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Dissipatively coupled waveguide networks for
coherent diffusive photonics
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A photonic circuit is generally described as a structure in which light propagates by unitary

exchange and transfers reversibly between channels. In contrast, the term ‘diffusive’ is more

akin to a chaotic propagation in scattering media, where light is driven out of coherence

towards a thermal mixture. Based on the dynamics of open quantum systems, the combi-

nation of these two opposites can result in novel techniques for coherent light control. The

crucial feature of these photonic structures is dissipative coupling between modes, via an

interaction with a common reservoir. Here, we demonstrate experimentally that such sys-

tems can perform optical equalisation to smooth multimode light, or act as a distributor,

guiding it into selected channels. Quantum thermodynamically, these systems can act as

catalytic coherent reservoirs by performing perfect non-Landauer erasure. For lattice struc-

tures, localised stationary states can be supported in the continuum, similar to compacton-

like states in conventional flat-band lattices.
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The engineering of dissipation to a common reservoir gen-
erates a vast array of novel structures for photonic appli-
cation and quantum simulation. It has already been shown

that the coupling of a number of quantum systems to the same
reservoir gives rise to a decoherence-free subspace of Hilbert
space1. Moreover, the evolution of an initial state towards this
decoherence-free subspace is able to preserve and even create
entanglement2–5. The careful engineering of loss can lead to
coherence preservation6–8, deterministic creation of non-classical
states9–11 and serve as a tool for quantum computation12, 13.
Networks of dissipatively coupled systems were studied that can
support topologically protected states14–16. Recently, optical set-
ups were also used to study phenomena induced by engineered
losses17–19.

Arrays of evanescently coupled optical waveguides is an
excellent experimental platform to investigate a wide variety of
semi-classical and quantum phenomena ranging from robust
topological edge states20, 21 to quantum walks of correlated
photons22. Precise control in waveguide fabrication allows access
to a desired Hamiltonian and the ability to probe the evolution of
a specific initial state. Waveguide arrays with controllable loss
and/or gain are also used to study various effects associated with
non-Hermitian physics23. In recent years, development of the
femtosecond laser writing technique24 facilitated the fabrication
of optical waveguides and waveguide-based devices with three-
dimensional geometry enabling the demonstration of intriguing
phenomena known from condensed matter and quantum
physics25.

Using the platform of integrated waveguide networks, here we
propose that light can flow diffusively while remaining coherent
and even entangled in a system of bosonic modes coupled to
common reservoirs. In the experiment, performed using classical
input states, we observed coherent diffusive equalisation in dis-
sipatively coupled waveguide arrays. Coherent diffusive light
propagation opens new vistas for photonic applications, such as
directional light distribution and diffusive coherence-preserving
equalisation. In other words, we demonstrate that the afore-
mentioned phenomena can be realised in the network of coupled
integrated waveguides suggesting an exciting area in optical
technologies, coherent diffusive photonics.

Results
Theoretical background. The coherent diffusive photonic cir-
cuits considered in this article are described by the following
generic quantum master equation:

d
dt

ρ ¼
XN
j¼1

γj 2AjρA
y
j � ρAy

j Aj � Ay
j Ajρ

� �
; ð1Þ

where ρ(t) is the density matrix, Aj denote the Lindblad operators
for mode j and γj are the relaxation rates into corresponding
reservoirs (see Supplementary Note 1 for more detail). In the
experiments, we use femtosecond laser inscribed24 arrays of
coupled optical waveguides, where the propagation of the light
can mimic the time evolution described by specific Hamilto-
nians25. The relaxation rates (γj) then describe the coherence
diffusion rate between neighbouring waveguides. Coupling to
common reservoirs is realised by mutually coupling each pair of
waveguides to a linear arrangement of further waveguides26

(Fig. 1).
Let us start with a simple example of 1D dissipatively coupled

chain (DCC) with Aj = aj − aj+1, where aj ðayj Þ is the bosonic
annihilation (creation) operator, aj αj

�� � ¼ αj αj
�� �

. Equation (1) can
then be recast in terms of coherent amplitudes αj (Supplementary

Note 1):

d
dt

αk ¼ � γk þ γk�1ð Þαk þ γkαkþ1 þ γk�1αk�1: ð2Þ

Equation (2) formally coincide with the equations of a time-
dependent classical random walk in one dimension, the discrete
analogue of diffusion and heat transport dynamics. However,
there are no classical probabilities in Eqs. (1) and (2), with the
amplitudes αj being complex. While the light flows diffusively,
like heat, its coherence is maintained: off-diagonal elements in the
Fock-state basis do not decay. For this to be the case, a
fundamental role is played by the collective symmetrical super-
position of all modes, characterised by a sum of modal operators:

