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Abstract

Aims Slow or failed tree regeneration after forest distur-
bance is increasingly observed in the central European
Alps, potentially amplifying the carbon (C) loss from
disturbance. We aimed at quantifying C dynamics of a
poorly regenerating disturbance site with a special focus
on the role of non-woody ground vegetation.

Methods Soil CO, efflux, fine root biomass, ground
vegetation biomass, tree increment and litter input were
assessed in (i) an undisturbed section of a ~ 110 years
old Norway spruce stand, (i) in a disturbed section
which was clear-cut six years ago (no tree regeneration),
and (iii) in a disturbed section which was clear-cut three
years ago (no tree regeneration).
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Results Total soil CO, efflux was similar across all
stand sections (8.5 £ 0.2 to 8.9 £ 0.3 t C ha ' yr.™").
The undisturbed forest served as atmospheric C sink
(2.1 t C ha ' yr.™"), whereas both clearings were C
sources to the atmosphere. The source strength three
years after disturbance (—5.5 t C ha ' yr.”") was almost
twice as high as six years after disturbance (—2.9 t C
ha ' yr. "), with declining heterotrophic soil respiration
and the high productivity of dense graminoid ground
vegetation mitigating C loss.

Conclusions C loss after disturbance decreases with
time and ground vegetation growth. Dense non-woody
ground vegetation cover can hamper tree regeneration
but simultaneously decrease the ecosystem C loss. The
role of ground vegetation should be more explicitly
taken into account in forest C budgets assessing distur-
bance effects.

Keywords Disturbance - Clear-cut - Fine roots -
Forest C cycling - Ground vegetation - Soil CO, efflux

Introduction

Despite a growing number of silvicultural alternatives
clear-cutting is still the most common harvesting prac-
tice and represents one of the primary anthropogenic
disturbance regimes in many forest ecosystems
(Puettmann et al. 2015). Furthermore, natural distur-
bance regimes such as windthrow or bark beetle infes-
tations are common in many forest ecosystems, and may
intensify under climate change (Seidl et al. 2014a).
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Forest management often salvages trees from these nat-
urally disturbed sites, further enlarging their areal extent.
Stand replacing disturbances therefore play a particular-
ly important role in shaping forest landscapes. The
combination of natural and anthropogenic disturbances
results in forest landscapes structured by cleared areas of
varying sizes, from several square meters to square
kilometers (Franklin et al. 2002; Mitchell 2013; Senf
etal. 2017). Consequently, stand-replacing disturbances
are major drivers of the forest C cycle, and have impor-
tant implications in the context of climate change miti-
gation (Canadell and Raupach 2008).

Forest clearings, whether of natural or anthropo-
genic origin, loose C to the atmosphere (Odum 1969;
Korner 2003; Amiro et al. 2010; Goetz et al. 2012). C
uptake by the vegetation is largely diminished after
disturbance, whereas C loss from debris and the forest
soil continues, or even increases when compared to
pre-disturbance conditions (Knohl et al. 2002; Kurz
et al. 2008; Amiro et al. 2010; Pfeifer et al. 2011).
How long a disturbed forest acts as a C source de-
pends on the severity of the disturbance, biological
legacies, and the regeneration potential of the vege-
tation (Brown et al. 2010, 2012; Mathys et al. 2013;
Seidl et al. 2014b). Furthermore, it is crucial how the
decomposition of soil organic matter (SOM) is affect-
ed (Nave et al. 2010; Koster et al. 2011; Don et al.
2012). If environmental conditions become more fa-
vorable as a result of the disturbance, i.e. warmer and/
or wetter, the decomposition of SOM can be en-
hanced and the soil CO, efflux (= soil respiration;
Ry) increased (Morehouse et al. 2008; Mayer et al.
2014). The time until a cleared temperate forest
returns to a net C sink is largely determined by the
speed and extent of tree regeneration (Edburg et al.
2012; Hansen 2013), and typically ranges from 5 to
20 years (Romme et al. 1986; Kolari et al. 2004;
Luyssaert et al. 2007; Amiro et al. 2010; Hansen
2013). However, for a number of reasons, delayed
tree regeneration after disturbance can occur. In many
European forests, for instance, ungulate browsing
pressure is high (Reimoser and Reimoser 2010;
Schodterer 2011). Therefore, the regeneration of dis-
turbed areas can be delayed, especially if the subse-
quent establishment of dense ground vegetation in-
hibits tree regeneration (Ammer 1996; Reimoser and
Gossow 1996). This imposes the risk of massive C
loss from the ecosystem (Knohl et al. 2002; Mayer
et al. 2014), yet at the same time prolific ground
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vegetation might also take up and store significant
amounts of C.

We conducted a case study in a mature montane
Norway spruce forest in the Austrian limestone Alps
aiming at quantifying C dynamics after clear-cutting
with a special emphasis on noon-woody ground veg-
etation. In a prior study, Kobler et al. (2015) showed
that a mature Norway spruce forest in the area serves
as net C sink. We hypothesized that clear-cutting turns
the forest into a substantial temporal atmospheric C
source as a result of ceased C uptake by trees and more
favorable environmental conditions for SOM decom-
position (warmer soil). We further hypothesized that C
input from fast establishing non-woody ground vege-
tation mitigates a part of the C loss from the clear-cut
areas over time.

