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Abstract

Purpose—Pancreatic cysts are estimated to be present 2–3% of the adult population. 

Unfortunately, current diagnostics do not accurately distinguish benign cysts from those that can 

progress into invasive cancer. Missregulated pericellular proteolysis is a hallmark of malignancy, 

and therefore, we used a global approach to discover protease activities that differentiate benign 

nonmucinous cysts from premalignant mucinous cysts.

Experimental Design—We employed an unbiased and global protease profiling approach to 

discover protease activities in 23 cyst fluid samples. The distinguishing activities of select 

proteases was confirmed in 110 samples using specific fluorogenic substrates and required less 

than 5 µL of cyst fluid.

Results—We determined that the activities of the aspartyl proteases gastricsin and cathepsin E 

are highly increased in fluid from mucinous cysts. Immunohistochemical analysis revealed that 
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gastricsin expression was associated with regions of low-grade dysplasia, whereas cathepsin E 

expression was independent of dysplasia grade. Gastricsin activity differentiated mucinous from 

nonmucinous cysts with a specificity of 100% and a sensitivity of 93%, whereas cathepsin E 

activity was 92% specific and 70% sensitive. Gastricsin significantly outperformed the most 

widely used molecular biomarker, carcinoembryonic antigen (CEA), which demonstrated 94% 

specificity and 65% sensitivity. Combined analysis of gastricsin and CEA resulted in a near perfect 

classifier with 100% specificity and 98% sensitivity.

Conclusions—Quantitation of gastricsin and cathepsin E activities accurately distinguished 

mucinous from nonmucinous pancreatic cysts and has the potential to replace current diagnostics 

for analysis of these highly prevalent lesions.
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Introduction

The detection of pancreatic cysts has increased dramatically due to the rising use of high-

resolution abdominal imaging. Pancreatic cysts are incidentally detected in 13–45% of 

patients evaluated by magnetic resonance imaging and 2% of patients evaluated by 

computed tomography (1–3). The most frequently detected pancreatic cysts include 

intraductal papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms (MCNs), 

pseudocysts, and serous cystadenomas (SCAs) (4). Both IPMNs and MCNs, which are 

collectively referred to as mucinous cysts, may develop foci of high-grade dysplasia or 

cancer (5). At the time of resection, ~30% of IPMNs and ~15% of MCNs contain invasive 

cancer (6,7). Pseudocysts and SCAs, which are both nonmucinous, rarely undergo malignant 

degeneration and are considered benign lesions that typically do not require resection or 

continued surveillance. Clinical decision making for pancreatic cysts relies largely on 

radiographic and clinical features, augmented by analysis of cyst fluid collected by 

endoscopic ultrasound with fine needle need aspiration (EUS-FNA) (8). Unfortunately, with 

current clinical guidelines, distinguishing nonmucinous from mucinous cysts remains a 

challenge. The preoperative diagnosis of mucinous cysts is incorrect in up to 30% of cases 

and benign cysts are often resected, exposing patients to an unnecessary risk for morbidity 

(9–12).

As abdominal imaging remains unable to accurately differentiate pancreatic cyst types, there 

has been considerable effort towards developing improved diagnostic biomarkers. Most of 

these biomarkers utilize cyst fluid collected by EUS-FNA. CEA is the most widely 

investigated biomarker and is 60–80% accurate for differentiating mucinous from 

nonmucinous cysts (13,14). KRAS mutations occur in more than 90% of pancreatic cancers 

and are frequently observed in mucinous cysts (15,16). Analysis of cyst fluid DNA revealed 

that KRAS mutations are 100% specific, but only 50% sensitive for diagnosing a mucinous 

cyst (17). Similarly, analysis of mutations in the oncogene GNAS are specific for diagnosing 

IPMNs, but suffer from low sensitivity (18). A variety of other cyst fluid biomarkers have 

also been explored (19–23); however, CEA remains the only widely applied molecular 

biomarker for differentiating mucinous from nonmucinous cysts.
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Proteases mediate a variety of critical processes in cancer, including invasion of the 

basement membrane via cleavage of extracellular matrix proteins and promotion of 

oncogenic signaling pathways through activation of growth factors and receptor tyrosine 

kinases (24,25). In pancreatic cancer, members of the cathepsin family of endolysosomal 

proteases are upregulated and found extracellularly. Aberrant secretion leads to cleavage of 

extracellular substrates, driving increased cellular invasion (26). Either genetic deletion or 

pharmacological inhibition of cysteine cathepsin activity decreases tumor progression and 

invasion (27,28).

Gene expression profiling studies of IPMNs and MCNs indicate overexpression of a range 

of proteases (29–31). Furthermore, analysis of protein expression in cyst fluid showed 

substantial differences in the abundance of pancreatic proteases and their cognate inhibitors 

between cyst types. The serine protease inhibitor SPINK1 was recently investigated as a 

biomarker for differentiating benign from malignant cysts (32,33). Collectively, these results 

suggest that there may be altered levels of proteolytic activity between mucinous and 

nonmucinous cysts and that these differences could be exploited to distinguish the type of 

lesion and its associated malignant potential.

