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Abstract
Purpose of Review Mendelian randomization (MR) is a strat-
egy for evaluating causality in observational epidemiological
studies. MR exploits the fact that genotypes are not generally
susceptible to reverse causation and confounding, due to their
fixed nature and Mendel’s First and Second Laws of
Inheritance. MR has the potential to provide information on
causality in many situations where randomized controlled tri-
als are not possible, but the results of MR studies must be
interpreted carefully to avoid drawing erroneous conclusions.
Recent Findings In this review, we outline the principles
behind MR, as well as assumptions and limitations of the
method. Extensions to the basic approach are discussed,
including two-sample MR, bidirectional MR, two-step
MR, multivariable MR, and factorial MR. We also consid-
er some new applications and recent developments in the
methodology, including its ability to inform drug develop-
ment, automation of the method using tools such as MR-
Base, and phenome-wide and hypothesis-free MR.
Summary In conjunction with the growing availability of
large-scale genomic databases, higher level of automation

and increased robustness of the methods, MR promises to
be a valuable strategy to examine causality in complex
biological/omics networks, inform drug development and
prioritize intervention targets for disease prevention in the
future.

Keywords Mendelian randomization . Databases and
automation tools for causal inference . Hypothesis-free
causality . Drug development . Disease progression

Introduction

Causal inference in traditional observational epidemiological
studies is hampered by the possibility of confounding and
reserve causation [1]. Mendelian randomization (MR) is a
method that can be used to uncover casual relationships be-
tween an exposure and outcome in the presence of such lim-
itations. MR is a form of instrumental variable analysis, where
genetic variants are used as proxies for the exposure of interest
[2]. AsMendel’s Laws of Inheritance dictate, alleles segregate
randomly from parents to offspring. Thus, offspring geno-
types are unlikely to be associated with confounders in the
population. In addition, germ-line genotypes are fixed at con-
ception, and therefore, temporally precede the variables under
observation, avoiding issues of reverse causation. The MR
method involves finding genetic variants which are associated
with an exposure, and then testing the association between
these variants and the outcome. The causal “de-confounded”
relationship between exposure and outcome can then
be estimated when the necessary conditions are satisfied
(Fig. 1a).

In understanding how MR works, it can be useful to think
of anMR study as being analogous to a randomized controlled
trial (RCT), except that genotypes are used to randomize
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participants into different levels of the exposure/treatment.
However, it is important to realize that this analogy is not
perfect e.g., RCTs typically involve treatments over a short
duration, whereas an individual’s genetics influences their bi-
ology from conception, meaning that many causal estimates
from MR studies might reflect life-long exposures as well as
developmental compensation that may arise from inheriting
these mutations [4••].

Although initial applications of MR mostly focused on
estimating the causal effect of environmental exposures on
medically relevant outcomes, in recent years MR has found
utility across a wide range of domains including the develop-
ment of pharmaceutical agents (i.e., drug target validation,
drug target repurposing, and side effect identification) and in
the interpretation of high-dimensional omics studies. Table 1
lists several recent studies illustrating how MR has been used
successfully across a wide variety of different contexts [5–37•,
106].

Core Assumptions Underlying Causal Inference
in Mendelian Randomization Studies

In order for a genetic variant to qualify as a valid instrument
for causal inference in a MR study, it must satisfy three core
assumptions:

Assumption 1: The genetic variant must be truly asso-
ciated with the exposure (NB the SNP need not be the
functional variant responsible for the SNP-exposure
association). Typically, SNPs which pass genome-
wide significance (P < 5 × 10−8) and have been repli-
cated in an independent sample are used as instru-
ments in MR studies. The use of weak instruments
can bias MR estimates towards the confounded obser-
vational estimate in one-sample MR settings and to-
wards the null in two-sample MR settings (with non-
overlapping samples). As common genetic variants

