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Abstract

We extended the classical tumor regression models such as Skipper’s laws and the Norton-Simon 

hypothesis from instantaneous regression rates to the cumulative effect over repeated cycles of 

chemotherapy. To achieve this end, we used a stochastic Moran process model of tumor cell 

kinetics coupled with a prisoner’s dilemma game-theoretic cell-cell interaction model to design 

chemotherapeutic strategies tailored to different tumor growth characteristics. Using the Shannon 

entropy as a novel tool to quantify the success of dosing strategies, we contrasted maximum 

tolerated dose (MTD) strategies as compared with low-dose, high-density metronomic strategies 

(LDM) for tumors with different growth rates. Our results show that LDM strategies outperformed 

MTD strategies in total tumor cell reduction (TCR). This advantage was magnified for fast 

growing tumors that thrive on long periods of unhindered growth without chemotherapy drugs 

present and was not evident after a single cycle of chemotherapy but grew after each subsequent 

cycle of repeated chemotherapy. The evolutionary growth/regression model introduced in this 

paper agrees well with murine models. Overall, this model supports the concept of designing 

different chemotherapeutic schedules for tumors with different growth rates and develops 

quantitative tools to optimize these schedules for maintaining low volume tumors.
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Major Findings

Model simulations show that metronomic (low dose, high density) therapies can outperform 

maximum tolerated dose (high dose, low density) therapies. This is due to the fact that tumor 
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cell reduction is more sensitive to changes in dose density than changes in dose 

concentration, especially for faster growing tumors. This effect is negligible after a single 

cycle of chemotherapy, but magnified after many cycles. The model also allows for novel 

chemotherapeutic schedules and quantifies their performance according to tumor growth 

rate.

Quick Guide to Equations and Assumptions

Assumptions of the model

1. The model is a computational one, driven by a stochastic Moran (birth-death) 

process with a finite cell population, in which birth-death rates are functions of 

cell fitness.

2. Two classes of cells (healthy, cancer) compete against each other at each birth-

death event, with fitness (fH, fC) calculated according to the payoff matrix 

associated with the prisoner’s dilemma evolutionary zero-sum game.

3. Chemotherapy preferentially kills proliferating cells in our model by altering the 

selection pressure (wH, wC) on each cell population, with two parameters: dose 

concentration (c) and dose density (d) which link the parameters linearly.

Key equations

In a Moran finite-population birth-death process there are i cancer cells in a population of N 
total cells (where the number of healthy cells is denoted N - i). At each time step in the 

stochastic evolutionary population dynamics model, a single cell is chosen for birth and a 

separate single cell is chosen for death. A tumor grows by increasing the number of cancer 

cells from i to i + 1 in any given time step. The probability that a healthy cell interacts with 

another healthy cell is given by (N - i - 1)/(N - 1), whereas the probability that a healthy cell 

interacts with a cancer cell is i/(N - 1). The probability that a cancer cell interacts with a 

healthy cell is (N - i)/(N - 1), whereas the probability that a cancer cell interacts with another 

cancer cell is (i - 1)/(N - 1). These probabilities, known as the Moran process, can be 

extended to include a fitness landscape where natural selection can play out over many cell 

division timescales.

The probabilities outlined above are weighted by the “payoff” in order to determine the 

fitness function for each subpopulation: healthy (fH) and cancer (fC), below. The payoff 

values (a, b, c, d) are associated with the prisoner’s dilemma evolutionary game (1, 2). The 

prisoner’s dilemma is defined by the payoff inequalities such that c > a > d > b, but here we 

assume the relatively standard (but not unique) values of a = 3, b = 0, c = 5, and d = 1.

…(1)
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…(2)

Here, (wH, wC) are “selection strength” parameters, 0 ≤ wH ≤ 1, 0 ≤ wC ≤ 1, that measure 

the strength of selection pressure on each of the population of cells. If wH = 0, there is no 

natural selection acting on the healthy cell population, and the dynamics is driven purely by 

the Moran process (i.e. random drift). When wH = 1, the selection pressure on the healthy 

cell population is strongest, and the prisoner’s dilemma payoff matrix has maximum effect.

From these formulas, we can define the transition probability of going from i to i + 1 cancer 

cells on a given step (Pi,i+1) or from i to i - 1 on a given step (Pi,i-1).

…(3)

…(4)

The first term in each equation represents the probability that a cell is selected for 

reproduction (weighted by fitness). The second term represents the probability that a cell is 

selected for death. The probability of the number of cancer cells remaining the same (Pi,i) is 

given by the following. There are two absorbing states (P0,0, PN,N).