Asum ¼
XNþ1

j¼1

ajffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p : ð3Þ

If a state is not symmetrical over all modes, it follows from Eqs.
(1) and (2) that it will asymptotically decay to the vacuum state.
Therefore, any state represented by a combination of operators
Asum and Ay

sum is conserved by the dynamics of Eq. (3). These
states can be quite diverse in nature, from highly non-classical to
Gibbs states (see Supplementary Note 3). Furthermore, a
stationary state can also be entangled: for a single photon in
the DCC, the state Ay

sum

Q
8j

0j ij is stationary (see ref. 27 for details).
Consider an initialisation with all modal oscillators in coherent

states. Eq. (1) shows that this will evolve into a product of
coherent states with equal and averaged amplitudes,

Q
8j

αsumj ij
where αsum ¼ P

j
αj= N þ 1ð Þ. This feature of the diffusive, yet

coherent 1D circuit, opens the possibility to realise an optical
equaliser, suppressing both intensity and phase fluctuations in
multimode fields. The equaliser performance is illustrated in
Fig. 2, where it is shown how the DCC can completely smooth
any arbitrary zero-mean variations of the input.

Photonic implementation. In order to realise engineered dis-
sipative coupling in integrated waveguides in accordance with Eq.
(1), one must be able to adiabatically eliminate lossy sites (Fig. 1a)
from the system dynamics. This results in the fine-tuning of the

�2

�1

a c

b

Fig. 1 One-dimensional diffusive photonic circuit. a Dissipatively coupled
chain of the single mode waveguides. Every second waveguide (empty
circles) is lossy and serves as a reservoir. The waveguides indicated by
filled circles exhibit low loss and couple dissipatively via the auxiliary
waveguides only. b Experimental realisation of the chain in a using an
integrated optical circuit. The lossy sites are implemented using auxiliary
arrangements of coupled waveguides. Here, κ1 is the coupling between
chain modes and lossy sites and κ2 is the coupling between the waveguides
forming the reservoirs. c The three-dimensional geometry of the
elementary diffusive circuit indicated by the dotted rectangle in b
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evanescent coupling parameters κ1,2, where the coupling between
chain modes and lossy sites, κ1, must be considerably smaller than
intra-reservoir couplings, κ2. For the particular design of Fig. 1c, it
appears sufficient to have κ1/κ2 ≈ 0.5 (see Supplementary Fig. 1).
The same ratio κ1/κ2 should hold for all γt (equivalently, κ1z in
waveguide implementation, where z is the propagation distance
along the chain waveguides). The length of the DCC is not a
prohibitive parameter and the collective behaviour, the coherent
diffusive dynamics, can be established for merely two coupled
bosonic modes. The effect of coherent optical equalisation can
thus be readily achieved in the elementary circuit of Fig. 1c. In the
experiment, a 30-mm-long elementary circuit with 20 waveguides
in the reservoir was fabricated (Methods section) and the output
intensity distribution was measured as a function of the wave-
length, λ, of incident light. It should be mentioned that both κ1,2
vary linearly in the wavelength range of interest without affecting
κ1/κ2 significantly, and hence, wavelength tuning enables us to
observe the dynamics as the effective analogous time, κ1(λ)z, is
tuned in this case (Supplementary Note 2). Figure 3 depicts the
corresponding experimental results, clearly demonstrating
equalisation of the input coherent signal. In the next step, we
fabricated a chain of five waveguides, coupled via similar reser-
voirs, and demonstrate the coherent diffusive equalising. We
excited the central waveguide of the chain at the input and
measured the intensity distribution after a propagation of z = 30
mm. Figure 4 shows the output intensities for three different
values of κ1z. These experimental results are in good agreement
with the numerically calculated output intensity distributions.
Figure 4 shows dynamically how the equalisation unfolds.

Two-dimensional diffusive circuits. When the linear arrange-
ment of modes in the DCC is extended to further dimensions, a
large vista of applications becomes accessible. These range from
re-routing photonic devices to simulators of many-body quantum
systems. Figure 5a outlines a photonic circuit for which the
excitation of two control modes can dissipatively direct a
coherent flow of light (Fig. 5b). This Quantum Distributor
comprises two linear DCC, connected by mutual interaction to
the pair of control modes (Supplementary Note 4). Here, the
control modes perform the distribution catalytically, their
coherence being conserved.