Fig. 1 Design strategies for Mendelian randomization. a Standard MR:
The causal relationship between an exposure variable (X) and an outcome
(Y) is estimated using genetic variants (Z) as an instrument, regardless of
the presence of variables (C) that may confound the observational
association between the exposure and outcome. One method of
estimation involves calculation of the Wald Ratio, [see Burgess review
paper for description of the various instrumental variable (IV) estimators

available] [3], where the causal estimate (β̂IV ) is derived by dividing the
estimated regression coefficient of the outcome on the single nucleotide

polymorphism (SNP) (β̂YZ ) by the estimated regression coefficient of the

exposure on the SNP (β̂XZ ). b Two-sample MR. c Bidirectional MR. d
Mediation and two-step MR. e Multivariable MR. f Factorial MR
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frequently explain a small proportion of a trait’s vari-
ance, it may be useful to combine the effects of many
SNPs together in an allelic score and use this as an
instrument in MR studies.
Assumption 2: The genetic variant should not be as-
sociated with confounders of the exposure-outcome
relationship. Although it is technically impossible to
prove that this assumption holds in a MR study, it
may be possible to disprove it by examining the as-
sociation between the variant and known confounders
of the exposure-outcome relationship.

Assumption 3: The genetic variant should only be related
to the outcome of interest through the exposure under
study. This is commonly referred to as the “no pleiotropy”
assumption or the exclusion restriction criterion. Horizontal
pleiotropy, where a SNP is associated with multiple traits
independently of the exposure of interest, potentially vio-
lates this assumption. While it is not possible to prove that
this assumption holds in anMR study, various extensions of
the basic MR design can be used to detect its presence, and
estimate the causal effect of the exposure even in the pres-
ence of such violation of the assumption (see below).

Fig. 1 (continued)
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Table 2 Potential pitfalls in the interpretation of MR Studies and suggestions for dealing with these

Limitation Description Solution

Weak instrument bias Weakly associated variants (F statistics < 10) can bias
causal estimates towards the null for two-sampleMR
and towards the observational estimate for
one-sample MR

Increase sample sizes through utilizing large publicly
available GWAS datasets (e.g., UK Biobank) or
summary GWAS results data.

Use of allele scores explaining more variation in the
exposure

Lack of reliable genetic
instruments for exposure
of interest

Genetic instruments are not available for some
exposures

Conduct MR on a similar exposure (proxy phenotype) for
which GWAS data is available, for example, BMI is
often used as a proxy of overall adiposity [18, 19].

Polygenic score (PGS) approaches can be used when there
is a lack of reliable instruments [38•, 39–41], although
the results of these analyses must be interpreted
cautiously due to concerns about their lack of specificity
and possible reintroduction of pleiotropy

Population stratification Spurious associations may arise in MR where the
genetic variant and the outcome are associated with
ancestral background in an admixed or stratified
sample

Use genetic associations derived fromwithin homogenous
populations only.

Use summary results statistics from GWAS that have
adequately controlled for population substructure
through e.g. principal components analysis or linear
mixed models

Low power Causal estimates are imprecise (wide confidence
intervals) and the MR analysis lacks power to detect
a causal effect (1 – probability (type II error)). Power
is a function of sample size, variance explained in the
exposure by the SNP, causal effect size, strength of
confounding, and type 1 error rate. Approximate
power can be determined using a freely available
web application [33]

Same as above for weak instruments

Horizontal pleiotropy The genetic instrument is associated with the outcome
via pathway that does not pass through the exposure
of interest [20]

Better understanding of the underlying biological function
of genetic variants/genes (for example using selected
candidate loci).

Utilizing variants which directly code for the exposure of
interest (e.g., variants in the C-reactive protein gene to
proxy serum levels of C-reactive protein).

Specialized methods for providing estimates robust to
horizontal pleiotropy with some relaxation of the IV
assumptions (e.g., MR-Egger regression [42••];
Weighted Median approach [43•]), and for detecting
pleiotropy, are described in Table 4

Linkage disequilibrium (LD) Confounding can be re-introduced in the analysis
through a variant in LD with the instrument that
exerts an effect on the outcome through a pathway
other than through the exposure of interest

As above for pleiotropy

Canalization/developmental
compensation

An individual adapts in response to a genetic change so
that the effect of that genetic change is reduced or
absent. MR may produce causal estimates that are
not representative of effects that would be produced
by modifying the exposure

Extent of the impact of canalization on MR is currently
unclear. Greater understanding of the patterns of gene
expression/regulation during development is required to
evaluate the plausibility and consequences of
canalization

Complexity of biology Due to the underlying complexity of biological
pathways overly simplistic interpretations can be
misleading. For example, a genetic variant in the
IL-6 receptor (IL6R) leads to reduced
membrane-bound IL6, which in turn results in
increased levels of circulating IL6, disruption of
classical IL6 signaling, reduced C-reactive protein
(CRP) levels, and a reduction in risk of CHD. This
process should not be naively interpreted as
circulatory increasing IL6 as being is protective
against CHD [4••]

Improved understanding of underlying molecular biology
and exact pathways involved

Winner’s curse In the case of single-sample MR, utilizing the same
sample as a discovery analysis for genetic
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Even when these core assumptions have been met, MR has
a number of limitations which need to be considered (summa-
rized in Table 2), and which have been discussed at length
elsewhere [2, 45–49, 50•, 51•, 52•].

