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Abstract: Breast cancer is one of the most common causes of cancer related deaths in women. Despite the
progress in early detection and use of new therapeutic targets associated with development of novel
therapeutic options, breast cancer remains a major problem in public health. Indeed, even if the survival
rate has improved for breast cancer patients, the number of recurrences within five years and the
five-year relative survival rate in patients with metastasis remain dramatic. Thus, the discovery of
new molecular actors involved in breast progression is essential to improve the management of this
disease. Numerous data indicate that long non-coding RNA are implicated in breast cancer development.
The oncofetal lncRNA H19 was the first RNA identified as a riboregulator. Studying of this lncRNA
revealed its implication in both normal development and diseases. In this review, we summarize the
different mechanisms of action of H19 in human breast cancer.
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1. Introduction

Breast cancer is the most common tumor in women and caused 508,000 deaths worldwide in 2011 [1].
Recent advances in molecular classification of this pathology allowed personalized-treatment of patients
and better outcomes, like the use of Herceptin in patients with overexpression of human epidermal
growth factor receptor 2 (Her-2) [2]. However, some classes of breast cancer such as triple-negative,
which is characterized by neither expression of progesterone receptor (PR), estrogen receptor, nor Her-2,
remains a poor prognostic for patients. The discovery of new molecular actors involved in the regulation
of breast cancer development is essential to improve the management of this disease. During the last
decades, plenty of non-coding RNAs have been involved in breast cancer development [3]. The study of
non-coding RNAs could lead to the development of new therapeutic strategies and better outcomes for
patients with triple negative breast cancer, and more generally to patients with cancer.

The Encyclopedia of DNA Elements (ENCODE) consortium revealed that up to 80% of the human
genome is transcribed into functional RNAs, but only 2% of the genome codes for proteins [4–6].
RNAs without coding potential are referred to as non-coding RNAs (ncRNAs). Based on theirs
lengths, they can be classified into two classes: small ncRNAs (<200 nt) and long ncRNAs (>200 nt).
Small ncRNAs include microRNAs (miRs), small interfering RNAs (siRNAs), PIWI-interacting RNAs
(piRNAs) or small nucleolar RNA (snoRNAs). miRs, siRNAs, and piRNAs were shown to mainly
act as negative regulators of gene expression, whereas snoRNA serves as a guide to induce chemical
modification of other RNAs [7]. Recently, Hon et al. identified 19,175 potentially functional lncRNAs in
the human genome [8]. The majority of lncRNAs shared similarities with mRNA: they are transcribed
by RNA polymerase II; 5′ capped; 3′ polyadenylated; and could be subjected to splicing [9,10].
The lncRNAs are also transcriptionally regulated by transcription factor and epigenetic modifications
and their expression is cell-type/tissue specific [8].
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Implication of lncRNA is well documented in different pathologies, including neurological
diseases [11,12], diabetes [13], and cancers [14]. lncRNAs exert their functions through diverse
molecular mechanisms such as acting as scaffolds for RNP complex, decoys for transcriptional factors
or microRNAs, RNA interference, targeting of transcriptional factor or chromatin modifier protein to
specific genomic loci, transcriptional regulation in cis or trans [15]. In this review, we will focus on the
implication of H19, the first identified lncRNA, in human breast cancer.

2. H19 Gene Locus

The H19/IGF2 locus located at position 11p15.5 is subject to genomic imprinting and is encoded
for several transcripts. One of these transcripts, H19, was proposed to act as a riboregulator by Brannan
et al. in 1990 and was the first identified lncRNA [16]. Major findings about H19 and its implication in
breast cancer are summarized below in a timeline manner (Figure 1).
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Figure 1. Major finding about H19 and its implication in breast cancer. Information concerning the
implication of H19 in breast cancer are colored orange. IGF2, Insulin-like Growth Factor 2; lncRNA,
Long Non-Coding RNA; RB, Retinoblastoma; MBD1, Methyl-CpG Binding Domain, EZH2, Enhancer
of Zeste Homolog 2; Cbl, Casitas B-lineage Lymphoma; H19-DTA, Plasmid encoding the A chain of
diphtheria toxin (DT-A) driven by the regulatory sequences of human H19.

