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Abstract

Development of a pH stat to properly control solution pH in biomolecular simulations has been a 

long-standing goal in the community. Towards this goal recent years have witnessed the 

emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and 

generality of these methods have been hampered by the use of implicit-solvent models or 

truncation-based electrostatic schemes. Here we report the implementation of the particle mesh 

Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) 

method, enabling CpHMD to be performed with a standard MD engine at a fractional added 

computational cost. We demonstrate the performance using pH replica-exchange CpHMD 

simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL and 

SNase. With the sampling time of 10 ns per replica, most pKa’s are converged, yielding the 

average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. 

Linear regression of the calculated vs experimental pKa shifts gives a correlation coefficient of 

0.79, a slope of 1 and an intercept near 0. Analysis reveals inadequate sampling of structure 

relaxation accompanying a protonation-state switch as a major source of the remaining errors, 

which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as 

a general tool for pH-controlled simulations of macromolecular systems in various environments, 

enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but 

also transmembrane proteins, nucleic acids, surfactants and polysaccharides.
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Introduction

Extending thermodynamic ensembles to include constant solution pH has been a 

longstanding goal in the advancement of molecular dynamics (MD) methodologies. Towards 

this goal two constant pH frameworks have been developed over the past decade to offer 

control of solution pH while propagating atomic positions. The first framework, referred to 

as discrete constant pH MD, combines MD with Monte-Carlo sampling of discrete 

protonation states,1–4 while the second one, referred to as continuous constant pH MD 

(CpHMD), makes use of the λ-dynamics5 based extended Hamiltonian to propagate a set of 

continuous titration coordinates.6,7 Until recently, all constant pH methods relied on 

dielectric continuum models such as Poisson-Boltzmann theory1 or generalized-Born 

implicit-solvent models for sampling protonation states, while either continuum models2,6,7 

or explicit-solvent description was used for conformational dynamics.1,3,8 The latter is also 

referred to as the hybrid-solvent constant pH MD. These methods enabled pKa predictions 

of proteins9,10 as well as lipids and surfactants,11,12 and mechanistic studies of pH-coupled 

conformational dynamics (see a recent review13 for references). However, the underlying 

approximations in the implicit-solvent models hinders the systematic improvement of 

accuracy and generalization to systems that necessitate fully explicit-solvent description, for 

example, highly charged molecules such as nucleic acids and those involving heterogeneous 

dielectric environments such as transmembrane proteins.

To overcome the limitations imposed by continuum models, the CpHMD framework has 

been recently extended to fully explicit-solvent (all-atom) simulations by three groups.14–16 

In the work of Donnini et al, which was implemented in the GROMACS program,17 the 

particle mesh Ewald (PME) scheme18,19 was used to model long-range electrostatics in 

conformational dynamics; however, it was not mentioned as to whether PME forces were 

applied to λ dynamics.14 The development was tested on several model compounds with a 

single titratable site.14 Making use of the force shifting scheme for electrostatics in both 

conformational and λ dynamics, CpHMD based on multi-site λ dynamics,15 which was 

implemented in CHARMM,20 has been developed and validated using pKa calculations of a 

ribozyme,21 proteins22 and a transmembrane helix.23 The development of Shen and 

coworkers,16 which was also implemented in CHARMM,20 utilized the generalized reaction 

field (GRF) scheme by Tironi et al.24 for both conformational and λ dynamics, and it was 

validated based on pKa calculations of proteins,25 surfactants embedded in micelle and 

bilayer environments,26 and sol-gel transition of polysaccharides.27 Another major 

difference between the latter and former two groups’ work is with respect to the system net 

charge. While the latter utilized co-titrating ions16 and later titratable water25 to ensure 
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charge neutrality, the other two developments neglected the effect of fluctuating net charge 

in the system.

The objective of this work is to develop the PME-based all-atom CpHMD and validate the 

implementation using pKa calculation of a set of proteins including a challenging one, 

staphylococcal nuclease (SNase), which has not been demonstrated using force shifting15 or 

GRF-based CpHMD.25 Our motivation is several fold. First, GRF schemes invoke a 

spherical representation,24,28 which is not suitable for anisotropic systems such as those 

involving membranes which are a major application target of constant pH MD. In fact, the 

use of GRF in membrane protein simulations (with CHARMM27 lipid force field29) 

resulted in significant shrinkage of the bilayer in terms of area per lipid (unpublished data), 

although lipid bilayers are known to be very sensitive to simulation setting and 

CHARMM27 was developed using PME.29 Second, our previous analysis showed force 

shifting or GRF-based CpHMD favors neutral species in titration due to the underestimation 

of favorable charging free energies and solvation free energies of charged solutes.30 This 

may be a major cause for the systematic overestimation of pKa shifts of buried residues,25 

although we acknowledge that the deviations may be reduced by performing the finite-size 

correction for charging free energies as shown by Reif et al.31,32 in the context of 

simulations with the Baker-Watts reaction field.28 Lastly, although it remains somewhat 

debatable as to whether PME outperforms GRF for charged proteins,33,34 PME is arguably 

the most widely used electrostatic method in MD simulations, and the highly parallel as well 

as GPU versions have been implemented in all major molecular dynamics packages such as 