In the current study, we applied a global protease profiling technology to discover 

proteolytic activity markers for differentiating mucinous from nonmucinous cysts. Using this 

approach, we identified enhanced aspartyl protease activity in mucinous cysts, due to 

upregulation of gastricsin and cathepsin E. We characterized the localization of both aspartyl 

proteases within the dysplastic tissue surrounding the mucinous cysts and determined that 

gastricsin expression was dependent on the degree of dysplasia. Lastly, highly selective 

fluorescent substrates for gastricsin and cathepsin E both confirmed their upregulated 

activities and outperformed CEA for differentiating mucinous from nonmucinous pancreatic 

cystic lesions.

Materials and methods

Patients and sample acquisition

Pancreatic cyst fluid samples were collected from preconsented patients under institutional 

review board approved protocols and in accordance with U. S. Common Rule at the 

University of California San Francisco, the University of Pittsburgh Medical Center, Indiana 

University School of Medicine, and Stanford University School of Medicine. Patient 

information is summarized in Table S1. All patients included in our study underwent 

surgical resection of their cystic lesion and have a pathologically confirmed diagnosis. The 

highest grade of dysplasia observed during pathological evaluation of each cystic lesion is 

reported. Samples were collected either at the time of surgical resection or during diagnostic 

endoscopic ultrasound prior to resection of the cystic lesion. Cyst fluid samples were split 

into 100 µL aliquots and frozen to −80 °C within 60 minutes of collection. Samples 

underwent at most two freeze-thaw cycles prior to experimental analysis. Total cyst fluid 

protein concentration was determined by the bicinchoninic acid assay. CEA levels were 

evaluated for the majority of samples, but were unavailable in 21 cases due to limited cyst 

fluid volume.

Ivry et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiplex substrate profiling by mass spectrometry (MSP-MS) assay

The MSP-MS assay was performed as previously described (34). Cyst fluid was diluted to 

100 µg/mL in assay buffer (either pH 7.5 phosphate buffer or pH 3.5 acetate buffer) and pre-

incubated for 10 minutes. For analysis of protease inhibitor sensitivity, 1 mM AEBSF 

(Sigma, A8456), 2 µM E-64 (Sigma, E3132), 2 µM pepstatin (Sigma, P5318), 2 mM 1,10-

phenanthroline (Sigma, 131337), or DMSO were included in pre-incubation. The 228 

tetradecapeptide library was split into two pools and diluted in assay buffer to a 

concentration of 1 µM of each peptide. 75 µL of diluted cyst fluid and peptide pools were 

then combined and incubated at room temperature. 30 µL aliquots were removed after 15 

and 60 minutes, protease activity quenched with 8 M guanidinium hydrochloride, and flash-

frozen in liquid N2. For recombinant gastricsin (R&D Systems, 6186-AS), cathepsin D 

(R&D Systems, 1014-AS), and cathepsin E (R&D Systems, 1294-AS), the MSP-MS assay 

was performed as described above with slight modifications: 10 nM of recombinant protease 

in pH 3.5 acetate buffer was used and aliquots were removed after 15, 60, and 240 minutes.

Prior to peptide cleavage site identification by mass spectrometry, samples were desalted 

using C18 tips (Rainin). Mass spectrometry analysis was carried out with an LTQ Orbitrap 

XL mass spectrometer coupled to a 10,000 psi nanoACQUITY Ultra Performance Liquid 

Chromatography (UPLC) System (Waters) for peptide separation by reverse phase liquid 

chromatography (RPLC). Peptides were separated over a C18 column (Thermo) and eluted 

by applying a flow rate of 300 nL/min with a 65-minute linear gradient from 2–30% 

acetonitrile. Survey scans were recorded over a 325–1500 m/z range and the six most intense 

precursor ions were fragmented by collision-induced dissociation (CID) for MS/MS.

Raw mass spectrometry data was processed to generate peak lists using MSConvert. Peak 

lists were then searched in Protein Prospector v. 5.10.0 (35) against a custom database 

containing the sequences from the 228 tetradecapeptide library. Searches used a mass 

accuracy tolerance of 20 ppm for precursor ions and 0.8 Da for fragment ions. Variable 

modifications included N-terminal pyroglutamate conversion from glutamine or glutamate 

and oxidation of tryptophan, proline, and tyrosine. Searches were subsequently processed 

using the MSP-xtractor software (http://www.craiklab.ucsf.edu/extractor.html), which 

extracts the peptide cleavage site and spectral counts of the corresponding cleavage products. 

Spectral counts were used for the relative quantification of peptide cleavage products.

