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Abstract: This paper presents a method of reconstructing full-body locomotion sequences for virtual
characters in real-time, using data from a single inertial measurement unit (IMU). This process can
be characterized by its difficulty because of the need to reconstruct a high number of degrees of
freedom (DOFs) from a very low number of DOFs. To solve such a complex problem, the presented
method is divided into several steps. The user’s full-body locomotion and the IMU’s data are
recorded simultaneously. Then, the data is preprocessed in such a way that would be handled
more efficiently. By developing a hierarchical multivariate hidden Markov model with reactive
interpolation functionality the system learns the structure of the motion sequences. Specifically,
the phases of the locomotion sequence are assigned in the higher hierarchical level, and the frame
structure of the motion sequences are assigned at the lower hierarchical level. During the runtime
of the method, the forward algorithm is used for reconstructing the full-body motion of a virtual
character. Firstly, the method predicts the phase where the input motion belongs (higher hierarchical
level). Secondly, the method predicts the closest trajectories and their progression and interpolates
the most probable of them to reconstruct the virtual character’s full-body motion (lower hierarchical
level). Evaluating the proposed method shows that it works on reasonable framerates and minimizes
the reconstruction errors compared with previous approaches.
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1. Introduction

In modern computer animation production, motion capture solutions simplify animators’ lives.
Motion capture systems not only quickly capture human motion but also its naturalness. However,
most motion capture solutions are expensive (except for a few affordable systems). Most of them
also require special equipment and extensive preparation time to place the necessary markers on a
performer’s body and calibrate the system. A final disadvantage of most high-quality systems is that
they are almost always limited to indoor studios, which is especially true for optical systems.

Recently, extensive research has focused on reconstructing human motion from a low-cost inertial
measurement unit (IMU). One research direction has aimed to reduce the number of sensors or markers
required. Most motion reconstruction methods such as [1,2] use six sensors (hands, feet, head, and root)
and a motion database containing sample poses of a virtual character. Thus, using the signals from the
sensors, either kinematic solutions or data-driven methodologies for reconstructing full-body motion
using mainly statistical motion models have been developed.

Considering the prohibitive cost of acquiring a high-quality motion capture system and the
difficulties associated with reconstructing the locomotion sequences for large numbers of people
(e.g., capturing the locomotion sequences of a group of pedestrians to analyze their reactions and
interactions in order to compose virtual crowds), affordable solutions that provide such functionality
are highly desirable. Based on this aim, this paper presents a method of reconstructing the full-body
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locomotion behaviors of a virtual character by using data provided from a single sensor. It should
be noted that nowadays, a variety of devices, such as smartphones and watches, have an embedded
accelerometer and gyroscope.

To reconstruct motion using a single IMU, a probabilistic model based on prerecorded human
motion data was developed. First, a multivariate hidden Markov model (HMM) was used to map the
performer’s retrieved feature vectors (captured from the full-body motion capture device) to those
retrieved from the single IMU. The multivariate HMM is extended to handle hierarchical levels of
motion. Specifically, the model is trained to recognize the phases of the locomotion that a user performs
at its higher hierarchical level, and to reconstruct the virtual character’s full-body motion at its lower
hierarchical level through interpolating the closest trajectories. Reconstructing full-body motion
sequences pose-by-pose can produce ambiguity and temporal incoherence. Thus, a moving window
and the forward algorithm were used during the application’s runtime to determine the phase where
the user’s input motion belonged and then to reconstruct the virtual character’s full-body locomotion.

This research makes several important contributions. First, it proposes a novel way of
reconstructing a virtual character’s full-body locomotion by using a single IMU. Second, it shows
how the proposed approach can reconstruct different locomotion behaviors (walking, running, etc.)
based on a single training process. For example, Eom et al. [3] reconstructed each locomotion
separately (the model is trained to recognize a character’s particular locomotion behavior). Third,
the proposed method makes fewer reconstruction errors than those of previous solutions. Moreover,
the proposed hierarchical multivariate HMM with the reactive interpolation functionality can also
be considered a novelty. Specifically, the presented probabilistic model for a virtual character’s
locomotion reconstruction extends a previously proposed hierarchical HMM for character animation [4]
by introducing the reactive model interpolation functionality. The advantages of the proposed
probabilistic model may also benefit a variety of applications related to computer animation and
interactive character control.

This paper is organized as follows. Section 2 discusses the work related to the proposed approach.
Section 3 describes the methodology used in the proposed method. Section 4 explains the preprocessing
steps. Section 5 covers the proposed HMM that was developed to handle this complex locomotion
reconstruction problem. Section 6 presents the motion reconstruction process based on the forward
algorithm. The evaluations that were conducted are described in Section 7. Finally, Section 8 concludes
with a discussion of the methodology’s limitations.

2. Related Work

Motion capture solutions are used extensively in a variety of entertainment and computer
animation-related areas and applications. In recent years, various solutions have been developed,
with high-quality results. Motion capture systems can be divided into different categories based on
the technologies that they use. The main categories are optical, mechanical, magnetic, and inertial.
Each system type has its own advantages and disadvantages regarding the accuracy of the captured
data, the capability to capture a particular volume, and the operation effort required. A more detailed
explanation of how motion capture systems work can be found in [5–7].

