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Vitamin D deficiency (VDD) remains one of the most preva-
lent preventable public health concerns worldwide.32,50,55,70 Evi-
dence has accumulated over the past decade or so that this VDD 
may be a major contributor to myriad conditions, ranging from 
obesity and related metabolic diseases3,73 to cancer25,59 and mod-
ulation of immune14,66 and brain function.13,37 As the support for 
associations between this deficiency state and many diseases 
grows, improving our understanding of the mechanisms for vi-
tamin D’s role in health and disease, including potential epigen-
etic changes, becomes increasingly important.2,72 Furthermore, 
maternal VDD can result in detrimental developmental origin of 
health and disease (DOHaD) effects in human and rodent offsp
ring.5,45,48,49,52,53,61,64,71,72 Reproductive-age female rodents are at-
tractive animal models to use in DOHaD investigations because 
of their low cost, small size, high fertility rates, short gestation 
periods, and susceptibility to several of the same metabolic 
diseases that affect humans. Although vitamin D studies using 
rodent models have been useful, in general, in teasing apart 
the underlying VDD-induced changes leading to various dis-
eases,40,54,62,63 the scientific literature is fraught with experimental 
results and interpretations that may be compromised due to in-
appropriate experimental timelines. To illustrate, the number of 

PubMed articles featuring keywords relating VDD with rodents 
has expanded 5-fold over the past 15 y (Figure 1), yet the most 
recent set of dietary vitamin D recommendations for laboratory 
animals from the National Research Council (NRC) was pub-
lished more than 20 y ago.51

VDD studies in animals, including reproductive-age females, 
need to accommodate the latency period characteristic of di-
etary fat-soluble vitamins, such as vitamin D, and provide the 
necessary exposure time, to recapitulate the phenotypic ef-
fects observed in VDD human populations. Conversely, sec-
ondary systemic complications due to long-term VDD might 
arise and confound experimental results. For these reasons, the 
time course and 25-hydroxyvitamin D (25(OH)D) response (the 
generally accepted best indicator of vitamin D status) to VDS 
and VDD diets in laboratory rodents warrants investigation, 
especially in the most widely and frequently used mouse strain 
for metabolic research, C57BL/6 (‘Black 6’) mice.21 Therefore, 
our current objectives were: 1) to characterize the time course 
of VDD induction and repletion in reproductive-age female 
C57BL/6 mice and 2) to explore the long-term consequences of 
VDD, particularly in regard to body composition, an indicator 
of metabolic health.

Materials and Methods
Animals and diets. Both experiments were approved and per-

formed in accordance with the University of Missouri IACUC 
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(protocol 7753). All procedures followed the NIH Guidelines for 
the Care and Use of Laboratory Animals.34 All experiments were 
conducted as preliminary work for a larger study examining 
the DOHaD effects of maternal VDD during pregnancy on the 
long-term metabolic health of offspring. Female C57BL/6J mice 
(age, 8 wk) were acquired from Jackson Labs (Jackson Labs; Bar 
Harbor, ME). To determine an effective timeline for inducing 
and reversing VDD, serum was collected from sexually mature 
8-wk-old female C57BL/6 mice, which then Eight-week-old 
randomized to receive either a vitamin D sufficient (VDS; AIN-
93G, D10012G, Research Diets, New Brunswick, NJ) or VDD 
(modified AIN-93G; D1007301, Research Diets) diet (Figure 2). 
Other than vitamin D, all nutrients, including calcium and phos-
phorus, were provided in amounts that meet the NRC nutrient 
requirements for laboratory animals.51 Mice had free access to 
diets and water. During the short-term exposure experiment, 
feed intake was measured by weighing the food daily for 5 con-
secutive days during weeks 1 and 8. Body weight was measured 
at baseline and every 2 wk throughout both experiments.

Short-term VDD exposure. Serum was collected at baseline 
and weekly for 4 wk (weeks 1 through 4) for determination of 
25(OH)D, parathyroid hormone (PTH), and calcium concentra-
tions. Immediately after the week 4 collection, VDD mice were 
switched to a VDS diet, and serum was similarly collected for 
the subsequent 4 wk (weeks 5 through 8) for determination of 
25(OH)D, PTH, and calcium concentrations.