Proteomic analysis of cyst fluid samples

Cyst fluid samples were processed for proteomic analysis using a standard protocol. Briefly, 

8 µg of cyst fluid protein was denatured in 40 µL of 6 M urea. Disulfide bonds were reduced 

with 10 mM dithiothreitol and free thiols were subsequently alkylated with 12.5 mM 

iodoacetamide. Samples were then diluted to with 25 mM ammonium bicarbonate to 2 M 

urea and digested with 100 ng trypsin for 16 hours at 37 °C. Following trypsin digestion, 

samples were desalted with C18 tips (Rainin), dried, and resuspended in 0.1% formic acid. 

Triplicate LC-MS/MS analysis of all samples was performed as described above and details 

for this and protein identification are provided in the Supplemental Methods and Materials.
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Label-free quantitation was used to compare relative abundance of the three aspartyl 

proteases identified in cyst fluid samples. The Skyline software package was used to obtain 

extracted ion chromatograms and peak areas for precursor ions from the aspartyl proteases 

(36). To correct for potential differences in protein loading between runs, peak areas were 

normalized by the median peak area of all fragmented ions from that run. The average peak 

area of the precursor ions from a given aspartyl protease was then used to estimate the 

abundance in each cyst fluid sample.

Western blots of gastricsin and cathepsin E

Cyst fluid protein (2 µg) or recombinant protease (20 ng) was pre-incubated for 30 minutes 

in either pH 7.5 phosphate buffer or pH 3.5 acetate buffer. Samples were then subjected to 

electrophoresis on a 10% NuPAGE Bis-Tris gel. Proteins were transferred to polyvinylidene 

fluoride membranes and blocked in Tris-buffered saline with 0.1% Tween (TBS-T) and 5% 

(w/v) non-fat dry milk for 2 hours at room temperature. Membranes were then incubated 

with either rabbit anti-gastricsin antibody (1:500; Abcam, ab104595) or rabbit anti-cathepsin 

E antibody (1:1,000; Abcam, ab49800) for 1 hour at room temperature. Following a wash in 

TBS-T, horseradish peroxidase (HRP)-conjugated secondary antibody (1:15,000; Abcam, 

ab97051) was applied for 2 hours at room temperatures. Proteins were detected with the 

enhanced chemiluminescence (ECL) detection system (Thermo).

Animal strains

The following mice strains were used: Ptf1a-Cre (gift of Christopher Wright, Vanderbilt 

University, Nashville, Tennessee, USA), LSL-KrasG12D (gift of Dave Tuveson, Cold Spring 

Harbor Laboratory, USA), Brg1f/f (gift of David Reisman, University of Florida, USA with 

permission of Pierre Chambon). Mice were crossed on a mixed background. The UCSF 

Institutional Care and Use of Animals Committee (IACUC) approved all mouse 

experiments.

Immunohistochemical analysis of pancreatic tissue

Tissue samples were obtained from patients who underwent resection of pancreatic cystic 

lesions at UCSF. Gastricsin and cathepsin E immunohistochemistry assays were developed 

and performed on a Ventana Discovery Ultra automated slide stainer (Ventana Medical 

Systems). In brief, formalin-fixed, paraffin-embedded (FFPE) samples (4 µm sections) were 

deparaffinized using EZPrep (Ventana Medical Systems) followed by treatment with antigen 

retrieval buffer (Ventana Medical Systems, 950-124). Specimens were incubated with either 

goat anti-gastricsin antibody (1:300; Santa Cruz, sc-51185) or goat anti-cathepsin E 

antibody (1:200; Santa Cruz, sc-6508) for 32 minutes at 36 °C. OmniMap anti-goat 

secondary antibody (Ventana Medical Systems, 760-4647) was then applied for 16 minutes 

before employing a DAB detection kit (Ventana Medical Systems, 760-500). All samples 

were counterstained with haematoxylin and Bluing Reagent (Ventana Medical Systems, 

760-2037). H&E staining of tissue sections was performed using standard protocols.

Mouse pancreatic tissue samples were collected from 8 Ptf1a-Cre; LSL-KrasG12D; Brg1f/f 

animals between 3 and 40 weeks of age. FFPE samples (5 µm sections) were deparaffinized 

with xylene and subsequently rehydrated. Sections were either subjected to H&E staining or 
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heat-induced epitope retrieval with Citra buffer (BioGenex; HK086). Primary antibodies 

(goat anti-mouse) for cathepsin E (1:1,000; R&D Systems; AF1130) and gastricsin (1:1,000; 

Santa Cruz; sc-51188) were incubated with sections overnight at 4 °C. Anti-goat secondary 

antibody (1:200; Vector Labs; BA-9500) was then added to sections for 1 hour at room 

temperature. ABC (Vector Labs; PK-6100) and DAB kits (Vector Labs; SK-4100) were 

employed for detection. Sections were counterstained with haematoxylin and incubated in 

0.25% ammonium hydroxide for bluing.