Another simple DCC structure comprises two linear chains
placed parallel with dissipative connections between each
neighbouring mode (Supplementary Fig. 2). This arrangement
gives rise to the localisation of signals which, unusually, is not
born of defects (Supplementary Note 5). This is similar to the
recently experimentally demonstrated lattice of unitarily coupled
waveguides28, 29. Alternative circuits are waveguides arranged as a
honeycomb and square lattice (Supplementary Figs. 3 and 4). The
Lindblad operator for the honeycomb structure is

Lj ¼
P6
k¼1

�1ð Þkajk, where j indexes hexagonal cells and k numbers

the modes in the cell. If each mode in a hexagonal cell has the
same amplitude, the cell collectively constitutes a stationary,
compacton-like state. These states satisfy Lj

� � ¼ 0, ∀j. It can be
noted that they are robust with respect to additional losses in
modes neighbouring the cell. If there are some losses within the
stationary cell itself, some non-vacuum states can still be
supported (Supplementary Note 5). Moreover, coherence can
spread diffusively in the lattice. Detailed discussion on the
dissipative localisation in the diffusive square lattice can be found
in Supplementary Note 5.

Quantum thermodynamical interpretation. The coherent dif-
fusive dynamics of DCC also have an intriguing quantum ther-
modynamical interpretation. For a long DCC with identical initial
coherent states of modes, the system will strongly equalise any
fluctuations. We then dissipatively couple one further ‘signal’
mode to this chain. This DCC will act as a reservoir, driving the
signal mode towards some state independent of its initial exci-
tation, asymptotically disentangled from the remainder of the
chain. The state of the DCC after this interaction will belong to
the same class of macrostates as initially. Thus the long DCC
chain is acting as a catalytic reservoir to the signal mode, and
forthwith we use the term reservoir to describe the arrangement.

Let us consider a DCC with N þ 1 � 1 oscillators in coherent
states, each of amplitude α, and the dissipatively connected signal
mode having amplitude a0. For an arbitrary initial state of the a0
mode represented as ρa0 ¼

P
j
pjjβjihβjj030, the stationary state of

the chain will be ρst ¼
P
j
pj

QNþ1

k¼0
αj
�� �

αj
� ��

k
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Fig. 2 Diffusive equalisation in a one-dimensional chain. Simulation showing optical amplitude equalisation for k= 100 coherent states, propagating
through a dissipatively coupled chain with equal coupling, γj= γ. The dynamics follow Eq. (1), where an initially random distribution of coherent state
amplitudes are smoothed after a long effective time (γt). Darker data points indicate a larger deviation from the mean amplitude, α= 2.5, emphasised by an
equivalently coloured surface. Data points corresponding to each individual oscillator are connected
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αj ¼ 1
Nþ2 β þ N þ 1ð Þαj

� 	
. For any finite set of βj, the fidelity of

the stationary state with the product of coherent states,

Φj i ¼ QNþ1

j¼0
αj ij, tends to unity for large N. A sufficiently long

DCC will, therefore, evolve any signal state into the coherent state
initialised on the other oscillators in the chain. Hence, the DCC is
indeed acting as a reservoir, washing away any information about
the initial state. However, this clearly happens at a certain cost.
The energy difference between the initial and asymptotic states of
the chain and mode a0 is given by:

ΔE ¼ N þ 1
N þ 2

X
j

pj βj � α
���

���
2
: ð4Þ

Note that in the limit of large N, the energy balance of the mode
a0 is the difference between the energies of the initial and the

asymptotic state of the mode a0: ΔE0 �
P
j
pj βj
���

���
2
� αj j2. It can be

equal to the energy loss of the whole mode a0 plus DCC
system, which holds for signal states satisfying

αj j ¼ P
j
pj βj
���

���cos arg βj

� �
� argðαÞ

n o
.

Therefore, erasure of the state of mode a0 can be performed
without energy change of our reservoir. Such an action seems to
contradict the famous Landauer’s erasure principle: in order to
erase information irreversibly, by an action of the environment,
energy transfer into the environment needs to occur31. However,
this principle was formulated for classical systems. The quantum
Landauer’s principle holds under different assumptions. These
consist of the reservoir being a closed, Gibbs state system, which
is entirely uncorrelated with the signal state. If the reservoir is not
isolated from the environment, the applicability of the Landauer’s
principle is questionable32. Indeed, the use of an additional
quantum system coupled to the reservoir allows the state of the

signal to be erased without entropic change. The DCC is an
example of the reservoir with such an additional quantum system.