This paper proposes a method of reconstructing a character’s full-body motion by using a reduced
number of data inputs in conjunction with the ability of statistically analyzing sample motion data.
This approach applies to performance animation and motion reconstruction. In performance animation
techniques (known as “computer puppetry” [8,9]), performers can manipulate the body parts of a
virtual character by using kinematic solutions [10,11], the system can recognize the performer’s action
(activity recognition) and display the motion from a database [12–17], or the system can synthesize a
new motion sequence by using the existing motion data in a database (motion reconstruction) [1,18–21].
In these three approaches, the input signals provided by the motion capture device are used as
the parameters for the motion control or reconstruction process. To animate the virtual character,
methodologies that use accelerometers [13,18,22] or optical motion capture devices [23,24] provide the
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desired control parameters for the system. Recent research has focused on the ability to synthesize
natural-looking motion sequences while using a reduced number of input data. Hence, methods that
use six [1] or two [25] inputs (markers or sensors) or even just one [3] are capable of reconstructing
a character’s motion in real-time. These kinds of methods are commonly based on the construction
and the use of statistical analysis of prerecorded human motion data [1]. Such methods map the
reduced input parameters to a database of postures to find and synthesize new motion sequences
that match the input constraints. A few previously proposed methodologies that use a reduced
number of input signals to reconstruct the virtual character’s full-body motion are described in the
following paragraphs.

A statistical analysis and synthesis method of complex human motions were introduced by
Li et al. [26]. This method provided results that were statistically similar to the original motion
captured data. Based on a real-time inverse kinematic solver, Badler et al. [27] were able to control a
virtual character by using data from only four magnetic sensors. In Semwal et al.’s study [28], eight
magnetic sensors in conjunction with an analytical mapping function were able to control a virtual
character’s motion. A foot pressure sensor was used by Yin and Pai [15] to reconstruct the poses of a
virtual character. Chai and Hodgins [29] developed a real-time performance-driven character control
interface that used cameras to capture the markers attached to a performer. Their methodology was
based on a local motion model, which was utilized with numerous prerecorded motion capture data.
Pons-Moll et al. [30] proposed a hybrid motion-tracking approach that combined inputs from video
data with a reduced number of inertial sensors.

By extending the methodology developed by Cai and Hodgins [29], Tautges et al. [31]
experimented on human motion tracking while changing the number of the sensors. Tautges et al. [18]
also developed a method of reconstructing a character’s full-body motion by using only four
accelerometers. Each one was attached to the end effectors of a performer. In their study, the authors
experimented with a variety of scenarios. They tested their system’s ability to efficiently reconstruct
the virtual character’s motion by changing the number of sensors, as well as by positioning the sensor
on different body parts. Their approach demonstrated the possibility to reconstruct various smooth
motions by only using four sensors, which is the optimal number according to their results.

In some cases, human motion should be reconstructed with a reduced number of degrees of
freedom (DOFs). For example, stepping and walking activities can be easily reconstructed using
only six DOFs, as proposed by Oore et al. [32]. By utilizing a simple game controller, Shiratori and
Hodgins [22] synthesized virtual characters’ physically based locomotion sequences. Finally, von
Marcard et al. [2] recently proposed a method of reconstructing complex full-body motion in the wild
by using six IMUs. This method has the advantage of taking into account anthropometric constraints
in conjunction with a joint optimization framework to fit the model.

The approach presented in this paper is similar to previous methods in terms of reconstructing
the full-body locomotion of a virtual character. Compared with Slyper and Hodgins’ [13] method,
the present one not only searches in a motion database for the closest motion but also interpolates
between them to reconstruct a new motion that follows the user’s input trajectory. Smoother results
with fewer reconstruction errors were achieved compared with Tautges et al.’s method [18]. The closest
solution to the approach presented here is the one proposed by Eom et al. [3]. The major disadvantage
of Eom et al.’s method is that it can only reconstruct a single locomotion behavior at a time and
cannot reconstruct motions such as running on a curved path (see Figure 1) or even continuous
locomotion with multiple behaviors (see Video S1). In contrast, the proposed method can reconstruct
any locomotion type (e.g., walking, running, jumping, hopping, and side stepping) in any order with
any variation (e.g., turning during walking or turning during running). Therefore, the main advantage
of the presented statistical model is its ability to reconstruct long locomotion sequences with different
behaviors in real-time by using input data provided by a single sensor.
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Figure 1. A reconstructed running motion when the user follows a curved path.

3. Methodology

The methodology is divided into three phases. The first phase meets several preprocessing
requirements. The motion collection part simultaneously captures the performer’s full-body motion
and the IMU’s data. The motion segmentation part segments the full-body motion and IMU data into
meaningful phases of locomotion. The motion registration process registers the segments in a way
that helps the statistical model reconstruct a motion sequence more efficiently. The final preprocessing
step is the composition of the feature vectors that describe each motion segment. In the second
phase, the proposed hierarchical multivariate HMM with the reactive interpolation functionality is
constructed and trained. The constructed hierarchical HMM with reactive interpolations functionality
is responsible for handling the motion data. Specifically, the higher state of the HMM encodes the
segment phases of the locomotion sequences and the lower level of the HMM encodes the time
index of the segment phases. This structure allows the prediction of the locomotion phase and
later the prediction of the progress of the motion itself. The final phase is the application’s runtime,
where the system reconstructs the virtual character’s motion based on the user’s input performance
(data retrieved from the IMU attached to the user). During the runtime, the reactive interpolation
functionality was implemented to blend the nearest neighbor segments, resulting the reconstructed
motion to more precisely follows the performance of the user. These phases are summarized in Figure 2
and presented in the following sections.

Figure 2. Overview of the methodology.

4. Preprocessing

This section presents the preprocessing parts of the proposed method.

4.1. Capturing Motion Data

During the first preprocessing step, the performer’s full-body motion and the IMU’s data were
captured by asking the performer to wear the appropriate capture suit, with the required IMU attached
to his leg (see Figure 3). The same IMU was also used in the real-time reconstruction process. In both
cases, after capturing the motion data, the sampling rate was reduced to 30 frames per second
(the motion capture system and the IMU capture ≈ 100 frames per second). The associated software
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development kits (SDKs) of the motion capture system and the sensor were used in this implementation.
A wrapper software was developed based on the two SDKs that simultaneously captured the input
data from the full-body suit and the single sensor, which was the aim of this step. If the data are not
captured simultaneously, an alignment method can easily address the alignment problem.

Figure 3. A performer wearing the motion capture suit with the inertial measurement unit (IMU)
attached to his leg.