Long-term VDD exposure. In the long-term study, body 
weight was measured and serum collected at baseline and ev-
ery 2 wk thereafter. Three-compartment body composition (lean 
tissue, fat tissue, and water) was determined by using echoMRI 
at week 40 of feeding (48 wk of age), just prior to study termina-
tion.

Determination of serum vitamin D, calcium, and PTH concen-
trations. Whole blood was collected from the saphenous vein 
and dispensed into serum-separator tubes (catalog no. 201308, 
Sarstedt, Numbrecht, Germany), centrifuged according to man-
ufacturers’ instructions, and stored at –80 °C. Due to the limited 
volumes of serum that could be collected at each time point, 
we alternated which parameters were measured. Circulating 
serum 25(OH)D concentrations were determined by ELISA (de-
tection range, 10 to 300 nmol/L; intraassay coefficient of varia-
tion, 4.2%; catalog no. VID21-K02, Eagle Biosciences; Nashua, 
NH). Serum calcium concentrations were determined by colo-
rimetric assay (Sigma-Aldrich; St Louis, MO). Serum PTH con-
centrations were determined by enzyme–linked immunoassay 
(detection range, 1.47 to 1000 pg/mL; intraassay coefficient of 
variation, 10%; Sigma–Aldrich).

Statistical analysis. Baseline comparisons of whole-body 
weight, 25(OH)D concentrations, and daily feed intake were an-
alyzed by using the Student t test. Between and within dietary 

group comparisons of circulating 25(OH)D concentrations and 
body weight were performed by using repeated-measures 
ANOVA. Diet, time, and the diet×time interaction served as in-
dependent variables for the analyses, allowing us to determine 
whether the effect of diet (main effect; for any given outcome) 
was dependent on how long the mice were on the diet. In this 
model, time was a repeated measure, thus making it possible to 
compare treatment groups at each time point. Data are repre-
sented as mean ± SEM. All analyses were done by using SAS 9.4 
statistical software (SAS Software, Cary, NC); a P value of 0.05 
or less was considered significant.

Results
Vitamin D depletion and repletion in reproductive-age female 

mice. At baseline, neither body weight nor vitamin D status dif-
fered between the VDS and VDD groups (19.3 ± 1.3 g compared 
with 18.8 ± 1.4 g, P = 0.774; Table 1). Likewise, daily feed con-
sumption was similar between the VDS and VDD groups dur-
ing week 1 (2.6 ± 0.2 g compared with 2.7 ± 0.2 g, P = 0.73) and 
week 8 (2.9 ± 0.3 g compared with 3.0 ± 0.2 g, P = 0.748; Table 1). 
Serum 25(OH)D concentrations showed a significant (P < 0.001) 
interaction between diet and time (Figure 3 A), but the week-
to-week change in serum 25(OH)D concentration was signifi-
cant only between the weeks 2 and 3 of the VDD diet (decrease 
of 28.2 nmol/L, P = 0.009). Furthermore, the between-group 
difference in 25(OH)D concentration was not significant until 
week 2 (53.4 ± 11.4 nmol/L compared with 79 ± 11.2 nmol/L, P 
= 0.014). Despite having significantly lower 25(OH)D concentra-
tions than the VDS group, VDD mice were not VDD according 
to the cut-off established by the Institute of Medicine (that is, 
25(OH)D less than 50 nmol/L) until week 3. Circulating 25(OH)
D concentrations began to level off in the VDD group, with a 
nonsignificant decrease between weeks 3 and 4 (decrease of 7.5 
nmol/L, P = 0.782).60

VDD mice were switched to a VDS diet after the blood collec-
tion at week 4 of the VDD diet. Although 25(OH)D concentra-
tions began to increase within the first week on the VDS diet 
(increase of 13.3 nmol/L, P = 0.236), the change from nadir did 
not reach statistical significance until the second week (increase 
of 34.5 nmol/L; P = 0.017), at which point 3 of the 5 mice were 
VDS. At the end of 3 wk of feeding on the VDS diet, these once-
VDD mice were all in adequate status (25[OH]D greater than 50 
nmol/L) and had serum concentrations that did not differ from 
those that received the VDS diet throughout the study (79.3 ± 
11.6 nmol/L compared with 80.8 ±11.3 nmol/L, P = 0.846).

Calciotropic hormone response to vitamin D depletion 
and repletion in reproductive-age female mice. Serum PTH 

Figure 1. Number of articles including the key words “vitamin D defi-
ciency,” “rodents,” and “animal models.’