…(5)

1 Introduction

Low dose metronomic chemotherapy (LDM) is the systematic and frequent delivery of 

chemotherapeutic agents at doses lower than the maximum tolerated dose paradigm (MTD)

(3, 4). It is typically given at a low dose between 1/10th and 1/3rd of the maximum tolerated 

dose, without a long period of time between subsequent doses, hence it is also associated 

with higher dose densities(3). Important features of low dose, high density metronomic 

chemotherapy include: regular administration of chemotherapy without any interruptions 

using an optimized dose; preference for oral drugs; low incidence of side effects; low risk of 

developing resistance; lower cost. In addition, some elderly or frail patients may only be 

suited for lower dose chemotherapy. Residual toxicity from previous treatment may also 

reduce consideration for MTD chemotherapy (4). Metronomic chemotherapy regimens have 

been associated with lower cost of inexpensive oral drugs such as cyclophosphamide and 

result in fewer side-effect associated expenditures. Several phase II studies have shown 

promises of metronomic-like chemotherapy and its excellent safety profiles (4). The lower 

doses of metronomic chemotherapy regimens are now thought to not only reduce the 
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harmful side effects of toxicity delivered to the patient but perhaps also improve anti-tumor 

effects (5), by killing endothelial cells in addition to its cytotoxic effect on cancer cells (6, 7) 

in an uninterrupted schedule for prolonged treatment periods. Metronomic chemotherapy 

has been shown to be effective in preclinical trials where cancer cells have developed 

resistance to the same chemotherapeutics (5). These LDM regimens are also suited to 

combination or additive strategies to new targeted and relatively non-toxic anticancer drugs 

recently developed.

While the advantages of LDM chemotherapy may be wide ranging with respect to toxicity, 

resistance, and anti-angiogenic effects (outside of the scope of our model), the goal of this 

article is to use an evolutionary mathematical model of cell/tumor growth with the ability to 

simulate chemotherapeutic scheduling to identify growth regimes where LDM would likely 

outperform MTD, and to test various scheduling protocols altering dose density and 

concentration. While there is no simple answer to the question of what types of tumors and 

growth regimes where LDM would be preferable to MTD, our results show that LDM 

chemotherapies with an adequate dose can outperform MTD, especially for fast growing 

tumors that thrive on long periods of drug-free rest with unhindered regrowth. This effect is 

not evident after a single cycle of chemotherapy, but is magnified after each subsequent 

cycle of repeated chemotherapy. In the interplay of choosing between high dose 

chemotherapy (MTD) or low dose, high density chemotherapy (LDM), our results show that 

increasing dose has diminishing returns, so the higher densities afforded by LDM regimens 

are an ideal tradeoff. These results may have remained hidden even in the advent of helpful 

theoretical regression laws like Skipper’s laws and the Norton-Simon hypothesis because 

these laws rely on instantaneous rates of regression, rather than the net result of the full 

chemotherapy cycle operating in an environment with variable growth rates. We explain how 

our results add to the understanding of these classic growth models and advocate the 

consideration of tumor growth rates when choosing chemotherapy scheduling.

1.1 Administration of metronomic chemotherapy

A systematic literature review of the MEDLINE, EMBASE, CENTRAL, and PubMed 

databases for LDM chemotherapy trials from 2000 to April 2012 performed by Lien et. al. in 

2013 (4) revealed a wide variety in dose delivered and dose schedules under the terminology 

of metronomic chemotherapies. From the 80 studies analyzed, 107 unique treatment 

regimens were found (including regimens where multiple drugs were used metronomically). 

38 regimens used LDM only (monotherapy n = 24, doublet LDM therapy n = 14). Of the 

monotherapy, the relative dose intensity (RDI: measured with respect to the maximum 

tolerated dose) ranged from 0.27 to 1.58 (median 1.02) and dose density (percentage of days 

drug is delivered) ranged from 32% to 100% (4). RDI is calculated by dividing the dose 

intensity (DI; the sum of the doses given each day of the chemotherapy cycle) for a 

chemotherapy regimen by the baseline DI value of the conventional MTD schedule. A 

chemotherapy may deliver a greater overall DI than the MTD (i.e. RDI > 1) if a lower dose 

is delivered more often, achieving a greater total dose over the course of the full 

chemotherapy cycle. The lower dose reduces toxicity, allowing for more frequent dosing, a 

key idea behind the metronomic schedules.
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For a low dose metronomic chemotherapy, any schedule that administers a lower dose at 

more frequent intervals (higher dose density) could be classified as “low dose metronomic.” 

But, as seen above, in clinical practice the relative dose intensity delivered and the density of 

the schedules are varied without clear consensus. In fact, only one monotherapy treatment 

regimen kept the RDI constant, balancing the lower dose with an equivalent increase in dose 

density. Of the remaining 23 regimens about half increased RDI (n = 12) while half 

decreased RDI (n = 11). It is evident that many of the quantitative details of LDM 

chemotherapy are unresolved including patient selection, choice of drug (or combinations of 

drugs and treatments), and optimal dose and treatment intervals (4). With this in mind, the 

goal of this manuscript is very targeted. We wish to quantify the relationship between dose 
and dose density delivered using the Shannon entropy index (8) as a quantitative scheduling 

and dosage tool. We will first briefly review the prisoner’s dilemma evolutionary game 

theory model of primary tumor growth that we use to carry out our computational trials (9, 

10) as well as the notion of Shannon Entropy as an index to compare chemotherapeutic 

regimens in order to show that high entropy schedules (with an adequate dose intensity) 

outperform low entropy schedules.