Materials and methods
Site description

The study was conducted at the Austrian long-term
ecosystem research and monitoring (LTER) site
“Zobelboden”, located in the National Park
“Northern Limestone Alps” (N 47°50'30", E 14°26'
30"). The site is characterised by cool, humid climate
with maximum precipitation in summer (mean annual
temperature and precipitation 19962011 were 7.8 °C
and 1645 mm, respectively). The snow-free period
lasts from March to December. The study site is
located at about 950 m a.s.l. with moderate slopes
exposed in N/NW/W directions. Soil types are highly
spatially variable, and consist of Lithic to Rendzic
Leptosols and Chromic Cambisols with partly stagnic
characteristics (WRB 2006). The underlying bedrock
is dolomite.

Study design

We used the study site’s forest monitoring plots (Hiilber
et al. 2008) and disturbance maps derived from aerial
photographs and field surveys to locate a disturbance
chronosequence which is representative as to its tree and
herbaceous layer characteristics. The studied forest
consisted of the following sections: (i) an undisturbed
mature forest stand (hereafter MS); (ii) a six years old
clearing with no tree regeneration (hereafter PD06); and
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(iii) a three years old clearing with no tree regeneration
(hereafter PD03).

After clear-cutting in 1910, Norway spruce (Picea
abies (L.) Karst.) was regenerated by planting to form
the ~110 years old mature forest stand (~ 5 ha). The
stand was located at a gently sloped, homogenous
plateau-top exposed in N/NW direction. The undis-
turbed section (~ 3.5 ha) of the mature forest represented
MS in our study. In 2007 and 2008, a section of the
stand was hit by storms. Trees broken by wind were
salvaged 2008, causing a cleared area of approximately
~0.5 ha. Harvest residues were left on site. Until the
study year 2014, no tree regeneration had established at
this clear-cut section (PPD 06), which was covered by
dense grassy ground vegetation with a height of >1 m
during peak growth. A further section of the stand was
disturbed in 2011 following bark beetle infestation.
Visibly infested and surrounding trees were felled and
the stems were removed, leaving a cleared area of ~1 ha.
Harvest residues were left on site as in PD06. The 2011
clearing (PD03) showed no tree regeneration and only
moderate herbaceous ground vegetation cover. The di-
rect spatial vicinity of the undisturbed stand and the two
clearings ensured uniform site and soil conditions. De-
tailed characteristics of the different stand-sections are
presented in Table 1. An areal overview of the different
stand section is provided in Fig. Al.

Soil respiration, temperature and moisture
measurements

At all stand-sections, soil CO, efflux (R;) was mea-
sured from 12 randomly distributed plots. Each
1 x 1 m plot was equipped with a single collar for
R measurements (10 cm diameter, 4 cm height, cen-
ter of the plot). The PVC collars were inserted 2 cm
into the ground. Ry was measured every three weeks
from March 2014 to November 2014. R was mea-
sured with a portable infrared gas analyzer (EGM-4)
and an attached chamber (SRC-1) (PP Systems Inter-
national, Inc. Amesbury, MA, USA). The chamber
closure time was 120 s. Ry was calculated automati-
cally by fitting a quadratic function to the increasing
CO, headspace concentration. Soil respiration mea-
surements of all chambers were completed within 8 h.
To assure a consistent measurement protocol, the Ry
measurements started between 9:00 and 10:00 a.m.
and the collars were measured in random order.

Adjacent to the CO, chamber soil temperature and
soil moisture were recorded at the time of R, mea-
surement. Soil temperature was measured at 5 cm soil
depth using a handheld temperature probe. Soil mois-
ture was recorded at a soil depth of 0—15 cm using a
Time Domain Reflectometry (TDR) unit (model
6050X1, Soil Moisture Equipment Corp., CA,
USA) equipped with 15 cm long stainless steel rods.
TDR measurements were carried out at three random
locations at each of the 12 plots. Additionally, we
buried between four and five permanent temperature
data loggers (iButton® devices, Maxim Integrated,
San Jose, CA, USA) at each stand-sections at 5 cm
soil depth in Nov 2013. Using these data loggers, soil
temperature was continuously recorded in an interval
of three hours until Nov 2014.