Figure 2. Nutrient composition and energy density of experimental 
diets.
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concentrations demonstrated a significant interaction between 
diet and time (P < 0.001; Figure 3 B). Serum PTH did not differ 
between the VDS and VDD groups at baseline (59.1 ± 22.6 com-
pared with 68.3 ± 28.2 pg/mL, P = 0.854). In the VDD group, 
serum PTH rose between weeks 2 and 4 (increase of 87.2 pg/
mL, P = 0.027). At week 4, VDD-fed mice had greater serum 

PTH concentrations than those fed the VDS diet (205.8 ± 46.6 
pg/mL compared with 76.2 ± 29.3 pg/mL, P < 0.001). Serum 
PTH did not significantly decrease during the first 2 wk of the 
repletion phase (week 4 to 6, decrease of 51.9 pg/mL, P = 0.168), 
but concentrations did not decrease significantly between the 
second and fourth week (decrease of 80.5 pg/mL, P = 0.029). 
Neither time nor diet their interaction had a significant effect on 
serum calcium concentrations (Figure 3 C).

Vitamin D status in reproductive-age female mice exposed 
long-term to VDD. Serum 25(OH)D concentrations at baseline 
did not differ between the VDS and VDD groups (73.5 ± 11.3 
nmol/L compared with 71.4 ± 11.4 nmol/L, P = 0.896; Figure 
4 A). Serum 25(OH)D concentrations showed significant (P < 
0.001) interaction between diet and time, such that the change 
between baseline and 4 wk was almost entirely responsible for 
this interaction. Furthermore, the difference in 25(OH)D con-
centration between the VDS and VDD groups was significant 
beginning at week 4, with the VDD group having lower 25(OH)
D; this significant difference persisted throughout study.

Calciotropic hormone response in reproductive-age female 
mice exposed long-term to VDD. Serum PTH concentrations 
showed a significant (P < 0.001) interaction between diet and 
time (Figure 4 B). Serum PTH levels in the VDS group did not 
change throughout the study (P = 0.963). In the VDD group, 
serum PTH was significantly higher than in the VDS group be-
ginning at 2 wk (66.2 ± 23.2 pg/mL compared with 131.2 ± 24.4, 
P = 0.024; Figure 4 B) and stayed significantly higher at each of 
the subsequent time points. Within the VDD group, serum PTH 
rose significantly between weeks 2 and 6 (increase of 50.3 pg/
mL, P = 0.044); there were no other significant between-week 
increases for the remainder of the study.

Serum calcium concentrations showed a significant (P = 
0.041) interaction between diet and time (Figure 4 C). Although 
neither group had any significant week-to-week changes in se-
rum calcium concentration, these levels were lower in VDD-
fed mice than in VDS mice beginning at week 12 and lasting 
throughout the experiment.

Growth curve and body composition of reproductive-age fe-
male mice exposed long-term to VDD. Body weight did not dif-
fer between the VDD and VDS groups at baseline (17.0 ± 1.6 g 
compared with 17.4 ± 1.3 g, P = 0.637; Figure 5). Growth rate 
increased similarly and in parallel in both groups for the first 18 
wk, at which point the growth of VDD mice began to plateau. 
After 26 wk, the weight of VDD mice began to decrease, and by 
week 28, VDD mice weighed significantly less than VDS mice 
(decrease of 2.04 g, P = 0.02). By week 40, VDD mice had lost 
12% of their peak weight (week 22) and weighed 4.1 g less than 
VDS mice (P < 0.001; Figure 6). After 40 wk, VDD mice had less 
fat (4.7 ± 0.4 g compared with 6.0 ± 0.4 g, P < 0.01) and lean mass 
(18.1 ± 0.6 g compared with 20.8 ± 0.5 g, P = 0.014; Figure 6) than 
VDS mice. However, body composition did not differ between 
groups in terms of percentage body fat. Likewise, total water 
content did not differ between the VDD and VDS mice (22.7 ± 
0.4 compared with 23.1 ± 0.5 g; P = 0.541).

Table 1. Baseline body weight, 25(OH)D concentration, and average food intake

VDS VDD P

Whole-body weight (g) 19.3 ± 1.3 18.8 ± 1.4 0.774

25(OH)D (nmol/L) 73.5 ± 11.5 72.0 ± 10.8 0.904

Average daily intake (wk 1; g) 2.6 ± 0.2 2.7 ± 0.2 0.730

Average daily intake (wk 8; g) 2.9 ± 0.3 3.0 ± 0.2 0.748

VDD, Vitamin D-deficient; VDS, vitamin D-sufficient 
Data are given as means ± SEM. P values represent comparison of dietary groups by using the Student t test.