4.2. Motion Segmentation

The captured motion data was segmented into discrete and meaningful locomotion phases. Of the
various ways of segmenting human locomotion, most are based on the phases of the locomotion
(e.g., in single- and double-limb stances). This segmentation method did not differ from previous
solutions because it also segmented the motion data according to its phases. However, as the problem
was quite complex, the motion data was segmented into shorter phases (compared with [3] and [25]).
Based on the studies of Ayyappa [33], Marks [34], and Loudon et al. [35], the presented segmentation
process considered the eight phases characterizing a single cycle of the human gait: initial contact (IC),
loading response (LR), mid-stance (MST), terminal stance (TST), pre-swing (PSW), initial swing (ISW),
mid-swing (MSW), and terminal swing (TSW) (see Figure 4).



Sensors 2017, 17, 2589 6 of 21

Figure 4. Eight phases of the human gait cycle.

To achieve this segmentation process, a simple foot contact with the ground method was combined
with a crossing event (CE) at the ankle [36]. The contact with the ground method reported whether or
not the heel or the toe made contact with the ground. The CE checked whether one ankle (either right
or left) was behind or in front of the other foot (either right or left), such as whether the right ankle
was behind the left foot. Table 1 describes the details of the segment phases and how the locomotion
sequences were segmented. This combination made it possible to segment the motion data into eight
phases. Shorter segments (compared with [3,25]) were used because the constructed model required
the ability to exit a segment state quickly (and consequently, to enter another quickly). This approach
allowed the system to reconstruct different locomotion sequences almost instantaneously. This ability
would be especially useful in case users wanted to change which motion type they were performing.
Finally, while this process was used to segment locomotion sequences, such as walking and running,
the results showed that the presented method could also handle and reconstruct other behaviors,
such as jumping, hopping, side stepping. In such cases, the contact with the ground approach was
combined with the speed (minimum and maximum) approach to segment the motion data, similar to
the segmentation used by Eom et al. [3].

Table 1. Details of the segment phases and how locomotion sequences were segmented.
The segmentation process uses contact with the ground information of the foot parts and a crossing
event (LCE for left and RCE for right foot) if the ankle is in front of or behind the foot and are
abbreviated as follows: right toe contact (RT), right heel contact (RH), left toe contact (LT), left heel
contact (LH), right crossing event (RCE), and left crossing event (LCE).

Phase Start Stance Conditions End Stance Condition

From IC to LR RH & LT RH & RT & !LT
From LR to MST RH & RT & !LT RH & RT & LCE
From MST to TST RH & RT & LCE RT & !LH & !LT
From TST to PSW RT & !LH & !LT RT & LH
From PSW to ISW RT & LH !RT & LH & LT
From ISW to MSW !RT & LH & LT RCE & LH & LT
From MSW to TSW RCE & LH & LT !RH & !RT & LT
From TSW to IC !RH & !RT & LT RH & LT

4.3. Full-Body and IMU Data Registration

After capturing and segmenting the motion data, the full-body motion and the IMU data had
to be registered. Notably, the trajectories from both the IMU and the full-body motion sequences
were registered in the same way. However, the full-body motion sequences were mainly registered
by maintaining the parameters of the registration process; it was possible to apply the parameters
to the captured trajectories in order to follow the same registration as that of the full-body motion
data. Each motion segment that corresponded to a particular phase of the locomotion sequence was
registered against each other to achieve efficiency. Specifically, one of the segments was picked as
a reference motion (the corresponding trajectory segment was also picked as a reference) and was
used to register the rest of motion segments via the appropriate time-warping function. The motion
sequences were registered to one another based on their translation and rotation by decomposing each
pose of a segment from its translation on the ground plane and rotating its hips around the vertical
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axis, similar to Kovar and Gleicher’s proposed method [37]. Then, a dynamic time-warping technique
was used to register all of the motion segments that belonged to a particular locomotion phase. Next,
each motion segment was warped to the reference motion segment, and the associated timing was
estimated by using the necessary time warping. Later, the corresponding time-warping functions
were used to handle the trajectories retrieved from the sensor, ensuring that the correspondences
between the data were maintained. This registration process provided the ability to decouple the
motion segments belonging to a particular locomotion phase, making them suitable for use in the
motion reconstruction processing.

4.4. Motion Features

The presented methodology was developed to predict and reconstruct a character’s full-body
motion from a single sensor. Computing a number of motion features for both captured data was
required to provide this functionality. Later, these feature vectors were mapped to one another. From
now on, X denotes the feature vector of the full-body motion sequence, and Y signifies the feature
vector of the IMU’s data. Moreover, xt and yt represent the corresponding X and Y feature vectors at
time t.

For the full-body motion, three features were considered: the rotation of the joints rt, the angular
velocity of the joints ωt, and the root position difference ∆τ between t− 1 and t, which is defined by
∆τt = τt−1 − τt. Thus, the feature vector is represented as X = [R, Ω, ∆τ], where at time t is defined
as xt = [rt, ωt, ∆τt], where xt ∈ Rdx . The rotation of the joints is represented as rt = [rt(1), ..., rt(N)],
and the angular velocity is represented as ωt = [ωt(1), ..., ωt(N)]. In both cases, N denotes the total
number of joints, and t = 1, ..., T represents the complete number of frames of the motion data.
It should be noted that the root position difference feature, ∆τ, is quite important for updating the
global position of the character’s root. For the sparse IMU, it is possible to compute the acceleration
et that captures meters per second squared (m/sec2) and the angular velocity ωt, provided by the
gyroscope that captures rad/s. Therefore, the feature vector is represented as Y = [E, Ω], where at time
t is represented as yt = [et, ωt], where yt ∈ Rdy . It should be noted that T is the same for both datasets
since they were captured simultaneously. In cases where the motion data was captured separately,
an alignment process and a resampling might be required.