The H19 gene is transcribed by the RNA polymerase II to give raise a polyadenylated, capped
and spliced 2.3 kb RNA. H19 is paternally imprinted and maternally expressed [17]. It is expressed
during embryonic development and repressed after birth expect in a few tissues like mammary
gland and uterus [18]. Aberrant expression of H19 due to imprinting modification is responsible
for developmental diseases. The loss of H19 expression and a biallelic expression of IGF2 are
responsible for the Beckwith–Wiedmann syndrome characterized by fetal and postnatal overgrowth
and predisposition to pediatric cancers such as Wilm’s tumors [19]. Biallelic H19 expression and loss
of IGF2 expression can lead to Silver–Russel syndrome characterized by intrauterine and postnatal
growth retardation combined with others symptoms [19]. In cancer, H19 is frequently overexpressed
and it is associated to many aspect of cancer development [20,21].

In 2007, Cai & Kullen demonstrated that H19 is a precursor of miR-675 [22]. The two strands of
miR-675, miR-675-5p, and miR-675-3p, have been involved in disease development and notably in cancer
development (Section 3.1). In the locus H19/IGF2, we have identified the presence of a new lncRNA
antisense to H19 gene, named 91H [23]. This lncRNA is also associated with cancer development in
solid-tumors such as breast cancer or osteosarcoma [23,24]. The implication of H19 and 91H in cancer
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is well described and is mediated by different mechanisms characteristics of that observed for other
non-coding RNAs. In this review, we will focus on the role of H19 in human breast cancer.

3. H19 Gene Locus in Human Breast Cancer

The implication of H19 in tumorigenesis has been reported and H19 is overexpressed in many solid
tumors such as prostate, bladder or breast cancers [25–27]. We showed that H19 is overexpressed in
73% of breast cancer tissues when compared to healthy tissues [28]. Several studies showed that H19 is
controlled by steroid hormones in normal and cancerous mammary gland, uterus and prostate [29–31].
In breast cancer, the expression of H19 is higher in Estrogen receptor (ERα) positive cells, but in
the ERα negative MDA-MB-231 cell line, ectopic overexpression of H19 is associated with increased
proliferation [27,30]. Collectively, these data indicate that H19 favor breast cancer development
probably thought different mechanisms discussed below.

3.1. H19: Precursor of miR-675-5p and miR-675-3p

The H19-derived miR-675 gives rise to two functional microRNA, miR-675-5p, and miR-675-3p
with different validated targets. The implication of miR-675 in cancer was firstly shown by Tsang WP
et al. in colorectal cancer (CRC). By targeting the tumor suppressor retinoblastoma (RB) protein,
miR-675-5p regulates the CRC development [32]. In human breast cancer, we have identified
two ubiquitin ligase E3, c-Cbl, and Cbl-b, as direct targets of miR-675-5p [33]. The overexpression
of miR-675-5p in breast cancer cells lines induced the downregulation of c-Cbl and Cbl-b proteins
and increased the stability and the activation of Epidermal growth factor receptor (EGFR) and c-Met.
Steady activation of Akt and Erk pathway enhanced the proliferation of human breast cancer and their
metastasis abilities in xenograft experiments.

Zhai et al. investigated the expression of miR-675-5p in formalin-fixed paraffin-embedded
(FFPE) tissues of 100 breast cancer patients [34]. The authors showed that miR-675 is significantly
up-regulated in breast cancer patients compared with controls, but this up-regulation is not correlated
with clinical and pathological status including ER and PR expression, age, and lymph node stage.
The frequency of miR-675 overexpression was higher in the patients with low histological grade
(I and II). Cordero et al. analyzed DNA methylation levels of 517 microRNA encoding genes in
prediagnostic peripheral white blood cells of subjects who have developed colorectal cancer or breast
cancer (BC) and subjects who remained clinically healthy [35]. They found that eight microRNAs,
including miR-675-5p, were differentially methylated in subjects who went on to develop breast cancer.
In those subjects, miR-675-5p was significantly hypomethylated suggesting that miR-675-5p could be
used as biomarker for breast cancer.