1.2 The classic tumor regression laws

Benzekry et al.(11) chronicle that, despite a rise in personalized and precision medicine, 

currently chemotherapeutic agents are often still administered in the maximum tolerated 

dose paradigm. The author predicts that the forthcoming development of metronomic 

chemotherapy may pave the way for implementing “computational oncology at bedside, 
because optimizing metronomic regimen should only be achieved thanks for modeling 
support.” This prediction characterizes a growing field sometimes referred to as 

computational or mathematical oncology (12, 13). First, however, in order to properly 

understand how alternative dosing schedules like the metronomic regimens fit into the future 

of chemotherapy scheduling, it is important to remember the reasons that led to the advent 

and continued use of MTD paradigms.

1.2.1 Skipper’s Laws—The relationship between dose and tumor regression is linear-log 

(i.e. exponential decay) (14). Skipper et al. (15) were the first to develop a set of theoretical 

laws governing the behavior (and imply the design) of chemotherapy schedules in cancer in 

the late 1970’s. Our understanding of the Gompertzian growth of tumors have made the 

application of these laws more complex, but the fundamentals of these laws still apply today 

(16).

In a tumor that grows exponentially (eqn. 6 and 7) with a constant exponential rate, the first 

law states that the tumor volume doubling time is constant over the life of the tumor (dt = 

log(2)/α),

…(6)

…(7)
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The second of Skipper’s laws is that the percentage of cells killed by a given drug dose, D, is 

constant, therefore a linear increase in dose causes a log increase in cell kill (13). As an 

example, a drug dose, x, that shrinks tumor size from 106 to 105 cells results in a 90% 

decrease of tumor population. An identical subsequent drug dose (a total dose of 2x) will 

further reduce tumor population size according to that same kill constant, to 104. A third 

dose results in 103 cells, a fourth, 102, and so on. The kill law is known as a the ‘log’ kill 

because the constant fraction is a constant logarithmic amount. Skipper’s log-kill law 

indicates that subsequent dosing has a diminishing return; the last few remaining cells are 

the most difficult to eliminate. This log-linear relationship can be formulated as follows:

…(8)

where Ps denotes the probability of cell survival.

1.2.2 Norton-Simon Hypothesis—One important reason the Skipper-Schabel-Wilcox 

model is so useful is that it conceptualizes the tumor growth model (e.g. exponential) and 

tumor regression (log-kill). Norton and Simon realized the importance of extending these 

observations to a Gompertzian growth model (eqn. 11). The log-kill law, a fundamentally 

static law does not say anything about the relationship between the fraction of cells killed 

and the growth rate of the tumor, only the relationship between the rate of tumor regression 

and the dose. In effect, Skipper’s second law assumes a constant growth rate, and therefore, 

a constant regression rate. In Gompertzian growth, the non-constant growth rate results in a 

range of log-kill rates (β) corresponding to the instantaneous growth rate (γ(t)). 
Gompertzian growth is given by the following coupled ordinary differential equations.

…(9)

…(10)

The Gompertz function reduces to the exponential function when α = 0. These coupled 

ordinary differential equations may be directly solved, as follows.

…(11)

The Norton-Simon hypothesis states that tumor regression is positively (linearly) correlated 

with the instantaneous growth rate just before the treatment of the unperturbed tumor (17, 

18). Generally, smaller tumors are associated with higher growth rates (and therefore, higher 

regression rates). Mathematically, the Norton-Simon Hypothesis can be formulated,

…(12)
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where n(t) is the growth rate model of the tumor at time t, f(n(t)) is the growth dynamics 

associated with the unperturbed tumor (i.e. exponential growth or Gompertzian growth), and 

L(t) is the loss function of cells resulting from treatment. The growth function f(n(t)) may be 

assumed to be exponential, (eqn. 6) or Gompertzian, (eqn. 9 and 10). Remembering that 

Skipper’s second law states that cell kill follows first-order kinetics, we may assume for the 

time being that L(t) ≡ const., or that the rate of cell removal due to treatment is constant. In 

other words, each dose of chemotherapy is associated with some value of L. The goal is to 

find the optimal dose concentration and dose density that maximize the loss rate of cell kill, 

L.

1.3 The Implications of the Norton-Simon Hypothesis

Norton and Simon hypothesized that chemotherapy will only be effective in targeting cells 

that are in active proliferation (and as such are directly contributing the growth of the tumor 

in equation 12). Their model demonstrated ability to fit data from preclinical experiments 

(19) and predict future tumor growth and regression after a few initial measurements and 

data from clinical trials in breast cancer (18).

The model has several key implications. First, the model predicts a higher regression for 

higher dose delivered. The highest dose tolerable to the patient should be chosen. Second, 

tumor regrowth during rest periods of chemotherapy necessitates a shorter rest period and 

subsequently, a shorter time of tumor regrowth. The next round of a dose dense 

chemotherapy will attack a smaller tumor (with higher growth rate) and lead to higher 

regression. Both implications give rise to the invention of the MTD paradigm to attack the 

tumor with the highest dose, coupled with shortest rest. These predictions were confirmed 

by clinical trials in which chemotherapy schedules were densified from 21 to 14 days (20). 

