Skip to main content
. 2017 Dec 1;7:16745. doi: 10.1038/s41598-017-16841-0

Figure 1.

Figure 1

Structure-based design approach. (A) Pipeline used for the selection of improved mutants. (B) Structural alignments of SsoPox (red) and BdPTE structures (yellow) guided the mutational design. (C) Active site superposition of BdPTE (green) and SsoPox (cyan) active sites. Residues with structural equivalent (orange sticks) in both structures were used to design mutations of SsoPox’s residues into the BdPTE corresponding residues. Positions with no structural equivalent (red sticks) were designed using modelling tools (purple sticks) to mimic the active site cavity size, shape and chemical properties of the BdPTE crystal structure model (Figure S1). (D) The mutations data base consists of mutations to the BdPTE sequence when there is a structural equivalence (orange), and of mutations designed when there is no structural equivalence (red). The third set of mutations (black) adds more diversity at two selected positions, 258 and 263. (E) Once the library had been validated, primers carrying mutations were used to shuffle them and generate a gene library with random combinations of selected mutations. (F) The library was screened for paraoxonase activity to identify enzymes with improved proficiency.