All the known targets of miR-675-5p and miR-675-3p implicated or not in neoplasia are resumed
in Table 1.

Table 1. Validated targets of miR-675-5p and miR-675-3p.

Targets of miR-675-5p Cellular Context Proteins Function References

c-Cbl & Cbl-b Breast cancer Ubiquitin ligase E3 [33]

HDAC 4/5/6 Bone Marrow Mesenchymal
Stem Cells Histone deacetylase [36]

CaMKIId Cardiomyocyte hypertrophy Serine threonine protein kinase [37]

USP10 c-kit+ cardiac progenitor cells Ubiquitin-specific protease [38]

RB Colorectal cancer Cell cycle regulator [32]

DDB2 Colon cancer cells Transcriptional repressor [39]

VDR Colon cancer cells Vitamin D receptor [40]

VDAC1 Diabetic cardiomyopathy Required for mitochondria-mediated apoptosis [41]

REPS2 Esophageal squamous
cell carcinoma Repressor of cell proliferation and migration [42]
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Table 1. Cont.

Targets of miR-675-5p Cellular Context Proteins Function References

CALN1 Gastric cancer Calcium-binding protein [43]

RUNX1 Gastric cancer Transcription factor [44,45]

FADD Gastric cancer Apoptotic adaptor that recruits caspase
8 or 10 [46]

Cadherin 13 Glioma cell Atypical cadherin lacking the
cytoplasmic domain [47]

RB & TWIST1 Hepatocellular carcinomas Twist1: Transcription factor [48]

GPR55 Non-small cell lung cancer G protein-coupled receptor [49]

TGF-ß1 Osteoblast differenciation Growth factor [50]

TGF-ß1 Prostate cancer Growth factor [25]

NOMO1 Placental trophoblast cell Nodal signaling pathway [51]

ATP8A2 Skeletal cell Catalytic component of a P4-ATPase
flippase complex [52]

CDC6 Skeletal muscle Essential for the initiation of DNA
replication [53]

VDR Ulcerative Colitis Vitamin D receptor [54]

Targets of miR-675-3p Cellular Context Proteins Function References

Cadherin 11 Melanogenesis Type II classical cadherin [55]

MITF Melanogenesis Transcription factor [56]

IGF1R Placenta Insulin-like growth factor 1 receptor [57]

TGF-ß1 Osteoblast differenciation Growth factor [50]

SMAD1 & SMAD5 Skeletal muscle Intracellular signal transducer and
transcriptional modulator [53]

Some of these targets could explain the oncogenic role of H19 in breast cancer. For example,
miR-675 stimulates migration and invasion by targeting TGF-β1 in prostate cancer cells, Cadherin13 in
glioma cells, or RUNX1 in gastric cancer cells [42,44,47]. We found that H19 and miR-675 expression
enhances breast cancer cell migration [33,58]. This could be mediated by targeting the above cited
molecules, even if miRNAs targets remain tissue specific. By example, miR-675 was shown to
downregulate the expression of RB in human colorectal cancer to promote tumor development [32].
RB was also demonstrated as a target of miR-675-5p in hepatocellular carcinomas [48]. However,
we showed that miR-675-5p doesn’t interact with RB mRNA in human breast cancer cell lines [33].