To estimate the contribution of autotrophic respi-
ration to the soil CO, efflux we followed two ap-
proaches. We used already existing trenching plots
(Kobler et al. 2015) to estimate the autotrophic (R,)
and heterotrophic (Ry,) contribution to Ry in the
mature stand. To estimate R, from the dense herba-
ceous and grass vegetation, we established clipping
plots at PD06. About 3 m away from each of the
collars for periodic CO, measurements, random
areas of 1 m* were clipped, resulting in a total of
12 clipping plots. All aboveground plant compo-
nents were clipped and removed from the plots and
a collar was placed in the center of each clipping
plot for Ry measurements. Clipping was repeated
one day before each CO, measurement campaign.
Fern mats (side length: 0.3 m, height 0.2 m) were
placed in a bow above the collars to produce shade
and to avoid soil heating at the clipped plots. The
clipping experiment started with vegetation growth
in May. The method aimed at removing all above
ground vegetation components, and thus excluding
the transport of newly assimilated carbohydrates to
the roots. We observed that even repeated clipping
did not kill the ground vegetation. Hence, a portion
of the roots likely remained active, especially during
the earlier stages of the clipping experiment
(Hogberg et al. 2001; Zhou et al. 2007). Therefore,
only the difference between the soil CO, efflux from
untreated and clipped plots during the latter part of
the study year was used as a proxy of R,. Due to
limited labour resources, we did not clip at PD03.
For PD03, we estimated the autotrophic contribution
by using the relationship between fine root carbon (f
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Table 1 Vegetation and soil characteristics

Stage/stand-section Mature stand (MS)

2011 clearing (PD03) 2008 clearing (PD06)

Trees
Tree species

Norway spruce (Picea abies (L.) Karsten)

European larch (Larix decidua Mill.)

European beech (Fagus sylvatica L.)

Basal area [m” ha '] 65.3
Herb layer

Dominant species
Host.

Brachypodium sylvaticum (Huds.)

PB.

Hordelymus europaeus (L.)
Jessen ex Harz
Senecio ovatus (G. Gaertn.,

B. Mey. & Scherb.) Willd.

Herb biomass [t C ha '] 0.32 +0.08
Fine roots

Fine roots (0—10 cm) 1.56 £ 0.68

[tCha™]
Soil characteristics

Soil organic layer 0.5-2

(LF) thickness [cm]

Soil mineral horizon 5.5-22

(A) thickness [cm]

Corg A (0-10 cm) [g kgl 944+267

Calamagrostis varia (Schrad.)

Cirsium arvense (L.)
Scop.

Calamagrostis epigejos
(L.) Roth

Calamagrostis varia

Calamagrostis epigejos
(L.) Roth

Calamagrostis varia
(Schrad.) Host.

Carex alba Scop.

(Schrad.) Host

Brachypodium sylvaticum — Rubus fruticosus agg.
(Huds.) PB.

1.16 £0.45 2.26 £0.65

0.40 £ 0.50 0.79 £ 0.34

34 0.5-2

6-12 7-20

119.5 £ 35.8 131.7+41.0

Herb biomass was harvested at six random locations within each section (mean = SD). Fine root biomass was determined by 12 soil cores (0—
10 cm soil depth) per section (mean + SD). Soil organic C contents of the A-horzion were estimated by additional 12 soil cores (mean + SD).
Soil layer thickness was assessed at five random locations within each stand section

[t C ha ' yr.']) and the estimated autotrophic soil
CO, efflux (a [%]) from PDO06:

PDO6
PD03 g — a

Litter and ground vegetation biomass sampling

Five litter collectors (0.68 m diameter) were placed in
MS in November 2013. Litter collectors were emptied
in March and November 2014. The litter was oven-dried
at 105 °C and weighed. The C content of litter was
assumed as 50% of the dry weight (De Wit et al. 2006).

To derive an estimate of litter input from ground
vegetation, ground vegetation was harvested at the end
of the vegetation period in September 2014 from all
sites. On each site, six random plots were selected.
The above ground vegetation was clipped inside a
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wooden frame (0.5 x 0.5 m), oven-dried at 105 °C and
weighed. The C content of biomass was assumed as
47.5% of the dry weight (Schlesinger 1991). We as-
sumed that the harvested ground vegetation biomass
roughly resembled the annual (above) ground vegeta-
tion litter input.

Fine root biomass, soil C and N and microbial biomass

At each of the 12 plots per section, a soil core (7 cm
diameter) for fine root analyses was taken in the vicinity
of the CO, collar, in June 2014. Coring depth was
10 cm, as most of the fine roots were considered in the
upper soil layer (> 80% of total fine root biomass was
found at 0—-10 cm soil depth at both the disturbed and
undisturbed study locations; Kobler unpublished data).
Fine roots were washed to remove all soil particles. Root
fragments were picked out of the samples with tweezers,
sorted into living and dead, and further ordered by
diameter and origin (grass roots, tree roots). The roots
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were considered as living when the stele was bright and
resilient (Vogt and Persson 1991). Roots less than 2 mm
in diameter were classified as fine roots. After sorting,
fine roots were oven-dried at 105 °C. The C content of
roots was considered to be 50% of the dry weight (De
Wit et al. 20006).