Design of Mendelian Randomization Studies

The term MR covers a variety of approaches that use genetic
variants to make inferences about the causal relationship be-
tween traits of interest [45, 52•]. Figure 1 illustrates some
extensions to the basic MR design which are described in
more detail in the paragraphs below.

Two-Sample Mendelian Randomization

Prior to 2011, most MR analyses were conducted using genetic
instruments, exposure, and outcome of interest from individuals
measured in the same sample (this is termed one-sample MR or
single-sample MR). In such a scenario, the causal effect of the
exposure on the outcome was typically estimated using 2-stage
least-squares (2SLS) regression [53] (Fig. 1a). However, it is also

possible to use MR to estimate causal effects where data on the
exposure and outcome have been measured in different (or only
partially overlapping) samples. This is known as two-sampleMR
[54•] (Fig. 1b). There are many advantages of using two-sample
MR including in situations where it is difficult and/or expensive
to measure the exposure and outcome in the same set of individ-
uals (e.g., studies involving molecular gene expression data).
Two-sample MR greatly increases the scope of MR analysis
and continues to grow in popularity. For example, two-sample
MR analyses can be performed on publicly available genome-
wide association study (GWAS) summary data, a fact that has
been taken advantage of by web software (and R packages) like
MR-Base [55••]. Two-sample MR is understandably becoming
increasingly popular in the research community. The percentage
of all MR studies that used the two-sample design framework
rose from close to 0% in 2011 to around 40% in 2016 [56].

Bidirectional Mendelian Randomization

In bidirectional MR, instruments for both exposure and out-
come are used to evaluate whether the “exposure” variable
causes the “outcome” or whether the “outcome” variable

Table 2 (continued)

Limitation Description Solution

instruments is not a good idea because estimates of
the SNP-exposure association will be biased
upwards.

In the case of two-sample MR, genetic associations
published in discovery GWASmay overestimate the
SNP-trait association, particularly if the GWAS is
underpowered to detect the particular loci. In the
case of GWAS of exposures, this will overestimate
the effect of the genetic instrument relative to the
exposure and result in bias of the causal estimate
towards the null. Likewise, in the case of GWAS of
outcomes, winner’s curse will overestimate the
association between the genetic instrument and the
outcome and lead to a bias in causal estimates away
from the null

In the case of single-sample MR, using an unweighted
allelic score of several variants may provide a
sensitivity analysis.

In the case of two-sample MR, utilize estimates from the
replication analysis if these are appropriately precise

Trait heterogeneity Genetic instruments are sometimes associated with
multiple aspects of traits (exposures). Such
heterogeneity does not preclude causal inference but
it does undermine the ability to infer causality for
particular dimensions of heterogeneous exposures
and makes interpretation of MR analyses more
difficult

Only biological knowledge was able to resolve the
particular dimension of the biological pathway causally
relevant to certain outcomes (e.g., diseases). Further
research is required in this area

Collider bias Collider bias occurs when the exposure and outcome of
interest independently influence a third risk factor,
and this third risk factor is conditioned upon.