The hypothesis also predicts that tumors with an identical tumor burden may have varied 

responses. The growth rate of the tumor determines the response to chemotherapy. As such, 

early administration is important, implying a better response when the tumor is in initial 

stages of high growth. Similar models using the ratio of tumor volume to the host-influenced 

tumor carrying capacity (which corresponds inversely to the instantaneous growth rate of the 

tumor) has been shown to inversely predict radiotherapy response (21).

Fundamentally however, the Norton-Simon hypothesis provides no predictions for the effect 

of dose and dose density on regression. The Norton-Simon hypothesis (equation 12) 

conceals the fact that the rate of cell-kill, L(t) will be dependent on two factors: drug 

concentration and the number of days the drug is administered. The goal of this manuscript 

is to extend the classical and well-accepted predictions of Norton-Simon hypothesis from 

instantaneous regression rates to the cumulative effect over repeated cycles of chemotherapy. 

Chemotherapy “strategies,” or schedules are quantified using the Shannon entropy (8) by 

their total cell reduction (TCR) over the course of the full schedule, rather than the initial 

regression rate (β) which is tied to the instantaneous growth rate at the time chemotherapy is 

initiated. We compare the outcomes of our model to regression data from murine models and 

they are shown to be in good agreement.
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2 Materials and methods

2.1 The link between chemotherapeutic agents and the fitness landscape

It is now well established that cancer is an evolutionary and ecological process (22, 23). 

Studying cancer as a disease of clonal evolution has major implications on tumor 

progression, prevention and therapy (24, 25). The evolutionary forces at play inside the 

tumor such as genetic drift with heritable mutations and natural selection operating on a 

fitness landscape are influenced by tumor microenvironment and the interactions between 

competing cell types. Increased selection will influence the rates of proliferation and 

survival, which cause the population of cells within a tumor to progress toward more 

invasive, metastatic, therapeutic resistant cell types. The role of chemotherapeutic agents is 

to kill proliferating cancer cells. This effectively changes the fitness landscape associated 

with the different sub-clonal populations (altering the evolutionary trajectory of the tumor), 

which we model as a change in the selection pressure on the different cell types, explained 

in more detail below.

In order to model these complex evolutionary forces in cancer, many theoretical biologists 

have used an evolutionary game theory (EGT) framework, pioneered by Nowak, to study 

cancer progression (see (26, 27, 28, 1, 29)). Evolutionary game theory provides a 

quantitative framework for analyzing contests (competition) between various species in a 

population (via the association of ‘strategies’ with birth/death rates and relative sub-clonal 

populations) and provides mathematical tools to predict the prevalence of each species over 

time based on the strategies (30, 31, 28, 32). More specifically, the framework of EGT 

allows the modeler to track the relative frequencies of competing subpopulations with 

different traits within a bigger population by defining mutual payoffs among pairs within the 

group. From this, one can then define a fitness landscape over which the subpopulations 

evolve.

2.2 The model

The model presented in (9, 10) and used in this paper to carry out our computational trials is 

a framework of primary tumor growth used to test the effect of various chemotherapeutic 

regimens, including MTD and LDM. The model is a stochastic Moran (finite-population 

birth-death) process (33) that drives tumor growth, with heritable mutations (34) operating 

over a fitness landscape so that natural selection can play out over many cell division 

timescales (described in more detail in (9, 10)). The birth-death replacement process is based 

on a fitness landscape function defined in terms of stochastic interactions with payoffs 

determined by the prisoner’s dilemma game (1, 2). This game incorporates two general 

classes of cells: healthy (the cooperators) and cancerous (the defectors) (35, 36). During 

tumor progression, each cell is binned into one of two fitness levels, corresponding to their 

proliferative potential: healthy (low fitness) and cancer (high fitness). In our model, we can 

think of a cancer cell as a formerly cooperating healthy cell that has defected and begins to 

compete against the surrounding population of healthy cells for resources and reproductive 

prowess. The model demonstrates several simulated emergent ‘cancer-like’ features: 

Gompertzian tumor growth driven by heterogeneity (37, 38, 39), the log-kill law which 

(linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and 
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the Norton-Simon hypothesis which (linearly) relates tumor regression rates to tumor growth 

rates, and intratumor molecular heterogeneity as a driver of tumor growth (10).

Others have presented mathematical models to study evolutionary dynamics of tumor 

response to targeted therapy (40) in either combination or sequential therapy (41, 42), and 

optimal drug dosing schedules to prevent or delay the emergence of resistance or optimize 

tumor response (43, 44, 45). We are interested in testing “strategies,” or drug schedules that 

control the number of cancer cells, i, in a population of N cells comprising the simulated 

tissue region. (Note: the size of the tumor is based on the cancer cell population, i, which is 

variable and changing according to the fitness landscape, detailed in equations 1 through 5. 