Figure 3. Circulating concentrations of (A) 25(OH)D, (B) PTH, and (C) 
calcium. Female C57BL/6 mice were fed a vitamin D0deficient (VDD; 
n = 7) diet until week 4 (perpendicular dashed line in panel A) and 
then switched to a vitamin D-sufficient (VDS; n = 6) diet for another 4 
wk. The horizontal dashed line in panel A indicates the cut-off value 
for VDD in humans. Dotted lines in panel C indicate the hypo- and 
hypercalcemia thresholds. Data are presented as presents means ± 
SEM. *, Significant (P < 0.05) difference between-groups at the indi-
cated time point; †, significant (P < 0.05) within-group difference from 
previous time point.
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Discussion
In both animal models and humans, it is increasingly be-

coming apparent that maternal VDD can lead to diseases and 
disorders in the offspring, for example, those involving repro-
duction, neurobehavior, and metabolism as well as epigenetic 
changes.5,45,48,49,52,53,61,64,71,72 C57BL/6 mice, in particular, are among 
the most commonly used animal models in metabolic disease 
research.21 However, little is known about the vitamin D needs 
of these animals, especially reproductive-age females, beyond 
what is required for normal growth. The escalation in vitamin 
D research (Figure 1) highlights the importance of determining 
how the vitamin functions in the model most used in vitamin 
D-related metabolic health research, including DOHaD studies. 
Maternal VDD and its deleterious outcomes in offspring have 
increasingly become an important concern,5,45,48,49,52,53,61,64,71,72 and 

an estimated 80% of pregnant women have insufficient vitamin 
D status at some point during pregnancy.9 Therefore in the cur-
rent study, we sought to characterize the time course of VDD in-
duction (defined by the Institute of Medicine as a 25(OH)D less 
than 50 nmol/L) and dietary vitamin D repletion, by using the 
dose recommended by the NRC (1000 IU/kg), in reproductive-
age female C57BL/6 mice and to explore the long-term conse-
quences of VDD on body composition, an indicator of metabolic 
health, in these animals.51,60 Our data demonstrate that: 1)VDD 
was not achieved until 3 wk on a vitamin D-deplete diet and, 
after decreasing slightly at 4 wk, vitamin D status remained un-
changed through 40 wk; 2) vitamin D repletion occurred slightly 
more quickly, taking 2 to 3 wk for restoration of serum 25(OH)D 
concentrations considered by the Institute of Medicine to be ad-
equate for humans; 3) long-term VDD was marked by second-
ary hypocalcemia and hyperparathyroidism; and 4) long-term 
VDD led to weight loss with proportional decreases in both lean 
and fat body compartments.

Serum 25(OH)D, the hydroxy derivative of vitamin D and 
functional indicator of vitamin D status, has a reported half-life 
of approximately 20 to 30 d in humans; our observation that it 
took 3 wk for 25(OH)D concentrations (falling approximately 
2 nmol/L daily) to reach a deficient state in reproductive age 
female mice is consistent with this report.28 Our findings also 
highlight the importance of well-designed studies that not only 
ensure sufficient time for vitamin D depletion but also consider 
the possibility of unchanged, low but stable serum 25(OH)D 

Figure 4. Circulating concentrations of (A) 25(OH)D, (B) PTH, and (C) 
calcium. Female C57BL/6 mice were maintained on a vitamin D-suf-
ficient (VDS; n = 7) or vitamin D-deficient (VDD; n = 6) diet for 40 wk. 
Dashed line in panel A indicates the cut-off value for VDD in humans. 
Dotted lines in panel C indicate hypo- and hypercalcemia thresholds. 
Data are presented as mean ± SEM. *, Significant (P < 0.05) between-
group difference at the indicated time point; †, significant (P < 0.05) 
within-group difference from previous time point.

Figure 5. Growth curves of female C57BL/6 mice fed either a vitamin 
D-sufficient (VDS; n = 7) or vitamin D-deficient (VDD; n = 6) diet for 
40 wk. Data are presented as means ± SEM. *, Significant (P < 0.05) dif-
ference between the 2 groups.