3.2. Competing Endogenenous RNAs (ceRNAs): Sequestration of miRs by H19

Tay et al. reported that lncRNA can be in competition with mRNA for common microRNAs and
termed such lncRNA transcript as competing endogenous RNAs (ceRNAs) [59]. H19, as numerous
lncRNAs, could act by this mechanism. Recently, Peng et al. demonstrated the implication of H19 in
maintenance of breast cancer stem cells through the sequestration of let-7 [60]. The lower availability
of let-7 increases the expression of its target, the core pluripotency factor LIN28; LIN28 in turn blocks
mature let-7 production and enhances the expression of H19 in breast cancer stem cells. In human
breast cancer cells lines, H19 upregulates the DNA methyltransferase DNMT1 by sponging miR-152,
leading to enhancement of cell proliferation and invasion of the cells [61]. The authors also revealed
a correlation between the overexpression of H19 and DNMT1 and the downregulation of miR-152 in
human breast tumor tissues. In 2017, Zhou et al. demonstrated that H19 regulates Epithelial-mesenchymal
transition (EMT) and Mesenchymal-epithelial transition (MET) by differentially acting as a sponge for the
microRNA miR-200b/b and let-7b using a mouse model of spontaneous metastatic breast cancer [62].
Other microRNAs sequestrated by H19 are indicated in Table 2.
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Table 2. Validated miRNAs sponged by H19.

miRNAs Sponged by H19 Cellular Context References

hsa-miR-19a/b Acute myelocytic leukemia [63]
miR-29b-3p Bladder cancer [64]

miR-152 Breast cancer [61]
let-7 Breast cancer stem cells [60]

miR-455 Cardiac fibrosis [65]
let7 Endometriosis [66]

miR-181-d Gliobastoma [67]
let-7 HEK293 [68]

miR-106-a & miR-17-5p Hela Cells, myboblast [69]
let-7 Muscle cells [70]

let-7b & miR-200b/c Mouse breast cancer [62]
miR 141 miR 22 Osteoblast [71]

mir-200s Osteosarcoma [72]
miR-17-5p Thyroid cancer [73]

The impact of H19 on metastasis abilities of the human breast cancer cell could be due to the
sponging of these microRNAs. By example, H19 regulates EMT in bladder cancer by sponging
miR-29b-3p [64]. In thyroid cancer, H19 promotes proliferation, migration, and invasion of cancer cells
through the sponging of miR-17-5p [73]. H19 also regulates tumorigenic abilities of glioblastoma cells
by sponging miR-181-d, in acute myleocytic leukemia by sponging has-miR-19a/b and in osteosarcoma
by serving as competing endogenous RNA for the miR-200s family [63,67,72].

In conclusion, the lncRNA H19 interacts with miRs pathways not only by being the precursor of
miR-675, but also by physically interacting with other miRs to regulate the expression of their targets
(Figure 2).

Int. J. Mol. Sci. 2017, 18, 2319  5 of 13 

 

Table 2. Validated miRNAs sponged by H19. 

miRNAs Sponged by H19 Cellular Context References 
hsa-miR-19a/b Acute myelocytic leukemia [63] 

miR-29b-3p Bladder cancer [64] 
miR-152 Breast cancer [61] 

let-7 Breast cancer stem cells [60] 
miR-455 Cardiac fibrosis [65] 

let7 Endometriosis [66] 
miR-181-d Gliobastoma [67] 

let-7 HEK293 [68] 
miR-106-a & miR-17-5p Hela Cells, myboblast  [69] 

let-7 Muscle cells [70] 
let-7b & miR-200b/c  Mouse breast cancer [62] 

miR 141 miR 22 Osteoblast [71] 
mir-200s Osteosarcoma [72] 

miR-17-5p Thyroid cancer [73] 

The impact of H19 on metastasis abilities of the human breast cancer cell could be due to the 
sponging of these microRNAs. By example, H19 regulates EMT in bladder cancer by sponging 
miR-29b-3p [64]. In thyroid cancer, H19 promotes proliferation, migration, and invasion of cancer 
cells through the sponging of miR-17-5p [73]. H19 also regulates tumorigenic abilities of 
glioblastoma cells by sponging miR-181-d, in acute myleocytic leukemia by sponging has-miR-19a/b 
and in osteosarcoma by serving as competing endogenous RNA for the miR-200s family [63,67,72]. 

In conclusion, the lncRNA H19 interacts with miRs pathways not only by being the precursor of 
miR-675, but also by physically interacting with other miRs to regulate the expression of their targets 
(Figure 2). 