5. Hierarchical Multivariate HMM with Reactive Interpolations

The following subsections describe the construction of the hierarchical multivariate HMM
with the reactive interpolation functionality. Specifically, the subsections present the multivariate
HMM process that mapped the captured data, the way that the hierarchical HMM was constructed
and its training process, as well as how the reactive model interpolation was achieved. Figure 5
illustrates a graphical representation of the proposed hierarchical multivariate HMM with the reactive
interpolations functionality. The model encoded the segmented phase of the locomotion and the
frames of the motion at the higher and the lower hierarchical levels, respectively. The lower level was
also responsible for combining the closest frames to reconstruct the full-body motion of a character
from the IMU’s data. From now on, the parameters λ of the HMM are defined as λ = {aij, πi, bi},
where aij (state transition matrix) denotes the probability of making a horizontal transition from the
i-th state to the j-th state, πi (prior vector) represents the initial distribution vector over the substates,
and finally bi (observation probability distribution) indicates the probability of the production state.

The rest of this section is organized as follows. Section 5.1 presents the multivariate HMM
(regression process) that was implemented to handle the input data from the IMU and the full-body
motion of the virtual character. Section 5.2 describes the entire hierarchical structure of the HMM that
was developed to handle the phases of the locomotion (higher level) and the progress of the motion
segments (lower level). Finally, Section 5.3 presents the reactive interpolation functionality that was
implemented to blend the nearest neighbor segments in order to provide a full-body motion that more
precisely follows the performance of the user.
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Figure 5. Representation of the constructed hierarchical multivariate hidden Markov model (HMM)
with the reactive interpolations.

5.1. Multivariate HMM Mapping

Given the two datasets, the IMU’s corresponding feature vectors should be mapped to those of
the full-body motion. The proposed method used a multivariate HMM. The basic advantage of such
a mapping process is its ability to allow the prediction of missing features, especially when dealing
with multivariate data. In the multivariate mapping, it is assumed that the same underlying process
generates the full-body motion and the IMU data by jointly representing their observation sequences.
Figure 6 illustrates the dynamic Bayesian network (DBN) of the multivariate HMM process.

 

Figure 6. The DBN representation of the multivariate HMM used in the presented method.

For the multivariate mapping process, the feature vectors at time t, constructed from the full-body
motion (xt) and the single IMU (yt), are concatenated to form zt that denotes the i-th state of the HMM
at time t. This concatenation is represented as:

Z = [X, Y] =


x11 · · · x1dx

y11 · · · y1dy
...

. . .
...

...
. . .

...
xF1 · · · xFdx

yF1 · · · yFdy

 (1)

where X and Y denotes the feature vector of the full-body motion sequence and the feature vector of
the IMU’s data (F sequences each) respectively, and dx and dy are the respective dimensions of the
corresponding feature vectors. The probability distribution of the HMM at time t of the i-th state is
defined as a joint multivariate Gaussian distribution:

p(xt, yt|zt) = N ([xt, yt]; µi, Ui) (2)

where the concatenation of the mean of the distribution is defined by µi and expressed as follows:

µi = [µX
i , µY

i ] (3)
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Ui is the covariance matrix that can be decomposed into four submatrices representing
the univariate and crossvariate covariances between the full-body motion and IMU’s data.
The decomposition of the covariance matrix Ui is represented as follows:

Ui =

[
UXX

i UXY
i

UYX
i UYY

i

]
(4)

Given the datasets that should be mapped, the parameters of the multivariate HMM are estimated
based on the widely used expectation maximization (EM) algorithm [38].

In the presented method, the predictions of the joint observation distribution are converted to
conditional distribution by marginalizing over the sensor’s observation vectors at time t, using the
following equation:

p(xt|yt, zt) = N (xt; µ̌X
i (yt), ǓXX

i ) (5)

In Equation (5), the mean µ̌X
i (yt) and the covariance ǓXX

i of a virtual character’s full-body
locomotion is estimated by combining the mean and the covariance of the full-body motion with a
linear regression over the sensor’s features, as follows:

µ̌X
i (yt) = µX

i + UXY
i (UYY

i )−1(yt − µY
i ) (6)

and
ǓXX

i = UXX
i −UXY

i (UYY
i )−1UYX

i (7)

Concluding, with the foregoing approach, the data provided by the IMU is efficiently mapped
with the full-body captured motion.

5.2. Hierarchical HMM

The aforementioned multivariate HMM was extended to handle the motion data in a hierarchical
way. The hierarchical HMM was implemented by adopting a template-based learning method (see
Figure 7), which was used to build the model parameters from a single example. Each of the locomotion
phases was assigned to the higher level of the model. Each of the higher levels of the model contained
the motion’s lower-level structure, which comprised the frame structure of the motion. The lower
level of the proposed HMM was built by assigning a frame-based state to every frame of the motion
segment with a structure that followed a left-to-right transition process. Given the user’s input motion,
the segment phase recognition and the motion reconstruction processes were performed in real-time,
using the forward algorithm (see Section 6). Based on the input data, the forward algorithm was
responsible for predicting the most probable segments, their associated weights according to the
input feature vector, and the time alignment of the locomotion phase to the sample motion data. This
approach allowed a character’s full-body locomotion sequences to be reconstructed in real-time, using
a single IMU, by combining the reconstructed segment phases from the different locomotion behaviors.

Figure 7. The model is built from a sample trajectory.
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Training Process

Since the HMM was characterized by two different hierarchical levels, each responsible for a
different part of the motion reconstruction process, the training process of the model was also separated
into two steps. The first step trained the hierarchy’s higher level that contained the segment phases
of the locomotion. The second step trained the system to recognize the progression of the motion
sequence and to reconstruct the motion. In the proposed HMM, both hierarchies of the model were
encoded with a left-to-right transition structure, and a left-to-right Markov chain was used to define
each learning example. The left-to-right transition structure did not include a backward transition,
meaning that the model stayed in the same state, progressed to the upper state, or exited a state
to search for the next probable one. This model was chosen because it accurately represented a
temporal system.