Peptide synthesis

Synthesis of internally quenched fluorescent peptides was conducted using standard Fmoc 

solid-phase peptide synthesis on a Syro II automated synthesizer (Biotage). Details are 

included in the Supplemental Methods and Materials.

Fluorescent protease activity assays

All fluorescent protease activity assays were performed in triplicate in black, round-bottom 

384 well plates. Assays were run for 1 hour in 15 µL of acetate buffer with 0.01% Tween. 

The pH of the acetate buffer was adjusted to promote activity of either aspartyl protease (pH 

3.5 for the cathepsin E substrate and pH 2.0 for the gastricsin substrate). 10 µM of substrate 

was used for all assays (unless otherwise indicated) and was incubated with either 10 nM of 

recombinant protease or 50 µg/mL of cyst fluid protein. For kinetic analysis of gastricsin 

activity, the substrate concentration ranged from 0.1–25 µM. Fluorescent substrate cleavage 

was monitored with a Biotek Synergy HT plate reader using excitation and emission 

wavelengths of 328 nm and 393 nm, respectively. Selectivity of the recombinant proteases 

was assessed by comparing the initial velocity of substrate hydrolysis in relative fluorescent 

units per second (RFU/sec). For cyst fluid samples, we compared the change in endpoint 

RFU relative to wells that contained substrate, but no cyst fluid.

Statistical analysis and data presentation

A two-tailed Mann-Whitney U test was used to compare the differences in CEA abundance, 

gastricsin activity, and cathepsin E activity between mucinous and nonmucinous cysts. 

Univariate and multivariate logistic regression models were used for cyst prediction. 

Receiver operating characteristic (ROC) curves and Youden’s J statistic were employed to 

identify the optimal cutoff. All mass spectrometry data (spectral counts and peak areas) was 

log2 transformed and analyzed with unpaired two-tailed t-tests. GraphPad Prism was used to 

fit kinetic data and generate scatter plots and bar charts. Volcano plots, heat maps, venn 

diagrams, ROC curves, and logistic regression models were generated in RStudio v. 

0.98.1091. iceLogo software was used to visualize patterns in peptide cleavage sites at ±4 

positions away from the scissile bond (37).

Results

Global protease activity profiling of patient cyst fluid

To identify differences in proteolytic activity between mucinous and nonmucinous cysts we 

used our MSP-MS assay, which is a global and unbiased substrate-based protease profiling 

approach (34). In the MSP-MS assay, a physicochemically diverse library of 228 
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tetradecapeptide substrates is incubated with a protease-containing sample of interest and 

tandem mass spectrometry is used to monitor protease-derived peptide cleavage products. 

We have previously validated this assay through analysis of all classes of protease and used 

it to develop selective substrate probes (38–40).

Using the MSP-MS assay, we profiled 16 mucinous and 7 nonmucinous cyst fluid samples. 

To capture a broad range of protease activities, we performed the assay under acidic 

conditions and at neutral pH. At pH 7.5, we detected a total of 1117 unique peptide 

cleavages among the patient sample set (Fig. 1A). Only 7 peptide cleavages met our 

selectivity criteria for differentiating mucinous from nonmucinous cysts (+/− 1 

log2(mucinous/nonmucinous), p < 0.05). 6 of these cleavages were enriched in nonmucinous 

cysts, and overall, there was a slight trend toward increased proteolytic activity in fluid from 

nonmucinous cysts (Fig. S1A). When the same samples were assayed at pH 3.5, a total of 

691 peptide cleavages were detected, and we observed increased proteolytic activity in the 

mucinous cysts (Fig. 1B and Fig. S1B). All 35 unique substrate cleavages that differentiated 

mucinous from nonmucinous cysts were enriched in the mucinous set. The degree of 

dysplasia within a mucinous cyst is also an important factor in determining whether surgical 

intervention is recommended. However, no major differences in protease activity were 

evident between mucinous cysts with low- or high-grade dysplasia (Fig. S2).

We generated an iceLogo frequency plot to visualize the substrate specificity pattern of the 

35 mucinous-specific peptide cleavages detected at pH 3.5 (Fig. 1C) (37). At the P1 and P1′ 
positions, which flank the cleavage site, there was a predominant enrichment of hydrophobic 

amino acids with the aromatic residues tyrosine and tryptophan more favored at P1. This 

mirrors the previously reported substrate specificity of lysosomal aspartyl proteases (41,42).

Identification of cathepsin E and gastricsin in mucinous cysts

We next sought to identify the specific proteases within the mucinous cysts that are 

responsible for the increased acid-optimal cleavage of the 35 mucinous-specific substrates. 

To aid in the characterization of protease activity, we initially focused on a single mucinous 

cyst fluid sample that cleaved 30 out of the 35 substrates.