  
Figure 2. Connection between H19 and microRNAs. H19 is the precursor of miR-675-5p which 
targets Cbl-b and c-Cbl mRNA in breast cancer. Downregulation of Cbl-b and c-Cbl protein 
expression induces sustained activation of Akt and Erk pathways that lead to increased cell growth 
and migration potential (a). H19 physically interacts with miR-152 and let-7 and impairs their 
bioavailability to induce the overexpression of their targets, DNMT1 and LIN28, and participle in 
tumorigenic properties and maintenance of stemness in breast cancer cells (b). Red arrows indicate 
an increased phenotype. 

3.3. Epigenetics Modification Induced by H19 

Long non-coding RNA could interact with chromatin modifier protein and contribute to 
epigenetic regulation of gene expression. H19 was shown to interact with the histone methyl 
transferase Enhancer of zeste homolog 2 (EZH2) and epigenetically silenced E-cadherin in bladder 

miR-152
Overexpression of 

DNMT1
↑ Cell growth
↑ Invasion

let-7
Overexpression of 

LIN28
Maintenance of Breast 

cancer stem cell

H19

miR sponging

miR-675-5p
miR processing AAAtargeting Cbl-b

c-Cbl

Downregulation of Cbl-b and c-Cbl

Sustained activation of Akt
and Erk pathways

↑ Cell growth
↑ MigraƟon

AAA(a)

(b)

Figure 2. Connection between H19 and microRNAs. H19 is the precursor of miR-675-5p which targets
Cbl-b and c-Cbl mRNA in breast cancer. Downregulation of Cbl-b and c-Cbl protein expression
induces sustained activation of Akt and Erk pathways that lead to increased cell growth and migration
potential (a). H19 physically interacts with miR-152 and let-7 and impairs their bioavailability to induce
the overexpression of their targets, DNMT1 and LIN28, and participle in tumorigenic properties and
maintenance of stemness in breast cancer cells (b). Red arrows indicate an increased phenotype.

3.3. Epigenetics Modification Induced by H19

Long non-coding RNA could interact with chromatin modifier protein and contribute to epigenetic
regulation of gene expression. H19 was shown to interact with the histone methyl transferase Enhancer
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of zeste homolog 2 (EZH2) and epigenetically silenced E-cadherin in bladder cancer and DIRAS3 in
diabetic cardiomyopathy [74,75]. Si et al. identified H19 as a factor associated with paclitaxel resistance
in ERα-positive breast cancer cells. H19 decreases cell apoptosis induced by paclitaxel treatment by
inhibiting the transcription of pro-apoptotic genes BIK and NOXA. The recruitment of EZH2 by H19
and its targeting onto the promoter of BIK induce its downregulation. As described in Section 3.2,
H19 impairs availability of miR-152 and increases the expression of the epigenetic regulator DNMT1
and so increases proliferation of breast cancer cells lines [61]. However, the epigenetic modification
induced by DNMT1 remains unknown. In the embryo, H19 has been shown to physically interact with
MBD1 and induce its recruitment at several imprinted genes including IGF2, PEG1, and SLC38A4 [76].
In 2015, Zhou et al. demonstrated that H19 binds to and inhibits S-adenosylhomocysteine hydrolase
(SAHH) which carries the synthesis of S-adenosylmethionine (SAM), the only source of methyl for
methyltransferases and other processes that are methyl-dependent [77]. Modulation of H19 can modify
genome wide DNA methylation and knockdown of H19 increased DNMT3B-mediated methylation of
the lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus.

Taken together, these data revealed that H19 is an important regulator of epigenetic status of
target genes. The epigenetic regulation driven by H19 could be done by physical interaction with
chromatin modifier protein or indirectly by regulating their expression.