The first step of the training process trained the HMM’s higher hierarchy, which contained the
segment phases of the motion data. Three possible transitions (see Figure 5) between the segments
were chosen (this three-way transition process allowed the model to freely reconstruct the motion
sequences). Considering that the data is regularly sampled, the transition probabilities are set manually
as follows:

• self-transition: aphase
sel f = 1/3,

• next transition: aphase
next = 1/3, and

• exit transition: aphase
exit = 1/3.

Self-transition (aphase
sel f ) meant that the input motion remained in a particular locomotion phase,

which indicated that such a phase would still evolve. Next transition (aphase
next ) meant that the input

motion would continue to the next locomotion phase, after having predicted the complete segment
phase normally. Therefore, the locomotion behavior evolved normally. Finally, exit transition (aphase

exit )
meant that the input motion did not belong to the current segment. Thus, the system exited the
segment state and searched for the next probable one from a different locomotion behavior. Note
that the exit state is reached when the user decides to change the locomotion behavior that he or she
performed in the middle of an evolved locomotion phase.

To train the model to recognize the locomotion phase where the input trajectory belonged,
a temporal profile of the trajectory was built to create a left-to-right HMM by associating each segment
state directly with an HMM state. Each of the HMM states corresponded to a sample in the training
data and was associated with a Gaussian probability distribution p(i|S), which was used to estimate
the probability of an observation sequence S for the segment state i of the model and is represented
as follows:

p(i|S) = 1
H

H

∑
h=1

1
σi,h
√

2π
exp

[
−
(
(Sh − µi,h)

2

2σ2
i,h

)]
(8)

where i denotes the i-th sample associated with the segment state S, and σi,h represents the standard
deviation. Based on this equation, the model parameters of the HMM are refined by using the complete
number of motion segments H that belong to a particular segment phase of the locomotion.

The second step trained the HMM’s lower hierarchy, which contained the frames of the motion
segment. The model was trained by using a method similar to the training process for the segment
state. However, the system was not trained to recognize the motion segments but to recognize the
motion’s progress. As previously described, the frame steps of a motion segment were also encoded in
a model represented by a left-to-right transition structure. Given a motion segment Y, its sequence was
used to set a left-to-right Markov chain. As before, three possible transitions (see Figure 5) between the
frames of the segment were chosen. Moreover, by also considering that the data is regularly sampled,
the transition probabilities are set manually as follows:

• self-transition: a f rame
sel f = 1/3,
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• next transition: a f rame
next = 1/3, and

• skip transition: a f rame
skip = 1/3.

In this case, the self-transition (a f rame
sel f ) meant that there was no progression of the motion

(e.g., when the user remained motionless). The next transition (a f rame
next ) indicated that the motion would

evolve normally, therefore, the new reconstructed frame would be computed. The skip transition
(a f rame

skip ) was responsible for helping the model evolve in case the performer’s input data stopped
following the sample behavior. For example, users might consider changing their walking behavior to
a running or jumping one before the progression of the motion would reach the exit frame. In this case,
the a f rame

skip transition would help the motion progress to exit the state and help the motion reconstruction
process to adapt to the new motion quickly. The proposed method’s ability to provide continuous
smooth motion even when users decide to change their behavior is advantageous. Note that the
a f rame

skip is associated with the aphase
next transition of the segment phase since it helps the motion to evolve

(faster but normal) before terminating the reconstruction process of a particular motion segment. This
is quite important in the presented method, especially when the system loses the tracking of the
sensor (i.e., device dropout). In such a case, the reconstructed motion might suddenly jump, therefore,
unnatural motion would appear. In such a scenario, the system would enter a segment phase, which
would evolve normally (even if it was wrong). In case the system gained the track back, thanks to
the aphase

exit the a f rame
skip transition would help it reach the last frame of the segment fast enough. Then,

the system would exit the phase normally and continue to the next predicted phase. Therefore, sudden
changes in the resulting motion do not happen. The developed frame skip and phase exit abilities of
the presented system conflict with previously proposed approaches [39,40] that provide the ability to
synthesize highly responsive, smooth and continuous motion.

To train the presented model’s lower hierarchical level, a temporal profile of the trajectory was
built, which was later used to create a left-to-right HMM by associating each frame state directly with
a state of the HMM to learn the motion progression phases. Each state corresponded to a sample in the
training data and was associated with a Gaussian probability distribution function p(i|Y), which was
later used to estimate the probability of an observation sequence Y for the frame state i of the model.
It is represented by the following equation:

p(i|Y) = 1
σi
√

2π
exp

[
−
(
(Y− µi)

2

2σ2
i

)]
(9)

In Equation (9), µi denotes the i-th sample associated with the frame state i, and σi indicates the
standard deviation. In the segment learning process, the model parameters were not refined by using
the motion segments that belonged to the same phase. The system learned the individual parameters
of the model, and the model parameters of each trajectory were then used in the proposed reactive
interpolation functionality (see Section 5.3). Based on this training process, the two chosen states
progressed to a motion, stayed motionless (remained in the current state), or exited as fast as possible.
The exit state ability was not provided directly because discontinuities between motions appeared.
Notably, in both cases (segment and motion progression phases), equal probabilities were chosen to be
assigned at each transition state, which allowed the system to search any time step if the locomotion
phase and the user’s full-body motion closely resembled the output. This approach also allowed
the user to perform different motions one after another and the system to reconstruct the required
locomotion efficiently by combining the separately retrieved segments.

5.3. Reactive Model Interpolation

This reactive interpolation function allowed for interpolation between existing frames of the
trajectories that were already in the database, which meant that the new reconstructed motion could
more precisely follows the user’s performance. Various interpolation methods can be used. Some
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are presented by Yoshimura et al. [41]. Examples of such methods include interpolation between
observations, interpolation between output distributions of HMM states that take state occupancies
into account, and interpolation based on Kullback’s information measure [42]. This case adopted the
first method (interpolation between observations).