The carrying capacity, N, is a parameter in the model, but all plots shown here are 

normalized by N, so the proportion of cancer cells, i/N, is used to track tumor growth, 

without loss of generality.) The model presented here uses a parameter, w, to control the 

effect of selection pressure. A value of w = 0 corresponds to neutral drift (no selection) and a 

value of w = 1 corresponds to strong selection. We break w into two separate parameters, 

wH, the selection pressure on the healthy population, and wC, the selection pressure on the 

cancer population (see figure 1a). Each dose of chemotherapy is associated with a dose 

concentration, c, which alters the selection pressure as indicated in figure 1a. Here, we 

assume drug concentration will be measured as a fraction of the conventional maximum 

tolerated dose (MTD) dosages, hence 0 ≤ c ≤ 1 (see Figure 1b). As c increases, the selection 

pressure is altered in favor of the healthy cells (wH> w) and to the detriment of cancer cells 

(wC < w) as shown in Figure 1a. Before therapy, the fitness landscape of an untreated tumor 

is that of a prisoner’s dilemma (Figure 1c), where the fitness of the cancer subpopulation is 

greater than the healthy population for the entire range of cancer proportion, i/N. The change 

in fitness landscape for a moderate value of c (c = 0.4) is shown in Figure 1d, which gives 

the healthy cell population a fitness advantage over the cancer population. For a strong dose 

of therapy (such as c = 0.8, shown in Figure 1e), the effect on the fitness landscape is 

exaggerated. The advantage is lessened as the tumor size (i/N) increases for each dose 

(which contributes to the emergence of the Norton-Simon model in Figure 2, explained in 

detail below). Thus, a higher dose leads to a higher kill rate of cancer cells.

In the literature, two approaches have been proposed to model loss functions due to a drug: 

1) non-cycle specific (where the loss function is linear with tumor size) (46) and 2) cycle-

specific (where loss function is linear with tumor growth rate) (15, 18). Cycle-specific drugs 

are considered here, and thus a model of regression that is linear with tumor growth rate is 

chosen. The loss function of the Norton Simon hypothesis in equation 12 shows an example 

of cycle-specific drug modeling.

The instantaneous growth rate, γ, of a stochastic Moran process model (see equations 1 

through 5) is proportional to the fitness of the cancer population minus the average fitness, 

i.e. γ ∝ (fC - ⟨f⟩) where ⟨f⟩ is the weighted average fitness of the total population of healthy 

and cancer cells. Fitness is linear function of the selection pressure parameter, w (see 

equation 2). This proportionality between growth (γ) and selection pressure (w) indicates 

that varying w linearly with dose concentration c (shown in figure 1a) is directly comparable 

to the previous cycle-specific drug models. The model output is shown in figure 2a where 

identical, continuous chemotherapy is administered at different time points in the life of the 
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tumor, corresponding to different instantaneous growth rates. A linear relationship between 

the instantaneous growth rate (γ) and instantaneous regression rate (β) (figure 2b) emerges 
from the model, consistent with the predictions of the Norton-Simon hypothesis. Note: a 

linear model of drug concentration is chosen, but the linear relationship between growth rate 

and regression in figure 2b is an emergent phenomenon of the model, consistent with 

previous chemotherapy hypotheses and models.

A separate justification of the linear model of the effect of drug concentration on selection 

pressure is shown in figure 3. A best-fit was performed to find the optimal parameters of w 
and c to fit data reproduced from mouse models quantifying inter-mouse and intra-mouse 

variability and response to 5-Fluorouracil (5-FU) in two treatment groups: 50mg/kg (figure 

3a, 3b, 3c) and 100mg/kg (figure 3d, 3e, 3f) (47). Tumor size measurements were taken until 

the tumor reached 3 to 4 mm in size, and drug treatment was administered weekly until 1cm 

in size. The prisoner’s dilemma model (black solid lines) appears to accurately capture both 

the growth dynamics (solid black circles) and the treatment dynamics (black x’s). The 

dashed lines are Gompertzian best-fit functions of the unperturbed pre-treatment data (black 

circles), showing good agreement with our model (black solid lines). Previously, we have 

reported the model’s success in capturing current unperturbed growth models (i.e. 

Gompertzian growth) as an emergent phenomenon of this evolutionary model (10). 

Outcomes of our model simulations are quite robust to small parametric changes in all cases.

2.3 Dose concentration versus dose density

Despite a growing trend toward personalized and precision medicine, treatment goals have 

shifted from complete cure to an optimization of long-term management of the disease; 

rather than trying to find the silver bullet, we might utilize the advances in mathematical 

models to optimize existing therapeutic options (11, 48). For this reason, we have decided to 

test the merit of various chemotherapeutic regimens by comparing the total tumor cell 

reduction (TCR). We assume that a therapy regimen with a higher value of TCR will provide 

a greater level of tumor control, a longer time to relapse, and better prognosis.

A drug dose, D, (equation 13) is generally measured in units of mg/m2/week (here, average 

body surface area assumed to be 1.8m2). Yet, dose D consists of two components: dose 

concentration (parameter c in our model) and dose time factor (parameter t in our model). 