A second soil core per plot was taken to assess
organic C and N contents of the upper 10 cm mineral
soil. Total C and N contents of the soil horizons were
determined with a LECO CN-2000 dry combustion
analyzer (LECO Corporation, MI, USA). Organic C
content was assessed by correcting total soil C by car-
bonate contents (ISO 10694; www.iso.ch). Microbial
biomass C and N were determined using a modified
version of the chloroform fumigation extraction (CFE)
method (Schinner et al. 1996). 10 g of homogenized soil
were weighed into 100 ml Erlenmeyer flasks to be
chloroform fumigated and 5 g were weighed into plastic
beakers as control samples. The soil samples in the
Erlenmeyer flasks were kept inside a desiccator with
sodium lime and wet filter papers within a chloroform
atmosphere for 24 h at 25 °C. After fumigation the
samples were split into two 5 g samples. 25 ml of 2 M
KCl solution were added to the samples that were then
shaken for 30 min and afterwards filtered through N-free
filters. Control samples were processed using the same
procedure. The C and N content of the KCI extracts
were measured with a TOC-V CPH E200V soluble
analyzer linked with a TN-unit TNM-1220 V
(Shimadzu, Kyoto, Japan). For calibration a dilution
series of a standard stock solution was added. Microbial
biomass C and N contents in pg g ' dry matter were
calculated by subtracting the C and N contents of the
control sample from the mean C and N contents of the
two fumigated samples.

C budgeting

In a first step, we used an exponential model (Eq. 2)
between soil temperature and soil respiration to estimate
the annual soil CO, efflux of each individual plot
(Janssens et al. 2003).

Ry = Fyo QIO(%) (2)

R was the soil CO, efflux rate (umol CO, mZsh,
T the soil temperature (°C) at a soil depth of 5 cm, F
the soil CO, efflux at a soil temperature of 10 °C and
Q0,0 denoted the factor by which Ry increases when the

soil temperature is rising by 10 °C. Nonlinear modelling
was performed by means of the R package
“minpack.lm” (Elzhov et al. 2013).

Equation (2) was parameterized for each individual
plot including the clipping plots, as well as for the
trenching and control plots, using the observed Ry in
combination with the manually measured soil tempera-
ture at a depth of 5 cm. Subsequently, daily and annual
plot specific cumulative Ry were calculated from the
models using the high temporal resolution soil temper-
ature data.

The basal area, mean tree height, and stem volume of
the mature stand were determined by angle-count sam-
pling (5 angle-count samples per stand) (Bitterlich
1984). We used a detailed assessment of biomass stocks
and increment of the stem, branch and coarse root
compartments of a comparable adjacent stand with sim-
ilar tree species composition, tree age, and management
history (Kobler et al. 2015) to deduce the standing
biomass and biomass increment of the mature stand.
Biomass stocks and increment of the mature stand were
adjusted by the observed difference in stem volume
between the two neighbouring stands. Net ecosystem
productivity (NEP) was calculated as:

NEP = annual biomass increment + annual litter fall — annual Ry,
(3)

For the two clearing sites (PD06, PD03), we assumed
that the entire aboveground biomass stock of the ground
vegetation annually enters the soil as litter. Therefore,
the NEP was calculated as litter input minus R;,. Turn-
over rate for fine roots was considered as 0.8 yr.”' (Gill
and Jackson 2000) for trees and ground vegetation.

Statistical analysis

Effects of time since disturbance on soil CO, efflux,
soil temperature, and soil moisture were assessed by
means of repeated measures ANOVA and post hoc
pairwise student t tests with Bonferroni p-value ad-
justment. Effects of time since disturbance on accu-
mulated R, soil C and N contents, ground vegeta-
tion biomass, fine root biomass and microbial bio-
mass were analysed by means of one-way ANOVA.
In the case of significant effects (p < 0.05), post-hoc
comparisons were made using Tukey’s honest sig-
nificant difference (HSD) test. We used square root or
logarithmic transformations to meet the assumptions of
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normality and homogeneity of variance. We used
Pearson’s correlation coefficient to analyse the relation-
ship between the annual Ry and the microbial biomass
respectively the soil organic C as well as the relationship
between fine root biomass and soil organic C and N. All
statistics were carried out with R (R Core Team 2015) at
a significance level of 95%.

Results
Soil temperature, moisture and respiration (Ry)

Average soil temperatures during Ry measurements
were 9.6 £ 0.3 °C (MS), 10.1 + 0.4 °C (PD06) and
10.6 = 0.4 °C (PD03). Mean annual (continuously
measured) soil temperatures were 8.2 + 0.2 °C (MS),
8.0 £ 0.3 °C (PD06) and 8.5 £ 0.3 °C (PDO03).
Differences between mean annual soil temperatures
as well as soil temperatures during Ry measurements
did not differ significantly between MS and the clear-
cut areas. Mean soil moisture was 39.5 = 0.7% (MS),
49.2 £ 0.9% (PD06) and 52.3 £ 0.9% (PD03). Mean
soil moisture contents differed significantly between
the forest sections (p = 0.028). Post hoc test showed
that soil moisture was different between all three
sections (p < 0.022).