For the reactive model interpolation, the model parameters λt,1, ..., λt,D that represent a D number
of motion segments S1, ..., SD that belong to the same segment state were defined. Moreover, λ̄t was
defined as a model of a trajectory S̄ obtained by interpolating K sample trajectories at time t. Based on
the preceding explanation, a feature vector yt of a new motion segment S̄ was obtained by linearly
interpolating the observation vectors yt,1, ..., yt,D of the motion variation, as follows:

ȳt =
K

∑
k=1

akyt,k (10)

where ∑K
k=1 ak ≈ 1. Now, given the mapped mean vector µ̌X

i (yt) and the mapped covariance matrix
ǓXX

i , it was possible to compute the new mean vector µ̄ and the new covariance Ū of the Gaussian
output distribution N (ȳ, µ̄, Ū), as follows:

µ̄ =
K

∑
k=1

akµ̌X
i,k(yt) (11)

Ū =
K

∑
k=1

akǓXX
i,k (12)

In this case, note that even if the model’s parameters λt,k (where 1 ≤ k ≤ K) of the sample sensor’s
data had a tying structure, it was possible to obtain the model λ̄t directly by interpolating λt,k. However,
the model’s parameters λt,k had different structures from each other when the context clustering was
independently performed for each motion variation model at the training stage. Therefore, it was
difficult to obtain λ̄t by interpolating λt,k, considering the model structure. To overcome this issue at
the reconstruction stage, according to Yamagishi et al. [43], a number of K sequences were engaged
from λt,k independently, and then a pdf sequence corresponding to λ̄t was obtained by interpolating
these K pdf sequences. Next, a motion parameter sequence was generated from the interpolated
pdf sequence. By means of linear interpolation, up to K number of models could be used to obtain
S̄ and its corresponding λ̄t model. Although in theory (according to [43,44]), K can grow up to ∞,
the experimentation showed that K = 5 provided reasonable results. Finally, it should be noted that an
important reason to use this approach is that in the presented method, it is practically impossible and
computational expensive to create in advance all possible λ̄t models for every possible user input.

6. Full-Body Locomotion Reconstruction

With the sensor’s input signal, the system was able to predict and reconstruct a virtual
character’s full-body motion during the application’s runtime. This process was achieved by using
the forward algorithm and considering the interpolated parameters of the model mentioned in
Section 5.3. According to Rabiner [45], who provides a detailed explanation of the forward algorithm
(see Appendix A as well), it is possible to efficiently predict the probability distribution of a sequence
of observations based on the forward process.

In the proposed method, given the input signal from an IMU, yt, the system was able to estimate
the locomotion phase where the input motion belonged, predict the corresponding motion trajectories,
and reconstruct them through interpolation. To achieve these steps, the forward inference procedure
proposed by Murphy and Paskin [46] was used. The forward inference procedure evaluated the most
likely locomotion phase based on the user’s input motion, and then the progress of the motion’s
trajectory. Within a recognized locomotion phase, the progression of a character’s motion was
represented by a left-to-right transition, which respected the motion segments’ sequential order.
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According to this explanation, with the input feature vectors y1, ..., yt, the locomotion phase Sh
where the input motion belonged was estimated by computing the probability p(Sh|y1, ..., yt), using
the forward algorithm. This procedure allowed the input data from the IMU (motion trajectory) to
be segmented during the application’s runtime in the sense that the most probable phases of the
locomotion were updated in each time step. This process resembled the forward pass of the widely
used Viterbi algorithm. Although each locomotion phase Sh contained sequences of the substates
that formed the full-body locomotion of a virtual character, using the summation (instead of the
maximization of the model) of the model parameters made it possible to recognize the phase where
the input locomotion belonged.

In the next step, given the locomotion phase Sh of the input motion, the virtual character’s
new full-body motion could be reconstructed. The full-body motion x̄t was predicted by using the
maximum likelihood function based on the state probabilities estimated with the forward algorithm
as previously described. However, in this case, the presented method estimated x̄t, given ȳ1, ..., ȳt

(ȳt denotes the results of the reactive interpolation functionality), z̄t and Sh, as follows:

x̄t = ∑
i

at(i, Sh) arg max
xt

[
p(xt|ȳt, z̄t, Sh)

]
(13)

where at(i, Sh) defines the probability of the partial motion observation sequence at motion state i and
segment state Sh at time t, taking into account the interpolated model parameters λ̄t, and is represented
as follows:

at(i) = p(ȳ1, ..., ȳt, z̄t, Sh|λ̄t) (14)

Based on this process, the system reconstructed the full-body pose of a virtual character, given the
signal provided by a single IMU.

The segment phase recognition process of the presented model enables users to perform freeform
actions. This means that the general pattern of locomotion might not be followed. Therefore,
discontinuities between the reconstructed locomotion phases might appear during the reconstruction
process. To avoid reconstructing motions that do not look natural enough, a velocity-based blending
algorithm proposed by Levine et al. [47] was used to interpolate the corresponding reconstructed
motion segments. Moreover, to avoid foot sliding and ground penetration effects, a simple
inverse kinematic technique proposed by Kim et al. [48] was integrated in the main pipeline to
remove such artifacts. Figures 8 and 9, as well as this paper’s accompanying video, show sample
reconstructed poses.

Figure 8. Example of walking motion reconstructed with the proposed method.
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Figure 9. Hopping and jumping poses reconstructed with the proposed method.

7. Implementation Details and Evaluations

This section is divided into two parts. The first part presents a few details regarding the
implementation of the proposed method. The second part discusses the conducted evaluations
to provide an understanding of the efficacy of the proposed approach.