The time factor, called the dose density when normalized by the intercycle time, represents 

the percentage of days a dose is administered. In order to compare the importance of each 

term on tumor cell reduction, we hold one term constant and vary the other in Figure 4.

…(13)

Clearly seen in Figure 4a, there is a diminishing return on increasing the dose strength of a 

given chemotherapy regimen. Although there is a positive relationship (an increase in dose 

leads to a higher regression) that relationship lessens as the dose is increased further. 

However, in Figure 4b, the relationship between dose density and regression is linear, 

showing no signs of diminishing returns of increasing density.
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This point has an important subtlety: the dose cannot be continually lowered in favor of 

density. The dose must be sufficient to overcome the growth rate of the tumor; some doses 

are not adequate for tumor regression regardless of the density. This is seen for values below 

the dotted line in Figure 4a and 4b.

3 Results

3.1 Quantifying chemotherapeutic strategies via entropy metric

In clinical practice today, there are three common chemotherapy regimens in use considered 

here: Maximum Tolerated Dose (MTD), Low Dose Metronomic weekly (LDMw) and Low 

Dose Metronomic daily (LDMd). These three chemotherapy strategies are shown in Figure 

5, left. Each regimen consists of identical cycles that are repeated until the tumor is 

eradicated. The MTD (left, top) regimen delivers the maximum dose on a single day, 

repeated once every 2 weeks. The LDMw (left, middle) regimen lowers the dose, but 

doubles the dose density from 1 to 2 days out of 14. The LDMd (left, bottom) regimen has 

the highest density (there is a dose administered on 100% of the days), but the lowest dose.

There are thousands of such choices of chemotherapy regimens when considering varying 

doses across many days or weeks (Figure 5, right), each varying the total dose delivered, D, 

and the density, d. We propose using a Shannon Entropy index, E, of a given chemotherapy 

schedule as a measure that can quantify and synthesize information of both the dose on a 

given day and the distribution of unique, daily doses across the entire chemotherapy regimen 

into a single metric. The entropy is calculated as follows, where ci is the dose strength (often 

simply referred to as ‘dose’) on day i.

…(14)

The assumption in equation 13 that an identical dose is delivered every day can be relaxed, 

and the total dose delivered is found by summing the dose on each ith day (ci) multiplied by 

the length of the dose in days (ti). We assume that the smallest resolution of discrete times 

between doses, ti is a single day, or ti = 1 for all i. N is the number of days between cycles, 

also known as the intercycle time.

…(15)

The dose density of a regimen can be found by summing the number of days where a non-

zero dose is delivered, and dividing by the intercycle time in days, N. Thus, the density will 

be a non-dimensionalized parameter such that (0 ≤ d ≤ 1).
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…(16)

The Shannon entropy metric, E, is an ideal metric for comparing chemotherapy regimens 

because it separates the existing cases already in clinical practice today: MTD (low entropy, 

characterized by high doses with long periods of rest), metronomic regimens (high entropy, 

characterized by low doses with short or no periods of rest), as well as any arbitrary strategy 

of varied doses administered in a cycle of arbitrary length of days. All of the simulated 

therapy regimens were assumed to be frontloaded (non-increasing, with the highest dose on 

day 1 and equal or lower subsequent doses). Backloaded regimens give similar but slightly 

disadvantageous results, because backloaded regimens often start with a period of rest, 

giving the tumor time to grow to a larger tumor, which is associated with a lower growth rate 

(and therefore lower regression rates).

3.2 LDM versus MTD chemotherapies

Computational simulations of 1000 unique chemotherapy schedules were run with identical 

initial conditions (N = 1e6 cells; i/N = 1e3). Mean values of tumor cell regression percentage 

for 50 simulations were calculated and plotted in a pictorial histogram according to 

regression percentage (figure 6). Both slow growing tumors (w = 0.1; figure 6a) and fast 

growing tumors (w = 0.2; figure 6b) were simulated.

Each block represents a chemotherapy regimen, which has an associated Shannon entropy 

index (eqn. 14). The background shading of the blocks of the chemotherapy regimens are 

shaded from white (low entropy) to black (high entropy). The smaller white squares within 

each block indicate the strength of the therapy dose for each day (ci). Pictured are 1000 

combinations of N = 4 day chemotherapy schedules, but similar trends are seen for 

chemotherapy schedules of longer length of days. All regimens are equivalent total dose (D 
= 0.3), non-increasing, and are repeated for 8 cycles of chemotherapy and the tumor cell 

regression (TCR) is recorded. The histograms clearly show a shift from white toward black 

for low TCR toward high TCR. This indicates that high entropy (black) therapies outperform 

low entropy therapies and consistently lead to higher tumor cell reduction. These high 

entropy regimens are low dose, more dose-dense chemotherapies, characteristic of LDM 

chemotherapy.