3.4. 91H: H19 Antisense Transcript

In 2008, we identified a new non-coding transcript within the IGF2/H19 locus which is an antisense
gene to H19 named 91H [23]. This transcript of 120 kb in humans is an lncRNA expressed in human
and mice from the maternal allele. We also showed that 91H is overexpressed in breast tumors. Further
studies demonstrate the implication of 91H in osteosarcoma [24] and colorectal cancer [78]. Recently,
we showed that in breast cancer cells that 91H exerts oncogenic properties by promoting cell growth,
migration, and invasion [79]. In 91H-knockdown cell lines the expression of H19 and IGF2 is reduced
through epigenetic modifications on H19/IGF2 locus. These data suggest that 91H plays an essential
role in breast cancer development, but it is possible that 91H regulation of tumorigenicity requires other
factors than H19 or IGF2. Differentiate the implication of 91H in biological process independently of H19
is not an easy task, but well thought experiments are needed to address the issue.

3.5. Regulation of Cell Cycle

Besides the involvement of H19 in EMT, migration, metastasis, and carcinogenesis through the
mechanisms described above, H19 plays a key role in the regulation of the cell cycle. The overexpression
of H19 in breast cancer cells lines facilitates cell cycle transition G1/S while downregulation of H19
by RNA interference impedes S-phase entry and proliferation [80]. H19 is activated by E2F1 binding
(a key factor in the G1/S transition) to two consensus sites on H19 promoter and negatively regulated
by E2F6 and RB protein. Interestingly, in human colorectal cancer cell lines, H19 through microRNA
downregulates RB protein and increases cell growth [32]. Barsyte-Lovejoy et al. demonstrated that
the oncogene c-Myc binds specifically to H19 maternal allele to promote its transcription, leading to
proliferation of breast and lung cancerous cells [81]. We have also shown that the tumor suppressor
protein and cell cycle regulator p53 negatively regulates H19 in tumor cells [82]. The interaction between
H19 and p53 was also described in other cancers. In gastric cancer cells H19 physically interacts with
p53 to induce p53 inactivation [83]. The H19-derived miR-675 negatively regulates p53 through
an unknown target in bladder cancer cell [26]. In C-kit+ cardiac progenitor cells, Cai et al. showed that
miR-675 negatively regulates p53 through the targeting of USP10 [38]. Even if the regulation of p53 by
H19 in human breast cancer is not yet described, these data, collectively, demonstrate that H19 and
miR-675 play a pivotal role in the regulation of cell cycle in cancer as illustrated in Figure 3.
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4. Conclusions

H19 is involved in human breast cancer through interaction with protein, microRNAs, H19-derived
miR-675-5p, and H19 antisense lncRNA (91H) but the study of these ncRNAs is not only restrained in
cancer cell behavior. Increasing studies have reported their interests as cancer biomarkers and therapeutic
targets. In breast cancer, Zhang et al. demonstrated that the expression of H19 is significantly increased
in cancer biopsies and plasma compared with healthy controls, plasma H19 levels were significantly
correlated with progesterone and estrogen receptors and lymph node metastasis [84]. The plasma level
of H19 is higher in patients with gastric cancer compared to normal controls. Lower H19 expression is
found in postoperative samples compared to preoperative ones [85]. Higher levels of miR-675 are also
found in both tumor samples and gastric juice of patients suffering from gastric cancer [86]. The different
implication of H19 in human breast cancer is illustrated in Figure 4.
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Figure 4. Implication of H19 in human breast cancer. The H19 lncRNA favors breast tumorigenicity
by regulating the cell cycle, through the processing of miR-675-5p and the sponging of miR-152 and
let-7, and regulating chemotherapy resistance through epigenetic modification. The H19 antisense,
91H, allows allele-specific expression of H19 and participates in breast cancer cell biology. H19 and
miR-675 are overexpressed in breast cancer tissues and plasma of patients and could be used as
tumor biomarkers. H3K27me3: Trimethylation of lysine 27 on histone H3. Red arrows indicate an
increased phenotype.
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From a therapeutic perspective, a plasmid-based strategy (DTA-H19/BC-819) to target H19 is
presently in a phase 2b clinical trial for bladder cancer and in phase 1/2a for ovarian and peritoneal
cancer [87,88]. Although further studies are needed, the targeting of H19 and miR-675 could provide
novel opportunities in the treatment of cancer patients.
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