to MRSA/VRE flag status, and idle beds due to 

staffing across ten individual simulation runs in panels A, B, and C, respectively.
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Figure 8B. 
Acuity-related transfers per day. The observed mean number of acuity-related transfers per 

day (27.2) is compared to the mean number of acuity-related transfers per day output across 

ten individual simulation runs, along with markers showing the 90% coverage interval fit 

with a Poisson distribution within each run. The same 90% coverage interval (18.4–35.6) 

around the observed mean acuity-related transfers is shaded. The coefficient of variation 

(standard deviation standardized to its own mean) across the ten simulation runs was 1.6%.
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Figure 9. 
Results of one way sensitivity analysis around total idle beds. Shown are the effects of 

altering various input parameters on the number of idle beds per hour model output. The 

solid vertical line indicates the mean base case value (15.1 idle beds) across ten 1-year runs. 

On either side of this line are two dotted lines indicating the range across the ten 1-year base 

case runs. Each horizontal bar represents a single input parameter being altered, with the 

length of each bar representing the range of idle beds over the specified values for each input 

parameter modified.
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Figure 10. 
Results of one-way sensitivity analysis around rooms with discordant colonization. Shown 

are the effects of altering various input parameters on the number of rooms with discordant 

colonization per hour model output. The solid vertical line indicates the mean base case 

value (23.1 rooms with discordant colonization per hour) across ten 1-year runs. On either 

side of this line are two dotted lines indicating the range across the ten 1-year base case runs. 

Each horizontal bar represents a single input parameter being altered, with the length of each 

bar representing the range of idle beds over the specified values for each input parameter 

modified.
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Table 1

Selected Input Parameters Used in the Model Base Case

Patient Characteristics Base Case Value References

Gender (% female) 48% 11

Acuity on admission 11

 Observation Unit 13%

 General Care Unit 70%

 Step-Down Unit   8%

 Intensive Care Unit   9%

Clinical service 11

 Medical 52%

 Surgical 48%

Concordance between true colonization status given flag status

 MRSA positive / MRSA nag positive (+/+) 0.53 Data warehouse, 26

 MRSA positive / no MRSA flag (+/−)   0.025

 MRSA negati ve I MRSA flag positive (−/+) 0.47 Data warehouse, 21

 MRSA negative / no MRSA flag (−/−) 0.97

 VRE positive / VRE flag positive (+/+) 0.47 Data warehouse, 26

 VRE positive / no VRE flag (+/−) 0.03

 VRE negative / VRE nag positive (−/+) 0.53 Data warehouse, 22

 VRE negative / no VRE flag (−/−) 0.97

Work-up time: mean (SD): median [IQR]) MGH data from Admitting Services

 Observation 3 (3); 2 [1–4]

 General Care 4 (4); 4 [2–6]

 Step-Down 3 (3); 3 [2–4]

 Intensive Care Unit 3 (3); 2 [2–3]

Delays to bed. arrival: mean (SD): median [IQR]) Data warehouse

 Initial bed 2 (2); 1 [1–1]

 Transfer bed 3 (3); 2 [1–3]

MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococcus: SD, standard deviation; IQR, interquartile range; 
MGH, Massachusetts General Hospital.
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