Figure 6. Total fat and lean mass, as determined by echoMRI, of female 
C57BL/6 mice fed a vitamin D-sufficient (VDS; n = 7) or vitamin D-
deficient (VDD; n = 6) diet for 40 wk.
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concentration over an extended time. Our data on calcium ho-
meostasis shed some light in this regard.

The most well-known role of vitamin D involves calcium ho-
meostasis. Because calcium is necessary in nearly every cell and 
tissue in the body, the serum calcium concentration is main-
tained within a very tight window. Several mechanisms, involv-
ing vitamin D and PTH, exist to help maintain this balance.33 
The relationship between serum calcium and serum PTH is of 
an inverse sigmoidal nature, wherein decreases in serum cal-
cium elicit increases in PTH of a magnitude that is dependent 
on the deviation from the initial calcium concentration.47 PTH is 
released into circulation from the chief cells of the parathyroid 
gland. Acting through both vitamin D-dependent and -inde-
pendent mechanisms, PTH stimulates target tissues (small in-
testine, kidney, and bone) to raise serum calcium concentrations 
and maintain homeostasis.15,16,43,44 Indeed, our short-term VDD 
study exhibited this calciotropic hormone response. The rise 
in PTH concentrations in the VDD mice mirrored the decline 
in serum 25(OH)D, thus keeping serum total calcium within 
normal range albeit slightly lower than baseline. This decrease 
is most likely explained by the reduced availability of vitamin 
D for vitamin D-dependent mechanisms (especially increases 
in intestinal absorption) of calcium homeostasis.44 Our long-
term study showed a similar effect of VDD on serum 25(OH)D 
concentrations early during vitamin D depletion, but between 
weeks 8 to 12, serum total calcium decreased significantly, such 
that concentrations hovered around or were marginally below 
the normocalcemic minimum throughout the remainder of the 
study. Serum PTH, however, continued to increase over the en-
tire study, with final concentrations that were 2.5-fold greater 
than baseline concentrations. These observations reflect the re-
markable capacity of calciotropic hormones and related organs 
to maintain calcium homeostasis in the face of VDD. Therefore, 
secondary effects (on calciotropic hormones and organs) of 
VDD need to be considered in any experimental design, espe-
cially long-term studies and particularly when attempting to 
elucidate the noncalciotropic consequences of VDD.

To circumvent health complications associated with the cal-
ciotropic consequences of VDD, the use of high-calcium diets 
should be considered. It is common practice for investigators 
using vitamin D receptor knockout and CYP27B1-lacking (an 
enzyme necessary for vitamin D activation) mouse models to 
use ‘rescue diets’ that maintain normal circulating calcium con-
centrations.19,36,46 These rescue diets are fortified with calcium 
(approximately 2%) and phosphorus (approximately 1.25%) and 
contain additional lactose to promote calcium absorption.17,39 
Investigators using a diet-induced VDD model should include 
a rescue diet to prevent confounding of results.

The potential to mitigate health conditions by restoring suf-
ficient vitamin D status after VDD has garnered much attention. 
However, this endeavor is muddled by disagreement among 
the scientific community regarding the concentration of 25(OH)
D considered adequate compared with sufficient. For example, 
the Institute of Medicine defines VDD as serum 25(OH)D con-
centrations lower than 50 nmol/L, whereas the consensus re-
port from the 14th Vitamin D Workshop states that ‘sufficiency 
should be defined as concentrations exceeding 75 nmol/L.29,60 
Although comparing our current vitamin D repletion results 
in mice directly with human data is not straightforward due to 
differences in the dose and mode of vitamin D administration, 
body size and adiposity, and definition of sufficiency used), hu-
man trials demonstrate a repletion time of approximately 4 to 
6 wk with oral dosing at physiologic inputs, with 75 nmol/L 
as the goal.7,27,30 Similarly, our adult female mice achieved 

circulating 25(OH)D levels that exceeded the Institute of Medi-
cine deficiency threshold after 2 to 3 wk on the VDS diet, and 
with continued consumption of the VDS diet, our mice indeed 
attained a vitamin D status considered as sufficient by several 
scientific organizations by 8 wk.26,29,31 This gradual response in 
circulating concentrations to dietary vitamin D repletion by us-
ing NRC recommended amounts may complicate studies at-
tempting to elucidate the immediate effects of repletion in vivo. 
Therefore, researchers attempting to address such questions 
need to either consider this repletion time course or use custom-
formulated diets containing slightly increased amounts of vita-
min D.12,35 Alternatively, intraperitoneal injection of vitamin D 
might be used to induce a rapid rise in circulating 25(OH)D.74