7.1. Implementation

The proposed reconstruction method was implemented by using the Perception Neuron [49]
system with an 18-neuron setup to capture the performer’s full-body motion sequence, along with
a 3-SpaceTM wireless IMU [50] as the single sensor. Each neuron from the Perception Neuron and
the 3-SpaceTM wireless IMU house a gyroscope, accelerometer, and magnetometer. The method was
implemented with an Intel i7-6700 CPU at 3.4 GHz with an NVIDIA GeForce GTX 1060 with 6GB
and 16GB of RAM. All presented results are based on the mentioned system. Finally, for the HMM,
window sizes ranging from 5 to 50 ms were tested. A 20 ms window size worked for all the motion
types that were used.

7.2. Evaluations

To evaluate the efficiency of the presented methodology, four different evaluation studies were
conducted. First, the framerate and the latency of the motion reconstruction process were computed.
Second, positioning the IMU on different body parts showed the sensor’s optimal position and that
the method worked. Third, the method was compared with different approaches that mentioned
full-body motion reconstruction from either a single IMU or a reduced numbers of sensors. Finally,
the transition between motion segments was also evaluated perceptually against two other motion
synthesis methods.

7.2.1. Framerate

The framerate of the proposed solutions was computed for a variety of scenarios and of motion
data. Table 2 presents the framerate and the latency for different motion lengths (in frames). Latency
denotes the time required by the algorithm to reconstruct the character’s full-body pose, given the
input data. The rendering time and the velocity-based blending algorithm are excluded from the
computation of the latency. While the method worked in real-time in all cases, when the number
of frames (and consequently, the number of motion segments) increased, the latency also increased,
and the framerate decreased. Notably, even when 10000 frames were used, the method was able to
reconstruct the character’s motion at 12 frames per second. However, in cases where up to 5000 frames
were used, the reconstruction process worked fast enough, reaching 38 frames per second. Based on the
presented results, when an extensive number of sample motions are used, the methodology’s framerate
decreases. However, in scenarios that do not require a precise reconstruction of human locomotion
but an affordable solution for reconstructing simple locomotion behaviors (e.g., walking and running
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behavior of a large group of pedestrians), the presented single IMU locomotion reconstruction method
could be ideal.

Table 2. Results obtained when evaluating the performance of the presented methodology using
different motions (W: walking, R: running; J: jumping; and H: hopping) and data sizes.

Motion Type Frames Segments Framerate Latency

W 500 56 65 fps 0.025 s
W 1000 119 62 fps 0.039 s
W 2000 254 57 fps 0.073 s
W 4000 498 49 fps 0.124 s

W-R 5000 663 38 fps 0.292 s
W-R-J-H 10000 1387 12 fps 0.758 s

7.2.2. Evaluating IMU Positioning

Locomotion sequences using a single IMU placed on different body parts were reconstructed to
evaluate the efficiency of the methodology. In this evaluation, the whole development process (from
motion capture to HMM training) was iterated. Five different body parts were chosen: right hand,
right forearm, right foot (which was initially captured), right knee, and root (see Figure 10). Moreover,
to test the method’s robustness, four different motions were reconstructed: walking, running, jumping,
and hopping. The mean square error (MSE) approach was adopted to measure the reconstruction
errors, which were computed between the positions of the joints of the virtual character, after excluding
the global root position.

Figure 10. The position of the IMU (left) and the reconstruction error when compared with the ground
truth data (right).

Figure 10 presents the findings of this evaluation process, which clearly show that the proposed
method closely reconstructed the motions for each IMU position. However, the motion sequences that
were reconstructed when the IMU was placed on the foot or the hand had less error compared with
the forearm, the knee, or the root. When the IMU was placed on the root, the reconstruction error was
greater than on other body parts. Finally, Figure 11 shows a walking motion sequence reconstructed
when placing the IMU on user’s right hand.

Figure 11. Example of walking motion reconstructed with the proposed method when the IMU placed
on user’s right hand.
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7.2.3. Reconstruction Evaluation Against Previous Approaches

Previously, only Eom et al. [3] had proposed a method of reconstructing a virtual character’s
full-body locomotion using a single sensor. Thus, their method was used as a basis for evaluating
the reconstruction errors of this present study’s method. The proposed approach was also compared
against two methods that used two sensors, proposed by Riaz et al. [51] and Min and Chai [25].
As before, the reconstruction errors were computed between the positions of the joints of the
virtual character.

During the evaluation process, four different motions (walking, running, jumping, and hopping)
were used as ground truth data. For all the conducted evaluations, the MSE was computed with the
ground truth data. The results obtained (see Table 3) showed that the proposed solution had fewer
errors than those of Eom et al.’s [3] method for all four motion types. However, compared with the
methods of Riaz et al. [51] and Min and Chai [25], the proposed solution provided inadequate results.
Because the two previous studies used two sensors, their process for reconstructing a virtual character’s
locomotion was more constrained. For a fairer comparison with the two-sensor solutions, the proposed
method’s ability to reconstruct a virtual character’s full-body locomotion by using two IMUs (hand
and foot) was also tested. The process was iterated, and the MSE was recomputed. The results obtained
from this additional evaluation (Table 3) clearly indicate that the presented method can reconstruct
motion sequences with fewer errors when signals from two IMUs are used. This demonstrates the
proposed statistical model as a powerful solution for reconstructing a variety of locomotion behaviors
of virtual characters in real-time.

Table 3. Results obtained when evaluating the presented method with previously proposed solutions.
The reconstruction error is measured in cm.