R, exhibited a clear seasonal pattern following
changes in soil temperature, with the peak respiration
rates recorded during summer (Fig. 1a). Mean mea-
sured R over the study period was 2.60 &+ 0.13 pmol
CO, m?s ' (MS), 2.73 +0.14 umol CO, m > s !
(PD06) and 2.45 + 0.13 umol CO, m s ~' (PD03).
Mean measured Ry did not differ significantly be-
tween stand sections. The temperature driven Ry
model (Eq. 2) explained between 79 and 86% of the
temporal variation in measured Ry. The model slight-
ly overestimated Ry at lower Ry rates and slightly
overestimated Ry at higher Ry rates (Fig. A2). The
modelled annual R, was 8.88 + 0.28 t C ha ! (MS),
8.85+0.28 t C ha ' (PD06) and 8.53 +0.24 t C ha !
(PDO03) and did not differ significantly between stand
sections.

R, of trenched plots on MS was on average
44 £ 3% lower than at the corresponding control plots
(Fig. 2, Table 2). Average soil moisture was 15 £+ 1
Vol% higher at trenched plots (p < 0.001) than at
control plots (average moisture: 35 = 1 Vol%). Mean
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soil temperatures were 9.5 £ 1.1 °C (trenched) and
9.5 £ 1.0 °C (control).

There was no clear effect on Ry during the initial
phase of clipping. After a gradual decrease, clipped plots
stabilized in autumn 2014 at R, rates ~35% lower than at
untreated plots (Fig. 3, Table 2). Soil moisture and
temperature did not differ significantly between the
clipped and untreated plots.

Litterfall and ground vegetation biomass

Aboveground tree litterfall was 1.80 t C ha ' yr.”! and
ground vegetation biomass was 0.32 + 0.08 t C ha ' at
MS (Tables 1 and 2). Harvested ground vegetation
biomass amounted to 2.26 + 0.65 t C ha ' yr.”" at
PDO06, and 1.16 = 0.45 t C ha ' yr.”" at PDO03. Differ-
ences in harvested ground vegetation biomass were
statistically significant between all stand sections
(p < 0.0006).

Soil properties, C and N contents, fine root
and microbial biomass

Soil organic layer thickness varied between 0.5 and
2 cm at MS and PDO06, and between 3 and 4 c¢cm at the
recent clear-cut section PD03. Mineral A-horizon thick-
ness showed high spatial heterogeneity and ranged from
5.5-22 cm (Table 1). Soil organic C contents ranged
between 94 + 8 g kg ' DW (MS) and 131 + 11 g kg™
DW (PD06) (Table 1). Soil C (p = 0.048) and N
(p = 0.014) contents were significantly lower at MS
when compared to PD06.

Living fine root biomass was highest at MS
(1.56 = 0.68 t C ha™"). The clearings showed signifi-
cantly lower (p < 0.002) fine root biomass, but PD06
(0.79 + 0.34 t C ha ') showed nearly twice the amount
of fine root biomass as PD03 (0.40 = 0.50 t C ha !,
Table 1), thereby almost exactly making up the differ-
ence in aboveground biomass of PD06 and PD03
(Table 1). All living fine roots at the clearings were of
ground vegetation origin, whereas tree fine roots repre-
sented ~90% at MS.

Microbial biomass C amounted to 0.76 £0.26 mg g '
DM (MS), 0.61 = 0.40 mg g ' DM (PDO03) and
0.60+0.18 mg g ' DM (PDO06). Due to the high spatial
heterogeneity the differences were not statistically sig-
nificant. The cumulative annual R, of the individual
stages/stand-sections neither correlated significantly
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different stand sections . Mature Stand —@

(mean + SE, n = 12). b Manually "0 5L 2011 Clearing --O-

measured and high resolution soil “-'E 2008 Clearing —2

temperature and soil moisture of S

the mature stand (MS). g 4r

Deviations of soil temperature (c) =

and moisture (d) from that of the e 3r

mature stand (MS = dashed zero °,

line). Open squares represent the 8 2

more recently disturbed stand 5

section (PD03, 2011 clearing) and 4L

open triangles represent the less

recently disturbed stand section

(PDO06, 2008 clearing) temp. automatic (b)[ 100
o 15 - | tem_p.manual 9
e <& moisture L g0 ©
o >
5 2
© 10 g
8 BF60 B
IS o
S 51 E
5 5
2 0 5 o O & S o 40 o

<o
-~ 3F c
: A 0 ()
g 2r B N N
Bl A W ETABL L RT
i S I NG \
= ./ S :
a 1 AR A AN
S (d)
;D 20 - ﬂ ~
R s WNO..o/
10N~ A O _4 Qi
A obb—————
5 1 1 1 1
01.04.14 01.06.14 01.08.14 01.10.14

with microbial biomass C, soil organic C and N con-
tents, nor with fine root biomass.

C budgeting

Estimated NEP and its components are presented in
(Table 2). MS was a C sink to the atmosphere, while
PD06 and PDO03 were C sources. The estimated C loss
from PDO03 was nearly twice as high as the estimated C
loss from the densely vegetated PDO06.