We treated the cyst fluid with broad-spectrum inhibitors against all major protease classes 

and analyzed changes in cleavage of the 35 mucinous-specific substrates by MSP-MS (Fig. 

2A). Treatment with the aspartyl protease inhibitor pepstatin fully inhibited cleavage of 20 

mucinous-specific substrates and partially inhibited cleavage of 8 additional substrates. The 

other broad-spectrum protease inhibitors minimally affected cleavage of the mucinous-

specific substrates. The serine protease inhibitor AEBSF and the metal chelator 1,10-

phenanthroline only inhibited cleavage of 3 substrates each. In a second mucinous cyst fluid 

sample, we confirmed that aspartyl protease inhibition with pepstatin blocks cleavage of the 

majority of the mucinous-specific substrates (Fig. S3).

Our inhibition data demonstrated that aspartyl proteases have increased activity in mucinous 

cysts. Therefore, we performed shotgun proteomic analysis of a set of mucinous (n=4) and 

nonmucinous cysts (n=3) to determine if there were differences in the abundance of 

individual aspartyl proteases. This analysis identified three aspartyl proteases – cathepsin D, 
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cathepsin E, and gastricsin (Table S2). Label-free quantitation using precursor ion 

abundance, revealed that cathepsin D was present at similar levels in the mucinous and 

nonmucinous cysts, whereas cathepsin E and gastricsin were significantly more abundant in 

the mucinous cysts (Fig. 2B and Table S3). Aspartyl proteases are synthesized as inactive 

zymogens that undergo enzymatic maturation at an acidic pH (43). As the tumor 

microenvironment is known to be acidic, we investigated whether cathepsin E and gastricsin 

were present in the pro- or mature forms. Exposure of fluid from a mucinous cyst to acidic 

pH induced a mass shift in cathepsin E and gastricsin that was comparable to that observed 

using recombinantly produced proteins (Fig. 2C), indicating that both proteases are released 

into cyst fluid in their proforms. As expected, no cathepsin E or gastricsin was detected in 

fluid from a representative nonmucinous cyst. Collectively, these results demonstrate that the 

proforms of cathepsin E and gastricsin are differentially expressed in mucinous cysts and 

that this induction is responsible for the increased proteolytic activity under acidic 

conditions.

Immunohistochemical analysis of gastricsin and cathepsin E in mucinous cysts

We further examined overexpression of cathepsin E and gastricsin in 14 mucinous cysts 

using immunohistochemical (IHC) analysis. Cytoplasmic gastricsin staining was observed in 

the epithelial cells lining 11 of the 14 mucinous cysts examined (Table S4). Interestingly, 

gastricsin expression was primarily associated with regions of low-grade dysplasia, and no 

staining was observed in regions of high-grade dysplasia (Figs. 3A–D). Gastricsin staining 

was also apparent in areas of low-grade dysplasia within mucinous cysts that contained both 

low- and high-grade dysplasia. Cytoplasmic cathepsin E was detected in all 14 mucinous 

cysts examined; however, staining did not show a dependence on the degree of dysplasia 

(Figs. 3E–H). No gastricsin or cathepsin E staining was evident in the neighboring normal 

ductal epithelium or stromal tissue. In addition, neither protease was detected in either of the 

two nonmucinous SCAs examined.

We also examined expression of gastricsin and cathepsin E in an IPMN genetic mouse 

model. Ptf1a-Cre; LSL-KrasG12D; Brg1f/f mice develop cystic lesions of the pancreas that 

closely resemble human IPMNs (44). Consistent with the above results, we observed 

cytoplasmic gastricsin and cathepsin E staining in the epithelial cells surrounding the cystic 

lesion (Fig. S4). Once again, there was no staining in normal pancreatic tissue.

Development of a gastricsin selective fluorescent substrate

The MSP-MS assay is ideal for discovering global differences in protease activity, but is not 

readily amenable for use as a diagnostic tool. Therefore, we sought to identify sensitive and 

selective fluorescent substrates that could be used in a standard microplate format to 

distinguish mucinous from nonmucinous cysts.

We focused on designing a gastricsin selective substrate as a cathepsin E selective substrate 

has been previously reported (45). We first analyzed the substrate specificity of recombinant 

cathepsin E and gastricsin using the MSP-MS assay (Fig. 4A). We also profiled recombinant 

cathepsin D, as it was detected in cyst fluid samples by our shotgun proteomic analysis (Fig. 

2B), and therefore, we wanted to ensure that the synthesized substrates are not cleaved by 
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this protease. Cathepsins E and D showed highly similar substrate specificity with a Pearson 

correlation coefficient of 0.81 and both proteases displayed a clear preference for 

hydrophobic residues in the P1 and P1′ positions. Gastricsin also preferred hydrophobic 

residues in the P1 and P1′ positions, however, direct comparison of the amino acid 

enrichment profiles revealed that gastricsin also has distinct cleavage preferences (Fig. 4B). 