Collider bias is mostly likely to occur in MR studies
which are influenced by high attrition rates (loss to
follow up), in case only studies (disease
progression), and in MR studies where the
instruments are generated in a GWAS which
conditions one phenotype on another (e.g. waist
circumference on CHD adjusted for BMI) [44•]

Given the influence of selection and attrition on a study is
known, this could lead to biased estimates of both
phenotype and genetic association. For example,
having DNA available on most participants in a birth
cohort study offers the possibility of investigating the
extent to which polygenic scores predict subsequent
participation, which in turn would enable sensitivity
analyses of the extent to which bias might distort
estimates
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causes the “exposure” (Fig. 1c) [57•]. For example, in
explaining the observational relationship between low levels of
LDL cholesterol and risk of cancer, it may not be clear whether
low levels of LDL cholesterol are causal for cancer, whether the
presence of (undetected) cancer has a negative effect on LDL
cholesterol, or whether the correlation between the two is due to
latent confounding [58]. Bidirectional MR can help tease apart
these relationships. MR analysis is first performed in one direc-
tion (i.e., “exposure” to “outcome”), and then performed in the
opposite direction (i.e., “outcome” to “exposure”) using the
SNPs robustly associated with each trait in the separate
GWASs. The approach assumes that the causal associationworks
through an underlying mechanism where it is possible to deter-
mine a single causal temporal direction. However, the complex-
ity of biological systems, such as the existence of feedback loops
between exposure and outcome variables, may make interpreta-
tion of the results of such analyses difficult [52•]. In these situa-
tions, it may be possible to use structural equation modeling to
estimate feedback loops, although the properties of such ap-
proaches have yet to be examined thoroughly [51•].

Two-Step Mendelian Randomization

Two-step MR is used to assess whether an intermediate trait
acts as a causal mediator between an exposure and an outcome
[59•]. As shown in Fig. 1d, in the first step of the procedure,
genetic instruments for the exposure are used to estimate the
causal effect of the exposure variable on the potential media-
tor. In the second step of the procedure, genetic instruments
for the potential mediator are used to assess the causal effect of
the mediator on the outcome. Evidence of association in both
steps implies some degree of mediation of the association
between the exposure and the outcome by the intermediate
variable. Themagnitude of the direct effect (which is the effect
of exposure on the outcome independent of the mediator) and
indirect effect (which is the effect of the exposure on the
outcome via the mediator) can be estimated separately by this
method [60•]. However, this does require the assumptions of
linearity and homogeneity for both the exposure-mediator and
exposure-outcome relationships and no statistical interaction
between exposure and mediator [60•]. Two-step MR and two-
sample MR can be combined to facilitate the investigation of
causal mediation in very large samples of individuals [50•].

Multivariable Mendelian Randomization

In some situations, genetic variants are pleiotropically associ-
ated with multiple correlated phenotypes. For example, genet-
ic variants associated with lipoprotein metabolism rarely cor-
relate with only one specific lipid fraction [61, 62•]. Single
variable MR is likely to result in misleading conclusions re-
garding causality due to the presence of this horizontal pleiot-
ropy. Multivariable MR is able to overcome this problem by

using instruments associated with multiple exposures to joint-
ly estimate the independent causal effect of each of the risk
factors on the outcome (Fig. 1e) [63•, 64, 65]. For example,
multivariable MR has recently been successfully employed in
examining the relationship between high-density lipoprotein
cholesterol and coronary heart disease. Univariate MR analy-
ses, which ignore potential pleiotropic effects from other lipid
fractions, suggest that increasing HDL levels lowers the risk
of coronary heart disease. However, multivariable MR, which
is able to account for SNPs’ pleiotropic effects through low-
density lipoprotein and triglyceride levels [21•, 22], indicates that
HDL is not causal for coronary heart disease, consistent with
much of the evidence from randomized controlled trials [66–68].

Factorial Mendelian Randomization

The manner by which causes of disease act together to in-
crease disease risk can have important public health implica-
tions, as above-additive effects act together to generate a
greater burden of disease in the population [69]. Factorial
MR can be used to determine the combined causal effects of
the co-occurrence of two or more risk factors for disease [6•,
45] (Fig. 1f). In order to conduct factorial MR, individual level
genotype data are required. For example, Ference et al. con-
ducted a factorial MR study in order to investigate the effects
of HMGCR and PCSK9 inhibition on CHD risk. In this study,
a weighted genetic score for PCKS9 inhibition was construct-
ed (with the weighting based on each SNP’s effect on LDL
cholesterol levels) and participants were allocated into either a
high or low inhibition group based on the median value of the
PCSK9 score. The genetic score for HMGCR inhibition was
constructed and the individuals were further allocated into groups
based on the median value of the HMGCR score (Fig. 1f). The
causal estimates for PCSK9 and HMGCR inhibition, and the
combined effect of the two on CHD could then be determined.
Results from this factorial analysis suggested that HMGCR and
PCSK9 inhibition have independent effects on CHD, and act
together in an additive manner to reduce CHD risk [16].
Another example of a factorial MR suggested that CETP inhib-
itors and statins were associated with decreased LDL-C and
apoB levels and reduced risk of cardiovascular events. The re-
duction in CVD risk was proportional to the apoB reduction but
less than expected for the LDL-C reduction [70].