Discussions
In summary, we have illustrated intriguing possibilities for pho-
tonics that are generated by diffusive light propagation. The
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Fig. 3 Coherent diffusive equalisation in a dissipatively coupled waveguide pair. a Sketch illustrating the photonic implementation of two sites coupled via a
reservoir (same as Fig. 1c). Here, WG1 and WG2 are two waveguides comprising the chain and the array of coupled waveguides, indicated by pink circles,
acts as the reservoir. b The equalisation effect: WG1 is excited initially with a coherent input and the light intensities (I1,2) at WG 1, 2 are measured after a
propagation of z= 30mm. The coherent diffusive evolution distributes the input light equally between WG1 and WG2. In this implementation, the effective
propagation time γt of Eq. (1) and Fig. 2 translates into propagation distance z along the grey waveguides in Fig. 1 c. For a fixed sample length z, the
dynamics can then be best assessed by monitoring the output intensity as a function of the wavelength as shown in the graph (see text and Supplementary
Notes 1 and 2 for details). This effectively corresponds to changing γt ↔ κ1z. c–f, Output intensity distributions for four different wavelengths (700, 730,
770 and 790 nm, respectively), indicated by the vertical dashed lines in b
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Fig. 4 Coherent diffusive equalisation in a dissipatively coupled waveguide
array. a–c Experimentally measured intensity distributions for three
different values of γt↔ κ1z. Here, the maximum propagation distance of the
device is z= 30mm, κ1 is tuned by varying the wavelength (λ) of incident
light, as in Fig. 3. The central waveguide of the chain, indicated by the white
circle, was excited at the input for all measurements. In this device, the
waveguides in the chain are coupled via identical reservoirs, each
containing twenty coupled waveguides. d–f Numerically calculated intensity
distributions corresponding to a–c respectively
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dissipative coupling of bosonic modes can allow light to flow like
heat, whilst retaining coherence and even entanglement. A linear
system of dissipatively coupled waveguides can act as an optical
equaliser, smoothing fluctuations in amplitude and phase towards
a common output. Any input state, classical or non-classical, will
evolve into a completely symmetrised, correlated, state of the
whole system. This equalising action has been experimentally
demonstrated with coherent input to an elementary photonic
circuit (Fig. 3) and for the chain of five waveguides (Fig. 4).
Further, we have outlined dissipative circuits which can cataly-
tically direct the flow of light across multiple channels, or even
support stationary lattice states without impurity.

Generally, integrated waveguide networks lend themselves to
applications in quantum information science33, particularly in
quantum communication. Quantum communication based on
so-called qumodes (continuous variables optical quantum sys-
tems) has already proven feasible in terms of point-to-point
transmission of quantum states (see refs. 34–36) and this can be
used in a number of applications such as quantum metrology and
sensing, quantum cryptography and quantum signatures. Our
coherent diffusive circuits are relevant as generic systems of
qumodes propagating in integrated lossy networks where the loss
mechanism provides quantum state engineering.

In the context of quantum thermodynamics, the DCC itself can
be considered as a reservoir with non-trivial properties.
Remarkably, the state of the reservoir can remain unchanged
throughout the process of interaction with an external 'signal'
mode and allow non-Landauer erasure to be performed. Further,
the optical equalisation and quantum evolution towards a sta-
tionary state can be used to study equilibration and thermalisa-
tion processes in quantum theory, one of the central problems in
quantum thermodynamics37. In the future, we believe that dif-
fusive photonic systems will find practical application both in
studying the fundamental processes of structurally engineered
open systems and in an array of integrated photonic technologies.
Furthermore, the non-linear DCC can be engineered and
implemented for producing and distributing non-Gaussian
states38.

Methods
Fabrication and characterisation of the photonic devices. The photonic devices
formed by arrays of identical optical waveguides were fabricated using femtosecond
laser writing technique24. A 30-mm-long borosilicate substrate (Corning Eagle2000)
was mounted on x-y-z translation stages (ABL1000), and each waveguide was

fabricated by translating the stages once through the focus of the fs laser pulses
generated by an Yb-doped fibre laser (Menlo Systems, BlueCut; 350 fs, 500 kHz and
1030 nm). The waveguide arrays were characterised using single-mode-fibre input
coupling and free-space output coupling. To excite waveguides with a tunable
wavelength of light, a photonic crystal fibre39 was pumped using sub-picosecond
laser pulses of 1064 nm wavelength to generate a broadband supercontinuum. A
tunable monochromator placed after the supercontinuum source was used to select
narrow band (~3 nm) light, which was coupled into an optical fibre (SMF-600).
This fibre was then coupled to the desired waveguides. The output intensity dis-
tribution was observed using a CMOS camera (Thorlabs, DCC1545M).

Data availability. Raw experimental data are available through Heriot-Watt
University PURE research data management system (https://doi.org/10.17861/
15c1715e-a7c4-4bbf-beb4-91341f1c5ca0).
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