Most notably, gastricsin shows a significantly stronger preference for tyrosine and 

tryptophan in the P1 position. Gastricsin also slightly favored small amino acids, such as 

glycine, serine, and alanine, in the P1’ position.

Using the MSP- MS assay, we identified 75 peptides that were cleaved by gastricsin and not 

by cathepsins D or E (Fig. 4C). We used the specificity information from Fig. 4A–B to 

select a single peptide substrate that we expected to be highly selective for gastricsin. In 

particular, we chose a peptide that was cleaved by gastricsin with a tryptophan and alanine in 

the P1 and P1′ positions, respectively. We synthesized an internally quenched, fluorescent 

substrate incorporating the P4 to P4′ amino acids from this peptide. This substrate was 

found to be greater than 120-fold selective for gastricsin over both cathepsins D and E (Fig. 

4D) and is cleaved with a kcat/Km of 4.8 × 105 M−1/s−1 (Fig. S5). We also synthesized the 

previously reported cathepsin E selective substrate and confirmed that it is more than 100-

fold selective for cathepsin E over both cathepsin D and gastricsin (Fig. 4D) (45). Lastly, we 

confirmed that we could use these substrates to monitor cathepsin E and gastricsin protease 

activity in cyst fluid. Indeed, both substrates were cleaved in fluid from a mucinous cyst and 

this activity was fully inhibited by pre-incubation with pepstatin (Fig. S6).

Gastricsin and cathepsin E activity differentiate mucinous from nonmucinous cysts

We next used the gastricsin and cathepsin E fluorescent substrates to assess their relative 

protease activities in cyst fluid samples to determine if these activities could be used to 

differentiate mucinous from nonmucinous cysts. We first analyzed the 23 cyst fluid samples 

that we previously profiled using the MSP-MS assay. Cleavage of both the gastricsin and 

cathepsin E substrate was significantly higher in mucinous relative to nonmucinous cysts 

(Fig. S7). This prompted us to assess cathepsin E and gastricsin activity in a validation 

cohort comprised of an additional 87 cyst fluid samples. Again, mucinous cysts displayed 

significantly increased levels of gastricsin and cathepsin E activity (Fig. S7). There were no 

significant differences in activity between the two patient cohorts. Analysis of all 110 patient 

samples revealed that gastricsin activity was on average increased more than 6-fold in 

mucinous cysts, while cathepsin E activity was increased only 2-fold (Fig. 5A–B). The ROC 

curve for gastricsin activity exhibited an area under the curve (AUC) of 0.979 for 

distinguishing mucinous cysts (Fig. 5C and Table S5). At the optimal cutoff of a 1.23-fold 

change in fluorescence, gastricsin activity demonstrated a specificity of 100% and a 

sensitivity of 93%. Cathepsin E activity had an AUC of 0.828 and, using this same optimal 

cutoff, displayed 92% specificity and 70% sensitivity for differentiating mucinous from 

nonmucinous cysts. Gastricsin and cathepsin E activity did not show a dependence on the 

type of mucinous cyst or the degree of dysplasia within a mucinous cyst (Fig. S8). 

Considering that gastricsin expression was only observed in regions of low-grade dysplasia 

(Fig. 3), we were surprised to observe that gastricsin activity was also not associated with 

the degree of dysplasia. This is likely because highly dysplastic and invasive mucinous 
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lesions also often contain regions of low-grade dysplasia. We also examined whether 

gastricsin or cathepsin E activity were correlated with features from the revised Sendai 

criteria, which is a widely applied consensus guidelines for the management of mucinous 

cysts (8). Neither gastricsin nor cathepsin E activity showed significant differences in 

relation to the Sendai features we assessed (Table S6).

CEA levels were independently measured for 89 of the cyst fluid samples, and we compared 

abundance between mucinous (n=55) and nonmucinous cysts (n=34). As expected, CEA was 

significantly elevated in the mucinous cysts (Fig. S9). The CEA ROC curve exhibited an 

AUC of 0.865 for distinguishing mucinous cysts from nonmucinous cysts (Fig. 5C). CEA-

based classification underperformed gastricsin activity, but was comparable to cathepsin E 

activity-based classification. For CEA, a cutoff level of 192 ng/mL is the commonly used 

clinical standard for differentiating mucinous from nonmucinous cysts (46). At this cutoff, 

CEA demonstrated a specificity of 94% and a sensitivity of 65%, which is consistent with 

what has been previously reported. All 19 of the mucinous cyst fluid samples with CEA 

levels below the standard cutoff of 192 ng/mL were correctly classified by gastricsin activity. 

Additionally, the two nonmucinous cysts with CEA levels above 192 ng/mL were also 

correctly classified by gastricsin activity.