Recent Developments

Resources for Performing Mendelian Randomization
Analyses

MR, and in particular two-sample MR, provides a power-
ful, cost-efficient, and simple way to investigate potential
causal relationships between many different human traits.
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Usefully, many GWAS consortia have made the results of
their meta-analyses publicly available, greatly facilitating
the running of such analyses [71–73]. For example, as a
centralized GWAS data resource, Phenoscanner [74], can
be used to search for genetic association across a large
number of phenotypes. In addition, Ben Neale’s group
have recently provided GWAS results of more than 2400
human traits based on up to 337,000 individuals from the
latest UK Biobank release enabling two-sample MR anal-
yses on a very large number of individuals (data can be
downloaded from http://www.nealelab.is/blog/2017/7/19/
rapid-gwas-of-thousands-of-phenotypes-for-337000-
samples-in-the-uk-biobank). Several large-scale biobanks,
such as the UK Biobank [75], the China Kadoorie biobank
[76], and the HUNT study [77] allow researchers to apply
for (a certain level of) genotype and phenotype information
on large numbers of participants. These data sources can be
used in one- or two-sample MR analyses when combined
with other datasets. This idea led to the development of
MR-Base [55••], which retrospectively collected, harmo-
nized, and centralized complete GWAS summary datasets
from the public domain. The curated summary data corre-
sponds to 135 diseases, almost 2000 phenotypes in 1.5
million individuals and up to 4 billion SNP-trait associa-
tions, which is integrated with a software infrastructure
(web interface, R package and API) for automating MR
analyses. Therefore, MR-Base greatly increases the acces-
sibility of GWAS summary results to other researchers,
accelerates identification (discovery strand), prioritization
(evidence synthesis strand), and evaluation (translational
strand) of intervention targets.

Hypothesis-Free Investigations and “Mining
the Phenome”

While there is obvious value in using MR to investigate the
relationship between phenotypes for which causality has
already been hypothesized, there is also an interest in de-
tecting novel causal relationships. Hypothesis-free study
designs such as genome-wide association studies
(GWAS) and epigenome-wide association studies
(EWAS) have shown tremendous success in recent years,
and there are some instances where this strategy has shown
promise in detecting putative causal relationships between
phenotypes [38•, 51•, 78].

In a recent “one exposure to many outcomes”MR applica-
tion, Haycock et al. systematically examined the association
between telomere length and 22 cancers and 32 primary non-
neoplastic diseases. The results suggested that longer telo-
meres were generally associated with increased risk for site-
specific cancers but reduced risk for some non-neoplastic dis-
eases, including cardiovascular diseases. This study highlight-
ed the power of hypothesis-free MR in building a phenome-

wide picture of traits of interest as opposed to the traditional
“one exposure to one outcome” MR approach [28•].

Automation and data repositories provide solutions to some
of the challenges involved in hypothesis-free MR. They trivial-
ize the process of performing the analysis itself, and go some
way towards improving reliability by (a) reducing human error
[56] and (b) promoting the use of appropriate sensitivity anal-
yses [3, 42••, 43•, 79, 80•, 81•]. However, many challenges still
remain. Statistical power in MR is an issue even in the
hypothesis-driven case, but hypothesis-free MR comes with a
multiple testing burden that may be highly problematic. The
nature of the data used in hypothesis-free MR is quite different
from other hypothesis-driven study designs. There is often only
a single consortium providing summary data for any one dis-
ease or trait which means that replication of a putative associa-
tion in independent samples can be impossible. The emergence
of large biobanks [75] may go some way to avoid this problem
for many complex traits, but specific diseases for which cases
need to be ascertained will still pose a challenge.

Another practical issue surrounds selecting those results
from a hypothesis-free scan that are worthy of follow-up.
Horizontal pleiotropy can manifest in many different patterns,
which means that knowing the appropriate MR method to use
for any particular pair of traits is difficult. Relying on a single
method could lead to missed associations through of being
overly conservative when there is no pleiotropy, or result in
too many false positives because of miss-specifying the pleio-
tropic model. One method that has been developed recently to
address this issue isMR-MoE (MRmixture of experts), which
seeks to predict the most appropriate model based on the char-
acteristics of the summary data [82•].