Date

Discussion

As hypothesized, the two disturbed sites were C sources
while the mature forest stand was a C sink to the atmo-
sphere. Although there was no tree regeneration, the C
source strength of the clear-cut sites decreased signifi-
cantly with time since disturbance. The C loss six years
after clear-cutting was almost 50% lower than three
years after clear-cutting. As hypothesized, lower hetero-
trophic soil respiration rates together with the high C
input from the dense grassy ground vegetation
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Fig.2 Trenching experiment at the mature stand. The upper panel
shows the autotrophic contribution to Ry. The middle and lower
panels show soil temperature (mean + SE, n = 12) and soil
moisture (mean + SE, n = 12) from the trenched and associated
control plots

decreased the ecosystem C loss with time since
disturbance.

The estimated NEPs of our study are in the range of
values from Kowalski et al. (2004), reporting forest
stands as C sinks ranging from ca. 1.00 to 5.00 t C
ha ! yr.”! and cleared sites as C sources of similar
magnitude. Likewise, other studies report considerable
C loss to the atmosphere shortly after disturbance
(Knohl et al. 2002; Brown et al. 2010; Amiro et al.
2010; Edburg et al. 2012; Mathys et al. 2013). Many
of these studies focused on the first 1-3 years after
disturbance or on even shorter timescales during which
the disturbed sites generally are strong C sources. In
most longer-term studies, clearings were re-planted or
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regenerated naturally within a comparatively short
timeframe (Kowalski et al. 2004; Humphreys et al.
2005; Takagi et al. 2009; Amiro et al. 2010; Williams
et al. 2014). There are thus only a few studies which
specifically address the C dynamics of clearings with
slow or failed tree regeneration due to heavy competi-
tion from ground vegetation. Kolari et al. (2004), for
instance, found that the NEP of a 4 year old Scots pine
clearing without any tree regeneration was —2.6 t C
ha! yr._l, which is close to the NEP estimate of the
six years old clearing (PD06) in our study (—2.9 t C
ha' yr."). Studying the effects of large-scale wind-
throw in a similar forest ecosystem as studied here,
Mayer et al. (2014, 2017) found that windthrow sub-
stantially increased soil temperatures at south facing
slopes, facilitating SOM decomposition, R, and Ry,
As a result, windthrown areas suffered a significant loss
of soil C throughout the first six years after disturbance
(Mayer et al. 2017). In contrast to our site, ground
vegetation cover remained scarce even after 6 years post
windthrow, and the contribution of R, remained low (<
20%). Conversely, higher R rates than in our study (11 t
Cha ' yr.”") were reported for another windthrow area
12 years after disturbance (Mayer et al. 2014). At this
site, ground vegetation was comparable in density to our
PDO06 site. However, autotrophic and heterotrophic
sources were not distinguished and the net C loss from
this site thus remains unresolved.

Effects of forest disturbance on Ry are diverse. On the
one hand, disturbance decreases or even ceases R, and
thereby reduces Ry (Zerva and Mencuccini 2005;
Edburg et al. 2011; Moore et al. 2013). On the other
hand, disturbance can favor the soil microclimate (i.e.
increase soil temperature and/or moisture) for SOM
decomposition, and additional above and below ground
litter becomes available for decomposers. Therefore,
post-disturbance Ry was frequently observed to attain
levels equivalent to undisturbed forest stands (Kolari
et al. 2004; Morehouse et al. 2008; Forrester et al.
2013; Mayer etal. 2014, 2017). A key factor influencing
R, is soil temperature. In contrast to our hypothesis,
disturbance had only a minor effect on soil temperature
at our site. At both clearings soil temperature was slight-
ly elevated during most of the growing season (Fig. 1c),
but the mean annual soil temperatures across the differ-
ent stand-sections were similar. The reason was that
soils at the clearings remained cooler during spring, as
snow cover disappeared several weeks later compared
to the stand with closed canopy (Fig. A3). The positive
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Table 2 Carbon fluxes and net ecosystem productivity (NEP) during 2014

Stage/stand-section

Mature stand (MS)

2011 clearing (PD03) 2008 clearing (PD06)

[tCha'yr ™" 38
[tCha'yr ™" 8.9
Autotrophic [%] 44
[tCha'yr ™ 39
[%] 56
[tCha'yr ] 5.0
[tCha'yr ™ 1.8

Annual biomass increment

Soil respiration (Rs)