In Figure 7, the analysis is repeated for varied tumor growth rates (i.e. varied selection 

pressure) for w = 0.1, (circles) w = 0.2, (x’2) and w = 0.3 (squares). The difference in 

reduction is shown for 1 cycle, 8 cycles, and 16 cycles. Fast growing tumors have a high 

slope on a least-squares linear fit approximation of the entropy-TCR plot, which means that 

high entropy therapies (LDM) are more effective for fast growing tumors than for slow 

growing tumors. By contrast, slow growing tumors have a lower slope on the entropy-

regression plot, which means that all regimens have relatively similar performance 

outcomes. Fast growing tumors, therefore, have a higher likelihood of benefiting from a 

more LDM-like chemotherapy, provided the dose is adequate to lead to tumor regression.
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The effect is almost negligible after a single cycle (Figure 7a). The appeal of the implication 

of Norton-Simon toward an MTD approach to chemotherapy lies in the high initial response 

of tumors to a high dose. The metronomic chemotherapies take more cycles to overtake the 

initial quick response of the MTD, but after the 8 cycles (Fig. 7b) and 16 cycles (Fig. 7c), 

the cumulative effect is evident and metronomic chemotherapies outperform MTD therapies. 

For each growth rate there is a corresponding optimal chemotherapy schedule. In each case, 

the optimal solution corresponds to the highest entropy (which corresponds to the low-dose 

metronomic chemotherapy schedule).

4 Discussion

We use a stochastic Moran process model coupled with a prisoner’s dilemma evolutionary 

game (cellular interactions) to contrast LDM and MTD chemotherapies with respect to their 

effect on tumor growth. The Shannon entropy was identified as a useful metric to compare 

chemotherapy strategies. The metric is useful in quantifying LDM strategies (which 

correspond to high entropy values), MTD strategies (low entropy), as well as novel strategies 

with intermediate entropy values.

Our results show that high dose chemotherapy strategies outperform low dose, although 

there are some subtleties associated with the growth rates of the tumors. Dosing consists of a 

product of concentration and density and our results show that an increase in density is more 

effective than the same percentage increase in concentration. In other words, higher dose 

concentrations shown diminishing returns. The effectiveness of density in leading to a higher 

tumor cell reduction allows the LDM chemotherapies (which are more dose dense) to 

outperform MTD strategies. This effect is magnified for fast growing tumors that thrive on 

long periods of unhindered growth without chemotherapy drugs present. This effect is not 

evident after a single cycle of chemotherapy, but is magnified after each subsequent cycle of 

repeated chemotherapy. We could ask if there is any evidence of this effect in the literature 

on clinical trials already performed. We first point to a paper comparing different 

chemotherapeutic schedules for prostate tumors (49) (relatively slow-growth rates). In this 

phase 3 study, docetaxel dosing given every three weeks was compared to dosing every 

week. The mean survival was only slightly higher for the first group (three weeks) compared 

with the second (weekly), showing no obvious benefit to a low-dose high density treatment. 

By contrast, a phase 2 trial for small cell lung cancer (SCLC) (50) was performed, a tumor 

with typically higher growth rates than prostate tumors. For this group, the drug topotecan 

was administered on a higher dose weekly basis with disappointing results, pointing out the 

advantages of the LDM therapies for this fast-growing tumor type.

Thus our model points to the benefits of choosing dosing strategies based on tumor growth 

rates, something not currently done in medical practice. The concept of choosing dosing 

schedules based on tumor growth rates could well be a fruitful avenue to test further in 

clinical trials focused on this question. Others have attempted to estimate prospective 

patient-specific tumor growth rates to make clinical decisions about treatment scheduling 

and fractionization, using measurements at diagnosis and first day of treatment (51, 21). 

Furthermore, the promise of LDM chemotherapy on mitigating the risk of resistance (5) and 

metastasis (11) could be a separate line of future investigation.
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Figure 1. Chemotherapy is a selective agent that alters the fitness landscape of cells
(a) The dose strength parameter, c, (0 ≤ c ≤ 1), alters the selection pressure parameter, w, (0 

≤ w ≤ 1), in favor of the healthy cell population (wH > w) and to the disadvantage of the 

cancer cell population (wC < w). (b) Total dose density delivered in the one 

chemotherapeutic cycle, D, is the product of the dose strength (c, 0 ≤ c ≤ 1) and dose interval 

(d, 0 ≤ d ≤ 1) such that D = ct (eqn. 13 (0 ≤ D ≤ 1)). (c,d,e) Plots showing the fitness of the 

healthy cell subpopulation (fH, dashed line) and the cancer cell subpopulation (fC, dotted 

line) for no therapy, low dose therapy, and high dose therapy.
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Figure 2. Classical Tumor Regression Laws
(a) The Norton-Simon hypothesis states that tumor regression is proportional to the growth 

rate of an unperturbed tumor of that size. Unperturbed tumor growth, nU (t) (dashed line) in 

a representative population of N = 103 cells, and growth rate, γ(t) (solid line) is shown. 