Another potential analytical strategy to mine the phenome
would be to screen large publicly available disease and multi-
omic GWAS summary results for evidence of genetic correla-
tion using LD score regression via LD hub [83••, 84•]. Here, if
traits are causally related and have non-zero heritability then
there should be non-zero genetic correlations. However, genetic
correlations can arise due to genetic confounding and horizontal
pleiotropy and do not provide evidence on the direction of
causality. Those disease-omic pairs showing evidence of genet-
ic correlation could be followed up by conducting formal MR
analyses [85]. One potential drawback of this approach is that
the statistical efficiency of LD score regression may not be as
high as that of MR in many cases, so selecting the appropriate
scenarios in which to apply this as a screening method is im-
portant and warrants a priori power calculations.

The Role of MR in Disease Progression and Treatment

To date, the large majority of GWAS identify genetic variants
(SNPs) associated with incidence or risk of disease. Such var-
iants are informative for disease prevention, but not necessar-
ily for treatment aimed at influencing disease progression [86,
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Table 3 Databases and bioinformatic toolkits for performing MR

Name Note Web link Ref

MR-Base GWAS summary database of more than
1100 GWAS trails and online platform
to automate MR

http://www.mrbase.org/ [55••]

MR-PRESSO R package that allows for the evaluation
of pleiotropy in multi-instrument
Mendelian randomization

https://github.com/rondolab/MR-PRESSO [88•]

Two-sample MR R package for MR analysis, directly links
to MR-Base database via API

https://github.com/MRCIEU/TwoSampleMR/ [55••]

Mendelian randomization R package for MR analysis, links to
Phenoscanner database

https://cran.r-project.
org/web/packages/MendelianRandomization/

[89]

MR robust STATA package for MR analysis https://github.com/remlapmot/mrrobust/ [105]

Summary-data-based
Mendelian
randomization
(SMR)

Linux package for MR analysis for testing
expression QTL on complex diseases

http://cnsgenomics.com/software/smr/ [36•]

PHESANT R package for performing phenome scans
in UK Biobank, including MR
phenome-wide association studies
(MR-pheWAS)

https://github.com/MRCIEU/PHESANT/ [91•, 92]

PhenoSpD R scripts to estimate multiple testing
correction for hypothesis free MR

https://github.com/MRCIEU/PhenoSpD/ [93]

Table 4 Methods for dealing with limitations of MR

Category Method Description Reference

Estimation
of causal effect

Inverse variance
weighted

Traditional MR method which uses a meta-analysis
approach to combine the Wald ratio estimates
of the causal effect obtained from different SNPs.
The point estimates obtained from IVW MR are
equivalent to a weighted linear regression of
SNP-outcome associations on SNP-exposure
associations with the intercept constrained to zero

[2, 79]

MR-Egger Unlike IVW, MR-Egger regression is not constrained
to have a slope through zero, therefore its causal
estimate represents a genotype-outcome dose response
relationship which takes pleiotropic effects into account.
It requires the InSIDE assumption to hold, which means
the strength of the gene-exposure association should
not correlate with the strength of bias due to pleiotropy

[42••]

Weighted median Defined as the median of a weighted empirical density
function of the ratio estimates. Can consistently estimate
the causal effect if at least 50% of the information in the
analysis comes from valid instruments

[94•]

Mode-based
estimate (MBE)

The MBE provides a consistent estimate of the causal effect
if the most common pleiotropy value across instruments
is zero. This is termed the Zero Modal Pleiotropy
Assumption (ZEMPA)

[80•]

Pleiotropy-robust
MR (PPMR)

Provides an unbiased causal estimate in the presence of
pleiotropy, by subtracting the pleiotropic effect (of an
instrument) estimated in a subgroup of the population for
whom the instrument is not associated with the exposure.
It assumes that such a sub-population exists, and the
measure of genetic pleiotropy in this sub-population is the
same as the general population

[27, 95]

Generalized gene-environment
interaction models

These methods provide unbiased estimates of the causal effect
in the presence of horizontal pleiotropy by using the
gene-environment interaction term in a linear interaction
model as a valid instrument. It requires there exists