We also assessed whether combined analysis of CEA with gastricsin and cathepsin E activity 

could better differentiate mucinous from nonmucinous cysts. Gastricsin activity with CEA 

evaluation resulted in a classifier with an AUC of 0.998 (Fig. 5C), exhibiting a specificity of 

100% and sensitivity of 98%. Inclusion of all three markers did not lead to improved 

differentiation of mucinous from nonmucinous cysts (Table S5).

Discussion

Although pancreatic cysts are being detected at an increasing rate, available diagnostic tests 

do not accurately discriminate between cyst types. Mucinous cysts have malignant potential 

and may require resection, while nonmucinous cysts are considered benign and require no 

further evaluation if these lesions are asymptomatic. Increasing the level of certainty in this 

distinction would spare some patients unnecessary surgical resections and reduce the need 

for ongoing surveillance for many more individuals. In this study, we used an unbiased and 

global substrate-based profiling strategy coupled with proteomics, to identify distinguishing 

protease activities in cyst fluid samples. Using this approach, gastricsin and cathepsin E 

activities were found to be promising markers for differentiating benign nonmucinous cysts 

from potentially malignant mucinous cysts. Selective fluorescent substrates both confirmed 

induction of these proteases in mucinous cysts and enabled sensitive and specific 

differentiation of these lesions in 110 patient samples.

To date, CEA remains the most widely used clinical biomarker for differentiating mucinous 

from nonmucinous cysts. However, the performance of this marker is generally considered 

suboptimal. Indeed, CEA analysis was only 76% accurate in our study at the standard cutoff 

of 192 ng/mL. Gastricsin activity was 95% accurate, and correctly classified all 21 cysts that 

were misclassified by CEA, clearly demonstrating the clinical utility of this marker. 
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Furthermore, we were able to improve classification accuracy to 99% by combining CEA 

with gastricsin activity analysis.

Preoperatively determining the degree of dysplasia within a mucinous cyst is another major 

challenge for ensuring appropriate clinical intervention. However, the protease activity 

markers identified in this study do not differentiate between mucinous cysts with low- or 

high-grade dysplasia. Although this is a limitation of our markers, correctly differentiating 

mucinous from nonmucinous cysts is a critical first step in deciding which cysts should 

undergo resection. For example, pancreatic resection of the 39 benign nonmucinous cysts 

included in this study could potentially have been avoided through the application of our 

assay. In addition, 19 mucinous cysts within our patient cohort had CEA levels below the 

standard cutoff of 192 ng/mL. In our high-volume pancreatic centers, radiographic and 

clinical features allowed experienced clinicians to correctly identify these cysts as mucinous. 

However, medical centers without dedicated cyst specialists may be inclined to misclassify 

these samples as nonmucinous and would greatly benefit from our simple and accurate 

diagnostic assay. A number of molecular and clinical markers have recently shown promise 

for distinguishing mucinous cysts based on their degree of dysplasia (19,23). A sequential 

diagnostic strategy may emerge in which gastricsin and cathepsin E activity are used to 

determine if a lesion is mucinous, followed by analysis of a secondary marker to define the 

degree of dysplasia. Assessing gastricsin and cathepsin E activity in combination with other 

promising markers will be a primary focus of future work.

Previous gene expression profiling studies of IPMNs and MCNs demonstrated 

overexpression of gastricsin and cathepsin E mRNA (29–31). However, the protein levels 

and activity of these aspartyl proteases has not been previously investigated within these 

lesions. Protease activity is particularly well suited to the development of a rapid and simple 

diagnostic test for differentiating cysts. Activity-based detection is highly sensitive because 

of catalytic signal amplification. Indeed, the assays described in this study use less than 5 µL 

of cyst fluid, whereas CEA tests often require at least 500 µL. Furthermore, unlike 

immunoassays, protease activity assays do not require the costly development of high-

quality antibody reagents. Spectrophotometric assays can be readily adapted to the standard 

plate readers present in clinical laboratories, and there are already several examples of such 

protease activity assays in common clinical use for other indications (47,48).

We were particularly interested to observe that gastricsin expression within mucinous cysts 

was primarily associated with areas of low-grade dysplasia and was absent in high-grade 

dysplasia, although we were only able to assess four cysts containing regions of high-grade 

dysplasia. Previous work demonstrated that gastricsin and other foregut markers are 

overexpressed in other pancreatic cancer precursor lesions, reflecting a cellular 

dedifferentiation step prior to malignant transformation (49). Gastricsin overexpression 

within IPMNs and MCNs might be reflective of a similar process. In support of this 

hypothesis, recent work using the same IPMN genetic mouse model examined in this study 

showed that cellular dedifferentiation is a critical step in the development of IPMNs (44,50). 