Motion Type Frames Proposed
(1 Sensor)

Proposed
(2 Sensors)

Eom et al. [3] Riaz et al. [51] Min and Chai [25]

Walking 2000 2.74 2.07 3.54 2.53 2.26
Running 2000 2.79 2.11 4.15 2.71 2.35
Jumping 1000 4.17 1.98 4.98 3.97 3.62
Hopping 1000 2.46 1.91 4.42 2.44 2.19

Total Dataset 6000 4.53 3.03 7.33 4.03 3.77

7.2.4. Evaluating Transition Between Motion Segments

To understand the presented methodology’s efficiency in synthesizing natural-looking motion
sequences, a perceptual evaluation study examined the transition between two motion segments.
The proposed method was evaluated against Min and Chai’s [25] solution in which the transition
was learned by analyzing the motion primitives and was performed by using a statistical approach,
as well as against the motion graph approach proposed by Kovar et al. [52]. Particularly, especially the
evaluation against motion graphs (Kovar et al. [52]) could provide good insights into the efficiency of
synthesizing natural-looking motions.

In this evaluation, five transitions were considered: from idle to walking motion, from walking
motion to idle, from walking to walking motion, from walking to running motion, and from running
to walking motion. For each motion type, eight random motion segments were considered. Therefore,
given the five transitions, for each of the examined methods (the proposed one and those of Min and
Chai [25] and Kovar et al. [52]), 40 motions were synthesized (120 in total). The videos captured by
placing the virtual camera on the character’s right side. Therefore, the subjects could look properly
at each of the synthesized transitions. In each iteration of the experiment, the subjects watched a
single video. The animations were captured in such a way that the transition started at the end of the
first second. None of the videos exceeded the two-second duration. The videos were displayed in a
random order, and the subjects were asked to rate the naturalness of the synthesized motion transition
on a seven-point Likert scale (from 1 = unnatural to 7 = natural). Figure 12 shows a screenshot of
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the developed experiment. In total 25 participants (19 males and 6 females, aged 21–28) attended the
perceptual evaluation study. The evaluation study took no more than 20 minutes. It is noteworthy that
all the participants completed it.

Figure 12. A screenshot from the conducted experiment.

The results obtained from this experiment were analyzed by using paired t-tests. Evaluating the
proposed method against those of Min and Chai [25] (t(24) = 0.047, p = 0.078) and Kovar et al. [52]
(t(24) = 0.064, p = 0.091) showed no significant difference in the results (p > 0.05 in both evaluations)
in terms of naturalness of the synthesized transition between motion segments. The obtained results
indicate that even when synthesizing the transitions by using a simple velocity-based, motion-blending
algorithm, the synthesized motion, and consequently the transition between the motion segments, can
be characterized as perceptually consistent.

8. Conclusions

This paper has presented a solution for reconstructing full-body locomotion sequences of virtual
characters in real-time, using a single IMU. To overcome the problem’s complexity, a method based
on the construction of an HMM was used. In the proposed approach, a hierarchical multivariate
HMM with reactive interpolation functionality was constructed wherein in the higher hierarchical
level the locomotion phases were assigned, and in the lower hierarchical level the frame structure of
the motion was assigned. The full-body motion reconstruction was achieved by using the forward
algorithm. Evaluating the process showed it as ideal for real-time applications and highly efficient
because it could reconstruct full-body locomotion by minimizing errors compared with previously
proposed solutions.

Using a single sensor to reconstruct human locomotion is challenging. Even if it is possible to
constrain a statistical motion model that describes human motion and reconstructs a character’s
full-body motion by minimizing errors, humans daily perform numerous motions and actions
that cannot be recognized and reconstructed (e.g., upper-body motions, such as hand waving or
punching, or lower-body motions, such as kicking with a foot that has no attached sensor). Therefore,
the proposed solution’s use is limited to cases requiring reconstruction of simple motions. Additionally,
similar to other data-driven motion reconstruction methods, it is not possible to reconstruct motion
sequences that are not included in the dataset. Working with a large dataset, as well as with a variety of
motions and human actions, also increases the likelihood of ambiguities or difficulties (e.g., unnatural
poses). In conclusion, the proposed solution is most appropriate for applications such as navigation in
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a virtual environment (where small divergences are inconsequential) or locomotion capture for crowd
analysis and simulation-related applications.

Besides the advances presented in this paper, several issues should also be discussed. Among
others, the chosen way of handling the motion data affects the computational time required for
reconstructing a character’s full-body motion. This point becomes quite clear when reviewing the
obtained results. When the number of motion segments increases, the framerate decreases dramatically.
The reason is that this type of method requires saving a large amount of data, and searching through
all of it decreases the framerate. Therefore, solutions that learn general representation from motion
examples (e.g., [53,54]) should also be considered and tested in the future for reconstructing full-body
motion sequences in such under-constrained scenarios. Finally, the presented results are all generated
for the same subject. In this paper the author was more interesting in developing a method to handle
the data efficiently. Therefore, it was not considered the generalization of the method, i.e., the ability
of the method to work with users with different morphological variations. This is a limitation of the
current approach that should be addressed in a future work.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/17/11/2589/s1,
Video S1: Video Abstract.

.Conflicts of Interest: The author declares no conflict of interest.

Appendix A. The Forward Procedure

The forward algorithm (see Rabiner [45]) can be efficiently used to predict the probability
distribution of an output sequence x1, ..., xt, given a sequence of observations y1, ..., yt. This step
is achieved by defining a forward variable, which is quite useful in avoiding numerical errors.
In the presented method, for a predicted segment phase Sh, the forward variable (probability
distribution variable) of the partial observation sequence until time t and state i is defined as
at(i, Sh) = p(ȳ1, ..., ȳ1, z̄t, Sh|λ̄t). This process is computed inductively, based on an initialization and
induction. Specifically, the initialization process computes a1(i, Sh) = πibi(y1), subject to i ∈ [1, N],
where πi denotes the initial distribution of state i at the segment phase Sh, and bi(y1) represents the
observation probability distribution. The induction phase, it is computed as:

at+1(i, Sh) =

[
∑
i=1

at(i, Sh)aij︸ ︷︷ ︸
prediction

]
bi(yt+1)︸ ︷︷ ︸

update

subject to t ∈ [1, T − 1] and i ∈ [1, N]. Note that aij signifies the transition probability distribution
between state i and j of the HMM.
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