[90, 96,
97]
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87•]. For example, only ~ 8% of genetic association hits in the
GWAS Catalog (p < 1 × 10−5) were reported by studies that
have attempted to identify variants associated with disease pro-
gression or severity, and most of these GWAS have limited
statistical power owing to small sample sizes (90% have
N < 5000) [87•]. In a systematic search of the literature,
Paternoster et al. were able to identify only 27 genetic studies
that have used MR to identify risk factors influencing disease
progression [87•], which leaves massive scope to extend MR
methodologies and applications in this area. The introduction of

collider bias when studying a selected (e.g., case only) group of
individuals [87•] is a particular challenge when studying dis-
ease progression (more details of collider bias are given in
Table 3 and 4) [44•, 104].

The Development of Approaches to Detect and Correct
for Horizontal Pleiotropy in MR Analysis

The possibility of horizontal pleiotropy and the consequent
violation of the exclusion restriction criterion are widely seen

Table 4 (continued)

Category Method Description Reference

variation in the strength of gene-exposure association
across subgroups of the environmental covariate

Likelihood-base methods Assumes a linear relationship between the exposure and
outcome and a bivariate normal distribution for the genetic
estimates used. Naturally incorporate uncertainty and correlation between
SNP-exposure and SNP-outcome parameter estimates. Yield efficient
estimates when its specific modelling assumptions are met (and is
therefore robust to weak instrument bias in this case), but is sensitive to
model misspecification (for example due to invalid instruments).

[3, 79]

Bayesian model
averaging

Assumes prior probabilities for three pleiotropy models:
(1) no pleiotropy; (2) pleiotropy with average value zero
satisfying the InSIDE assumption; (3) non zero average pleiotropy
satisfying the InSIDE assumption. Bayesian model averaging is then
used for inference

[81•]

Testing for pleiotropy MR-Egger intercept Intercept of the MR-Egger regression captures the average
pleiotropic effect across all genetic variants

[42••]

Cochran Q (IVW),
Rucker’s Q (MR-Egger)

Measure of heterogeneity between genetic instruments used
which could indicate pleiotropic effects

[98–100]

Cook’s distance/studentized
residuals

Standard regression diagnostics that can be used to detect
outliers that may distort the causal effect estimation

[101]

Leave-one-out analysis Systematic removal of genetic instruments from MR analysis
to identify influential outliers

[55••]

Assessment of
instrument strength

Mean F-statistic (IVW) Used to measure the strength of genetic instruments in IVW
and hence assess the influence of weak instrument bias.
F < 10 is considered problematic

[102]

I2 (MR-Egger) Adaption of the I2 heterogeneity statistic in meta-analysis
which measures the degree of regression dilution bias
in the MR-Egger estimate in the two-sample setting

[43•]

Data visualization Funnel plot Plot of instrument strength versus causal effect estimate.
Used to detect evidence of directional pleiotropy
in MR-Egger analyses

[42••]

Scatter plot Scatter of genotype-outcome associations versus
genotype-exposure associations. Used to detect departures
from MR assumptions, and compare regression slopes from
different MR analysis

[94•]

Radial plot Plots square root instrument strength times the causal estimate
on the vertical axis versus the square root instrument strength
on the horizontal axis. Facilitates a more straightforward
detection of outliers in an IVW and MR-Egger analysis. It can
also be used as a basis for a generalized form of MR-Egger
regression “radial MR-Egger”

[99]

Q-contribution plots Depicts the contribution of individual genetic variants towards
the overall heterogeneity observed in Cochran’s Q statistic
(for IVW) and Rucker’s Q’ statistic (for MR-Egger). Used to
identify pleiotropic variants by assessing each SNP’s
contribution against a chi-squared distribution on 1 degree
of freedom

[103]

Forest plot Compares the MR estimates for each genetic instrument to detect
pleiotropic effects

[55••]
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as the greatest threat to the validity of MR studies. Over the
last few years, investigators have developed a suite of ap-
proaches that relax the strict requirement that genetic instru-
ments exhibit no horizontal pleiotropy yet still produce causal
effect estimates that are asymptotically consistent. These ap-
proaches often rely on different sets of assumptions to each
other, meaning that if the results from all of these different
analyses are largely consistent, then the investigator can be
more confident in drawing conclusions regarding causality.