Heterotrophic

Tree litter

Herb litter [tCha'yr "] 0.3
Root litter [tCha'yr ] 1.2
NEP [tCha'yr ™" 2.1

8.5 +0.2 8.9 +0.3
18 35

1.5 3.1

82 65

7.0 5.8

12 +0.5 23 +0.7
0.3 +04 0.6 +0.3
-5.5 -29

Annual biomass increment represents the estimated total tree biomass increment of MS (mean + SD). All herbal biomass (increment) was
assumed to annually enter the soil (herb biomass = herb litter). Annual soil respiration was modelled for each plot individually (mean + SD).
Autotrophic and heterotrophic components were estimated by means of trenching (MS) and clipping (clearings) and annual sums were
modelled for each plot and component, respectively. Tree litterfall represents a bulk sample of 5 collectors. Fine root litterfall was estimated
from fine root biomass (0—10 cm depth) with a turnover rate of 0.8 yr.f1 (mean + SD)

influence of direct sunlight on soil temperature was
limited by the NW exposition and the flat terrain of
our site, e.g. compared to the S exposed slopes studied
by Mayer et al. (2014, 2017). In our study, parts of the
clearings had been affected by shading of the
neighbouring mature trees, especially during seasons
with lower solar altitude. Shading had been found to
significantly affect soil temperature and Rs in forest
gaps (Schatz et al. 2012). The comparably small size
(0.5-1 ha) of the investigated clearings could therefore
be a further reason that only minor changes in soil
temperature were observed. In contrast to soil tempera-
ture, soil moisture was significantly higher in the clear-
ings. This is a frequently observed pattern, attributable
to the lack of water uptake and evapotranspiration by
trees (Palviainen et al. 2004). The higher water avail-
ability likely had only minor effects on Ry because soil
moisture never became a limiting factor to decomposer
microbes at any disturbed or undisturbed stand section
(Fig. 1Db).

If temperature and moisture effects on Ry were minor,
then other factors must have attained R at the two
clearings. The organic layer, which mainly consisted
of decomposing needles and twig compartments, was
significantly thicker at the recent clearing (PD03)
(Table 1). This indicates that easily decomposable or-
ganic material from tree residues was still readily avail-
able to decomposers at PD03, and that its decomposition
contributed to the soil CO, efflux. The same likely holds
true for below ground fluxes, where dead roots of the

recently killed trees were still available for decomposi-
tion. Lower absolute Ry, at PD06 (Table 2) also points
towards a decline in readily available labile SOM/litter
over time since disturbance.

A significant contribution of Ry was autotrophic at
PDO0G6, i.c., the site which was covered by dense pre-
dominantly grassy ground vegetation. Our estimated
35% contribution of R, is in line with results from other
clipping experiments in grasslands (20-50%)
(Kuzyakov and Cheng 2001; Wan and Luo 2003;
Bahn et al. 2006), and with that of a trenching experi-
ment at a clear-cut site in Harvard forest (34%)
(Williams et al. 2014). We repeatedly clipped with the
intention to kill the grassy ground vegetation and to
offset root respiration. However, even after a whole
growing season of repeated clipping, grasses were still
alive and resprouted in-between consecutive Ry mea-
surements. Therefore, root respiration still contributed to
Ry at our clipping plots. The 35% R, is thus a conser-
vative estimate, and the real autotrophic contribution at
PDO06 was likely higher (and the soil C losses to the
atmosphere correspondingly lower). Annual estimated
R from MS falls within values from other temperate
forests (e.g. Knohl et al. 2008; Schindlbacher et al.
2014; Mayer et al. 2014). The contribution of R, to Ry
(44%) was within values of comparable mature forest
ecosystems as well (Hanson et al. 2000; Zerva and
Mencuccini 2005; Subke et al. 2006).

Similar to the clipping method, trenching holds un-
certainties. Trenched plots, for instance, had slightly
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Fig. 3 Clipping experiment. The upper panel shows the autotro-
phic contribution to Ry (mean + SE, n = 12). The mid and lower
panel show soil temperature (mean + SE, n = 12) and soil moisture
(mean + SE, n = 12) from the clipping and associated control plots

higher soil moisture contents as control plots. Differ-
ences in soil moisture can cause methodological bias if
control plots dry out during certain drought periods, or if
SOM decomposition becomes unfavorable when
trenched plots are fully water saturated (Diaz-Pinés
et al. 2010). In our study, moisture-induced bias was
unlikely because soil moisture content in control and
trenched plots never became limiting or oversaturated
(Fig. 2). Further uncertainty arises from decomposition
of dead roots in trenching plots, which can add to the
soil CO, efflux. Since the trenching plots were already
established 5 years prior to our study (Kobler et al.
2015), most dead fine roots should, however, have been
decomposed by the time our measurements took place.
Nonetheless, due to the number of caveats, trenching
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provides only a rough proxy of autotrophic and hetero-
trophic contributions to overall respiration. Ry, is the
major C outflux of the ecosystem, and uncertainty in
its contribution will have considerable impacts on the C
budget. A > 80% heterotrophic contribution to R would
turn MS to a C source. Such a huge deviation of our
estimate (66%), however, is far beyond the expected
uncertainty related to the trenching method.

A further pathway of C loss is leaching of dissolved
organic carbon (DOC) or dissolved inorganic carbon
(DIC) of biogenic origin (Kindler et al. 2011;
Schindlbacher et al. 2015). In our study, we did not
assess C leaching. The magnitude of C loss via leaching
is several times lower than that via R;. Schindlbacher
et al. (2009), for instance, estimated DOC leaching of
1.5-3 gm 2 yr. ' for a mature spruce stand at a similar
site, which falls well within the range of values for other
temperate forests in Europe (Kindler et al. 2011). It is
likely that PD03 and PD06 showed higher C leaching
when compared to MS, as overall seepage likely was
higher on the cleared sites (Neff and Asner 2001).
However, due to the minor contribution of C leaching
to the overall soil C loss, potential clearing effects on C
leaching can be expected to add only insignificantly to
our NEP estimates.