Therapy is administered at various timepoints in the growth of the tumor and then 

regression, nT (t), is plotted (dotted line). Rate of regression, β, is the best-fit slope on the 

log-plot. (b) The average regression rate was calculated for 25 stochastic simulations, and 

plotted as a function of γ at the time of therapy with error bars indicating the standard 

deviation of values. A linear best fit (predicted to be linear by the Norton-Simon hypothesis; 

dotted line) is calculated to be β(t) = 3.0865γ + 5.2359e05.
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Figure 3. Response of murine tumors to 5-Fluorouracil (5-FU) treatment with model best-fit
Data (reproduced from (47)) from two treated mice: CM.41 (a, b, c) and CM.43 (d, e, f), 

receiving total doses of 50mg/kg or 100mg/kg, respectively, on a weekly basis. Biweekly 

measurements of tumor volume are recorded for untreated (black circles) until 3-4mm in 

size and treated volumes (black x’s) are measured until tumor reaches 1cm size. A 

Gompertzian function is best-fit (dashed line) and the Prisoner’s dilemma model is fit using 

w and c as parameters (solid line). The model fit performs well for the wide range of tumor 

growth rates found in six tumors (w = [0.18, 0.08, 0.21, 0.08, 0.35, 0.12] and c = [0.30, 0.49, 

0.34, 0.34, 0.36, 0.32] a through f, respectively) Note: tumor in (a) shows a time delay from 

start of treatment to response to therapy which our model does not address.
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Figure 4. Diminishing returns of dose escalation compared to linear relationship of dose density
(a) Dose Escalation: The percent regression of a tumor for a range of dose strength (constant 

dose interval: t = 10 days, T = 14 days) are shown for a range of selection pressure: w = 0.1 

(circles), w = 0.2 (x’s), and w = 0.3 (squares). For each subsequent increase in dose strength, 

the dose escalation approach to chemotherapy shows diminishing returns in percent tumor 

regression. (b) Dose Density: The percent regression of a tumor for a range of dose interval 

(constant dose strength: c = 1.0) are shown for a range of selection pressure: w = 0.1 

(circles), w = 0.2 (x’s), and w = 0.3 (squares). Dose density shows a linear relationship 

between densifying chemotherapy and percent tumor regression.
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Figure 5. Shannon entropy as an index to compare treatment strategies
(Left:) 3 common chemotherapy schedules are shown for one cycle (N = 14 days). 

Maximum Tolerated Dose (left, top) is a high dose (administered once at the beginning of 

every 2 week cycle) and low dose density (d = 0.071, see equation 16) regimen. Low Dose 

Metronomic Weekly (left, middle) is a lower dose, higher density (d = 0.143) regimen, while 

Low Dose Metronomic Daily is the lowest dose, highest density (d = 1.00). (Right:) 

Similarly, chemotherapy regimens can be simulated for a range of dose, density, and entropy 

values. Pictured from top to bottom are a range of representative regimens from low entropy 

(i.e. high dose, low density) to high entropy (i.e. low dose, high density) for a cycle of N = 4 

days. On each ith day, treatment of dose ci is administered. The treatment strategy’s 

Shannon Entropy, E, is calculated according to equation 14 and the total dose delivered is 

calculated according to equation 15. All treatment strategies are front loaded (monotonically 

decreasing) regimens. It should be noted that LDM-like regimens correspond to a high 

entropy value (bottom, left and right).
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Figure 6. High entropy, LDM-like chemotherapies outperform low entropy MTD-like 
chemotherapies
Two pictorial histograms are plotted where each block (color-coded from white: low entropy 

to black: high entropy) represents a chemotherapy regimen. (a) A slow-growing tumor (w = 

0.1) (b) A fast-growing tumor (w = 0.2). All regimens are equivalent total dose (D = 0.3), 

monotonically decreasing, and are repeated for 8 cycles of chemotherapy and the tumor cell 

reduction (TCR) is recorded. The dose density, d, and dose concentration, ci, are varied 

between regimens. The histogram clearly shows a color-shift from white toward black for 

low TCR, ineffective therapies toward high TCR, effective therapies. High entropy (black) 

therapies outperform low entropy therapies. The data was fit to a Weibull distribution 

(shown in upper left panel; (a): k = 14.251, λ = 65.882, (b): k = 6.647, λ = 46.758), overlaid 

in a solid line.
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Figure 7. High entropy strategies lead to an increase in tumor regression
The relationship between tumor cell reduction (TCR) and entropy (H) is shown for a single 

cycle of chemotherapy (a), 8 cycles (b), and 16 cycles (c). The simulations (averages of 25 

stochastic simulations for total dose delivered D = 0.3) are repeated for slow (w = 0.1, 

circles), medium (w = 0.2, x’s), and fast growing tumors (w = 0.3, squares). The low slope 

value in (a) indicates negligible advantage of high entropy strategies after only a single 

cycle. After many cycles, the advantage of high entropy strategies is apparent (b,c). Also 

note that the slope associated with faster growing tumors (squares; w = 0.3) is higher than 

those of slower growing tumors (circles; w = 0.1). This indicates that at high entropies, TCR 

for the fast growing tumors is closer to those for slow growing tumors, as compared with 

low entropies.
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