MR-Egger regression [42••] is one such approach where
given a set of genetic variants that proxy an exposure variable
of interest, estimates of the SNP-outcome association are
regressed on estimates of the SNP-exposure association (this
can be done in a one or two-sample MR framework), where
each data point is weighted by the precision of the SNP-
outcome coefficients. The slope of the weighted regression
is an estimate of the causal effect of the exposure on the out-
come. The intercept in this regression is free to vary, and the
degree to which it departs from zero, is a function of the
degree of directional pleiotropy present in the data.

The MR-Egger approach relaxes the requirement of no
horizontal pleiotropy among the SNPs. Instead it assumes that
there is no correlation between the gene-exposure association
and the direct effect of the genetic variants on the outcome.
This is referred to as the InSIDE assumption (Instrument
Strength Independent of Direct Effect) and is a weaker re-
quirement than the stricter exclusion restriction criterion. A
drawback of the MR-Egger method is that it tends to suffer
from low statistical power and is particularly susceptible to
bias from weak instruments.

The weighted median estimator [94•] is a complementary
method that permits up to 50% of the information in the MR
analysis to come from SNPs that are invalid instruments. The
mode-based estimate (MBE) further relaxes the assumption
required for the weighted median approach and can estimate
the causal effect when the most common pleiotropy value
across instruments is zero [80•]. In addition, Bayesian model-
ing alternatives, such as Bayesian model averaging [81•], are
under development, and may provide a framework to model
pleiotropic effects and further relax MR assumptions, extend-
ing the scope of MR analysis.

In some circumstances, effect estimates are not consistent
across independent instruments (e.g., with some genetic in-
struments showing unexpectedly large or small effects on
the outcome, given the magnitude of their exposure effect),
which could be indicative of horizontal pleiotropy. Formal
statistical tests for heterogeneity can be used to assess this,
such as Cochran’s Q statistic (for IVW) and the Rucker’s Q
(for MR-Egger) [98, 103].

In addition to the above-mentioned methods, visual inspec-
tion can be helpful to identify pleiotropic variants (e.g., outlier
detection). For example, funnel plots are used to display the
MR estimate of individual genetic variants against their

precision. Asymmetry in the funnel plot may arise due to
some genetic variants having unusually strong effects on the
outcome, which is indicative of directional pleiotropy [42••].
In addition, heterogeneous effects can be visualized by
scatterplots of the gene-outcome and gene-exposure associa-
tions [94•] and forest plots ofWald ratios for each independent
genetic instrument. In the leave-one-out plot, one SNP is re-
moved at a time and the overall effect estimate is recalculated
so that influential individual SNPs can be identified. As sen-
sitivity analyses, all the above visualization methods are im-
plemented in the MR-Base R package [55••]. Other graphical
approaches have been proposed recently, such as the radial
plot [99] and Q-contribution plots [103], which can further
help to assess heterogeneity across genetic variants and detec-
tion of pleiotropic variants.

The Development of Approaches to Assess Instrument
Strength

It is important to assess the instrument strength in order to avoid
weak instrument bias in MR analysis. When weak instruments
are estimated in GWAS with small sample sizes, MR ap-
proaches can violate the “NO Measurement Error” (NOME)
assumption, which assume that the SNP-exposure associations
(weights of the regression) are estimated without measurement
error [43•]. For IVW, weak instruments that violate the NOME
assumption can be reliably detected using the mean F-statistic
[102]. For MR-Egger, the degree of violation of the NOME
assumption can be quantified using the I2 statistic (IGX

2), a
number ranging between 0 and 1, with higher values indicating
less dilution of the causal effect estimate [43•].

Conclusion

MR is a flexible and robust statistical method which uses ge-
netic variants as instrumental variables to detect and quantify
causal relationships in observational epidemiological studies. In
this review, we have endeavored to illustrate promising new
findings and potential pitfalls of MR. The design strategies,
assumptions, limitations, and potential of MR have been
discussed. Given the growing availability of large-scale genetic
resources and automated toolkits for implementing these
methods, such as MR-Base and LD hub, we are now able to
analyze all pairwise relationships within largemultidimensional
data sets in a hypothesis-free manner, producing evidence that
can then be followed up in subsequent in-depth investigations.
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