AMBER,35 CHARMM20 and GROMACS.17 With judicious use, i.e., avoiding small box 

size which may give rise to periodicity related artifacts36 and including counter ions to 

neutralize the simulation box, PME has enabled accurate simulations of not only soluble 

proteins,34 but also nucleic acids,37 lipid bilayers38 and transmembrane proteins.39

In this work we report the implementation of PME-based all-atom CpHMD in CHARMM.20 

Test simulations employing titratable water, which we previously introduced to ensure the 

simulation system is charge neutral during titration,25 demonstrate significantly higher 

accuracy and faster convergence compared to the GRF-based all-atom CpHMD. The average 

absolute and maximum absolute errors of the calculated pKa’s for a stringent test set of 

proteins, HP36, BBL, HEWL and SNase, are 0.61 and 2.0 units with a sampling time of 10 

ns per pH replica, as compared to the respective errors of 1.1 and 3.6 using the same amount 

of sampling by the GRF-based variant. Thus, PME-based all-atom CpHMD with titratable 

water is expected to become a general tool for conducting pH-controlled molecular 

dynamics simulations.

Methods and implementation

Continuous constant pH molecular dynamics

CpHMD employs an extended Hamiltonian to simultaneously propagate spatial (real) and 

titration (virtual) coordinates,6,7
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(1)

where i and t refer to the atomic and titration-site index, respectively, ri represents the spatial 

coordinate, and θt is related to the titration coordinate λt by λt = sin2(θt). Thus, λt is 

continuous and bound between 0 and 1, corresponding to the protonated and deprotonated 

states, respectively. In practice, 0 and 1 are replaced with two cutoffs, λP and λU, for 

defining the protonated and deprotonated states, respectively. Previous CpHMD 

studies7–9,16,25,40,41 as well as current work show the calculated pKa’s are insensitive to the 

exact cutoffs, e.g., 0.1/0.9 or 0.2/0.8. This topic will be further discussed in Computational 

Details.

In Eq. 1, the first and the fourth terms give the kinetic energies of the real (atoms) and virtual 

(λ) particles, respectively. The second term gives the titration-independent bonded energy. 

Note, although the change in bonded terms due to a switch in protonation state is small or 

negligible in current force fields, this is an approximation that will be eliminated in future 

work. The last term represents the biasing potential which is a sum of three terms,

(2)

Ubarr a harmonic potential centered at 0.5 (midpoint of the λ value range) to suppress the 

population of unphysical intermediate states,

(3)

where βt is a parameter that specifies the barrier height and therefore controls the fraction of 

mixed states, i.e., λP ≤ λ ≤ λU. One β value (typically about 2.0 kcal/mol) is assigned for 

each model compound, e.g., Asp/Glu/His. This topic will be further discussed in 

Computational Details. Umod is the potential of mean force (PMF) function for 

deprotonation of the model compound, e.g., blocked amino acid in solution; and UpH 

represent the free energy imposed on the deprotonation equilibrium to account for the 

deviation of the solution pH from the model pKa value,

(4)

By invoking the linear response approximation, i.e., the charging free energy of an ion in 

polar solvent is quadratic in the charge perturbation and the charging potential is linear in the 

perturbation,42,43 the model PMF can be expressed as a quadratic function of λ,
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(5)

where At and Bt are fitting parameters. It follows that the average force, 〈∂U/∂λ〉, is linear in 

λ. In practice, thermodynamic integration is applied to obtain the average forces at various 

λ values, which are fit to a linear function to obtain At and Bt. Note that linear response is 

formally exact when continuum solvation models are used for λ-dynamics, e.g., in 

implicit-6,7 and hybrid-solvent CpHMD.8 In fully explicit-solvent (all-atom) CpHMD, 

nonlinearity of solvent response is expected; however, surprisingly, in the GRF-based all-

atom CpHMD simulations with co-ions16 or titratable water,25 the degree of nonlinearity 

was found to be very small and negligible. Thus, the quadratic function will continue to be 

used in PME-CpHMD to fit the PMFs of model compounds and titratable water (hydronium/

hydroxide). Finally, we turn to the third term in Eq. 1, which represents the non-bond energy 

that depends on both spatial and titration coordinates, realizing the coupling between 

conformational dynamics and proton titration. Specifically, the van der Waals interactions 

involving titratable hydrogens and the partial charges on the titratable residues are linearly 

interpolated between the two end states.7 The latter results in a change in the electrostatic 

energy, which is the focus of the current development.