In the current study, reproductive0age female mice main-
tained on a VDD diet demonstrated similar growth patterns to 
VDS-fed mice until 26 wk, after which VDD mice began rapidly 
losing weight. At study termination (40 wk of diet; 48 wk of 
age), VDD-fed mice weighed significantly less than VDS mice. 
EchoMRI measurement of body composition (fat compared 
with lean body mass compartments) indicated that the differ-
ence in body weight was attributable to widespread losses of 
both lean and fat tissue. This result is not surprising, given that 
serum calcium levels fell below 2.0 mmol/L for an extended 
period of time. Perhaps the observed loss of mass was due to 
systemic dysregulation and anorexigenic effects associated with 
hypocalcemia;22 this hypothesis requires further study that in-
cludes a test group that receives a calcium rescue diet. Alterna-
tively any speculated anorexigenic effects might be attributed 
to hormonal disruptions, such as of leptin, neuropeptide Y, or 
orexin; this question should be addressed in future studies. In 
addition, follow-up investigations might include dual-energy X-
ray absorptiometry scans to confirm how much of the lean mass 
difference is due to bone mineral compared with muscle loss.

Approximately 30% of the difference in body weight between 
the VDD and VDS groups is attributable to the loss of fat mass; 
64% of the difference in body weight is attributable to lean body 
mass. The role of vitamin D in adipose tissue is complicated and 
unclear,1,8,11 but it is well-established that adipose tissue is the 
primary storage site for fat-soluble vitamins, including vitamin 
D.41,58 Interestingly, despite the extended VDD, serum 25(OH)D 
concentrations largely plateaued after the rapid decline during 
the first 4 wk; therefore sequestered stores might have been mo-
bilized along with fat breakdown.23 Although we are unable to 
elucidate the tissue-specific effects on lean body mass atrophy, 
the likely greatest contributor within this compartment is bone 
loss. As mentioned previously, to maintain serum calcium ho-
meostasis, bone functions the calcium reservoir,56 and reduction 
in the bone mineral content is well noted in long-term VDD.68 
Skeletal muscle is another likely contributor to the observed 
loss of lean tissue mass. The direct and indirect (effects due to 
secondary hypocalcemia, hypophosphatemia, or hyperparathy-
roidism) roles of vitamin D in skeletal muscle are well-charac-
terized,10,18 and vitamin D deficiency has been associated with 
loss of both skeletal muscle mass and function in both humans 
and animals.6,20,24,67

A major limitation of both of our experiments was the inabil-
ity to measure all analytes at the same time points due to con-
straints on the amount of serum that could safely be collected 
from the mice. In the long-term study, the primary limitation 
was the lack of food intake data. Without this information, we 
are unable to rule out anorexigenic consequences of VDD, which 
would explain the dramatic weight loss in the VDD mice, as has 
been documented in some human VDD studies.4,65 Future stud-
ies feeding VDD diets on a long-term basis should examine total 
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feed intake and control for potential effects on body weight. 
The only other known study to examine the long-term effects of 
VDD in C57BL/6 mice likewise did not measure food intake.69

The well-understood consequences of VDD in lab animals, 
on which the current NRC recommendations are based, are 
hypocalcemia and hyperparathyroidism.51 However, since the 
most recent publication of NRC recommendations in 1995, we 
have come to understand that vitamin D plays many roles in 
the body and that animal models that recapitulate VDD-related 
conditions are needed.32 Here we have characterized the time 
course of both VDD depletion and repletion in reproductive-
age female mice. These data will aid investigators in the de-
sign of future work, including studies examining the potential 
for offspring DOHaD effects originating from maternal VDD. 
Our results further highlight the importance of monitoring and 
controlling the calciotropic effects of diet-induced VDD when 
studying noncalciotropic effects and support for the use of hy-
pocalcemic rescue diets in long-term VDD diet studies. More-
over, we provide evidence in reproductive age C57BL/6 female 
mice that long-term VDD results in metabolically meaningful 
changes in absolute, but not relative, body composition (21% 
reduction in body fat and 13% loss in lean mass). These effects 
might be an important consideration in studies of vitamin D 
and metabolic health.42,57
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