To come up with a realistic soil C budget, it is not
only important to assess the C loss but also the C input
to the system. Annual above-ground tree litter estimates
were robust and fall within values from other temperate
mountainous forests (Perruchoud et al. 1999; Caprez
et al. 2012). The dense grassy ground vegetation at the
six years old clearing (PD06) was dominated by
Calamagrostis epigejos and other graminoids
(Table 1). These communities are common and widely
distributed in Central European forests, especially where
the natural regeneration of trees is limited (MaliS et al.
2013). Above-ground living biomass at PD06 was 2.3 t
C ha ', which is in the range of similar plant communi-
ties reported elsewhere (1.5t C ha ! (Pysek 1991), 3.1t
C ha ' (MAli§ et al. 2013)). At PD03, ground vegetation
biomass was lower (1.2 t C ha "), which shows that the
improved light availability promotes a rapid spread of
herbaceous plants and grasses in cleared areas (Ammer
1996; Palviainen et al. 2005; Donoso and Nyland 2006;
Naaf and Wulf 2007; Kern et al. 2012; Kramer et al.
2014; Proll et al. 2015). In our study, we used the above
ground biomass as a proxy for the annual above ground
litter input. The true above ground litter input might
have been higher, as the ground vegetation biomass
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was sampled in September, and further biomass growth
thereafter is likely. Moreover, potential above ground
litter input prior to biomass harvesting was not
accounted for.

Our tree fine root biomass estimates (1.6t C ha ') are
within the range of those observed for similar Norway
spruce forests (Helmisaari et al. 2007; Brunner et al.
2013). The fine root biomass from the dense ground
vegetation at PD06 (0.8 t C ha ') falls within fine root
biomass estimates at grassland sites (Solly et al. 2013).
The turnover rate (0.8 yr. ) used to calculate the below
ground C input via fine roots is within the average of
reported values (Finér et al. 2011; Brunner et al. 2012).
It, however, needs to be noted that only the top 10 cm of
the soil were sampled and analyzed for fine root biomass
in our study. Although most Norway spruce fine roots
are typically located in the top-soil (Ostonen et al.
2005), a fraction of fine roots is likely present also in
soil layers deeper than 10 cm. Accordingly, our estimate
for tree fine root biomass and corresponding litter input
at MS is a conservative estimate. At the two forest
clearings, the 10 cm root coring should have reached
most of the rooting zone of the ground vegetation spe-
cies (Ostonen et al. 2005; Wu et al. 2011). The biomass
increment estimate of MS is likely to be robust, as it was
derived from a detailed assessment of a close-by stand
(200 m away) of the same age, stand and site properties
(Kobler et al. 2015).

Notwithstanding all limitations and uncertainties, we
are confident that the applied methods were adequate to
answer our prime question, how non-woody ground
vegetation growth affected the C balance of poorly
regenerating forest clearings. To avoid over-
interpreting the effects of ground vegetation on C cy-
cling, we kept our estimates of ground vegetation, auto-
trophic soil respiration, litter input and fine root turnover
conservative (see above). Therefore, the estimated C
losses from forest clearings presented here are an upper
bound of the potential C loss. Spatial replication among
various disturbance sites/chronosequences could further
illustrate whether the results of our case study apply at
larger spatial scales.

Our results indicate that fast growing grassy ground
vegetation can mitigate parts of the ecosystem C loss
after disturbance. However, from a forest management
and climate change mitigation perspective, un-stocked
sites such as the ones studied here, remain largely un-
desirable. Once established, dense grassy ground vege-
tation strongly inhibits tree regeneration (Proll et al.

2015). Consequently, tree planting and tending often
remains the only pathway towards successfully estab-
lishing the next generation of trees under these condi-
tions. Such measures are labour intensive and costly,
and could be avoided by reducing inhibiting factors
such as browsing pressure, before a dense grass cover
takes over. On the other hand, patchy and open habitats
have considerable value for biodiversity, as they provide
habitat for a wide range of species groups (Swanson
etal. 2011; Thom et al. 2017).

Conclusions

Here we show that disturbed areas in a central European
mountain forest initially lose high amounts of C to the
atmosphere. Our analyses highlights that while tree
regeneration is slow or absent, the establishment of a
cover of fast-growing non-woody ground vegetation,
together with decreasing heterotrophic soil respiration,
can reduce the ecosystem C loss in the first years after
disturbance. Although largely undesirable from a forest
management perspective, slowly regenerating forest
clearings loose less C than suggested from short term
studies extrapolating fluxes from the initial years after
disturbance, and ignoring the role of ground vegetation
in the forest C cycle.
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