Dedifferentiation within this genetic mouse model is transient and occurs prior to the 

development of invasive cancer, which may explain why gastricsin expression is associated 

with regions of low-grade dysplasia. In contrast to gastricsin, we did not observe an 
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association between cathepsin E expression and the degree of dysplasia present within a 

mucinous cyst. This suggests that different processes control the expression of these two 

proteases and that cathepsin E levels are less reflective of cellular identity. Additional studies 

using the recently developed genetic mouse models of mucinous cysts are needed to 

characterize how the expression of these proteases is regulated and what roles – if any – 

gastricsin and cathepsin E are playing in neoplastic transformation (44).

In summary, our results demonstrate that gastricsin and cathepsin E activity are sensitive and 

specific markers for differentiating mucinous from nonmucinous pancreatic cystic lesions. In 

particular, gastricsin activity is a promising candidate for the development of a simple, 

diagnostic test with superior performance to CEA. This could provide clinical stratification 

to properly manage the growing problem of pancreatic cysts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

With advances in abdominal imaging technologies, the incidental detection of pancreatic 

cysts continues to rise. However, there remains a lack of accurate molecular diagnostics 

for differentiating benign cystic lesions from those that can progress into pancreatic 

cancer. This has led to a dramatic increase in the number of potentially unnecessary 

pancreatic resections, which are associated with high rates of morbidity. Using a global 

and unbiased protease-activity profiling approach and patient cyst fluid, we determined 

that the activities of the aspartyl proteases gastricsin and cathepsin E accurately 

differentiate premalignant mucinous cysts from benign nonmucinous cysts. In particular, 

analysis of gastricsin activity demonstrated 93% sensitivity and 100% specificity for 

differentiating mucinous lesions. Our simple and direct fluorescence-based approach for 

stratification of pancreatic cysts significantly outperformed the most widely used 

molecular biomarker – carcinoembryonic antigen (CEA) – and can be readily translated 

into an actionable diagnostic assay to help improve clinical management of these 

challenging lesions.
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Fig. 1. Comparison of global proteolytic activity in mucinous and nonmucinous cysts by MSP-
MS
Volcano plots displaying the peptide cleavages generated by mucinous (n=16) and 

nonmucinous cysts (n=7) when assayed at pH 7.5 (A) or pH 3.5 (B). Spectral counts of 

peptide cleavage products were used for relative quantification of the fold change 

(mucinous/nonmucinous) and hypothesis testing. Cleavages that met the criteria for 

differentiating mucinous from nonmucinous cysts (+/− 1 log2(fold change), p < 0.05) are 

shown in blue. The substrate specificity of the cleavages within the red box is displayed with 

an iceLogo plot (C). Residues shown are statistically significant with p < 0.05.
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Fig. 2. Identification of enriched aspartyl protease activity in mucinous cysts
(A) Heatmap displaying cleavage of 30 mucinous-specific substrates following treatment of 

a mucinous cyst fluid sample with DMSO or various broad-spectrum protease inhibitors. 

Spectral counts were used for relative quantification of peptide cleavage products. Vertical 

bar (|) indicates the site of cleavage within substrates. (B) Label-free quantitation of aspartyl 

protease relative abundance in mucinous (M) and nonmucinous (NM) cysts. (C) Western 

blot analysis of recombinant (r) and cyst fluid-derived cathepsin E and gastricsin. Samples 

were pre-incubated at the indicated pH for 10 minutes.
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Fig. 3. Immunohistochemical analysis of gastricsin and cathepsin E in mucinous cysts
Histological analysis of mucinous cysts with low-grade dysplasia (A, B, E, F) and high-

grade dysplasia (C, D, G, H). Gastricsin (A, C), cathepsin E (E, G), and haematoxylin and 

eosin (H&E) staining (B, D, F, H) in IPMNs (A–F) and MCNs (G, H). Scale bar is 10 µm.
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Fig. 4. Design and synthesis of gastricsin selective fluorescent substrate
(A) Substrate specificity of cathepsin D, cathepsin E, and gastricsin as determined by MSP-

MS. Residues shown in iceLogo are statistically significant with p < 0.05. (B) Heatmap 

comparing the amino acid enrichment Z-scores for gastricsin relative to cathepsin D and 

cathepsin E. (C) Venn diagram depicting the unique and overlapping cleavages detected by 

MSP-MS with cathepsin D, cathepsin E, and gastricsin. (D) Cleavage of the fluorescent 

substrates by cathepsin D, cathepsin E, and gastricsin. Activity was normalized to 1.00 

based on the maximal activity against each substrate. Red arrow indicates the site of 

cleavage. Error bars denote standard error of the mean (SEM) from triplicate analysis.
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Fig. 5. Quantification of gastricsin and cathepsin E activity in 110 cyst fluid samples
Analysis of gastricsin (A) and cathepsin E (B) activity in nonmucinous (NM) and mucinous 

(M) cysts using fluorescent substrates. (C) ROC curves comparing sensitivity and specificity 

of CEA, gastricsin, cathepsin E, and CEA and gastricsin in combination.
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