Particle-mesh Ewald electrostatics

Following the notation of Essmann et al.,19 the electrostatic energy of N point charges {qi} 

within a unit cell satisfying the condition  can be written as a lattice sum,

(6)

In the above equation the outer sum is over the vector n = n1a1 + n2a2 + n3a3, where vectors 

a1, a2 and a3 are the edges of the unit cell; integers n1, n2 and n3 indicate the location of the 

image. The prime indicates the summation excludes the term with i = j and n = 0 (self-

interactions).

In the particle-mesh Ewald (PME) method, the Coulomb lattice sum is decomposed into 

three terms,18,19

(7)

The direct sum Udir represents the short-range electrostatic energy calculated in real space,
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(8)

where the asterisk denotes that self-interactions and those in the excluded list (for example, 

up to the second nearest neighbors) are omitted; erfc is the complementary error function; 

and β is an arbitrary constant which determines the relative convergence rate of Udir and 

Urec.

The reciprocal sum Urec represents the long-range electrostatics calculated in Fourier space 

as18,19

(9)

Here m is the reciprocal lattice vector , where m1, m2 and m3 are 

integers not all zero.  is the conjugate reciprocal vector of aα, which satisfies , 

where α, β = 1, 2, 3. V = a1 · a2 × a3 refers to the volume of the unit cell, and S(m) is the 

structure factor,

(10)

The reciprocal term can be approximated as18,19

(11)

Here Kα, with α = 1, 2, 3, is the size of reciprocal lattice. Q is a three-dimensional array 

filled with charges on the reciprocal lattice grids. Θrec is the coefficient array independent of 

atomic charges. Convolution Θrec ★ Q was achieved by one inverse and one forward three-

dimensional discrete fast Fourier transformations (3D-FFT).19

The correction term Ucorr is given as18,19,44

(12)
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Here the first term denotes the bonded pairs subtracted from Urec, the second term represents 

the self energy, and the third term accounts for the interaction with a uniform background 

charge (plasma) included to neutralize the net charge of the system (if present). Note, in 

Ucorr the dipole moment of the unit cell is neglected, i.e., conductive tinfoil boundary 

condition. Also, the last two terms are not evaluated in the atomic force calculations as they 

are independent of coordinates. Note that to obtain energies in the unit of kcal/mol, the 

electrostatic constant, κ = 1/4πε0 = 332.0 kcal · Å · mol−1e−2, is multiplied to Eqs. 6, 8, 11 

and 12.

Given the PME energies, electrostatic force on λ particles can be obtained by differentiating 

the direct, reciprocal and correction terms with respect to λ (subscript t is omitted for 

clarity),

(13)

and realizing that λ is linearly related to the atomic partial charges of the titratable group,

(14)

In the above equations, qi represents the partial charge on atom i, and the superscript U and 

P denote the unprotonated and protonated states, respectively. While the λ derivatives of 

Udir and Ucorr are straightforward, the derivative of Urec can be written as

(15)

Note, the factor 1/2 in Eq. 11 does not appear here because of the contribution from the 

convolution term where Q is linear in λ.

Correction of finite-size effects on pKa calculation

It is well known that charging free energies calculated with lattice-sum methods under 

periodic boundary conditions are dependent on the periodic box size.45–47 The finite-size 

error has several physical origins, including the periodicity induced net charge interaction 

and undersolvation, discrete solvent effects, as well as residual integratd potential effects.47 

Rocklin et al. recently showed that, for a system neutralized with counter-ions, the finite-size 

error in the charging free energy of a ligand (with +1 or −1 charge) is dominated by the 

discrete solvent effects due to an offset potential that compensates for the potential generated 

by discrete solvent.47 The corresponding offset energy in charging a titratable group is given 

as47
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(16)

where κ is the electrostatic constant, ρsolv is the solvent number density, ρsolv = Nsol/V, 

where Nsolv and V are the number of solvent molecules and volume of the periodic box, 

respectively. Q is the charge of the titratable site, i.e., −1 for Asp/Glu or +1 for His/Lys, and 

γsolv is the quadrupole moment trace of the solvent model relative to a van der Waals 

interaction site. For a solvent model with a single van der Waals interaction site, e.g., 

TIP3P,48 it is , where n is the number of atoms, qi is the atomic partial charge, 

and ri is the distance to the van der Waals interaction site (oxygen). For TIP3P model γsolv is 

calculated as 0.764 e· Å2.

From Eq. 16 we can obtain the difference in the offset potential between the protein and 

model compound simulations,

(17)

where the subscripts prot and mod refer to the protein and model, respectively. In the model 

compound simulations, since the solute is very small compared to the simulation box, the 

solvent number density approaches that of the pure solvent ρpure, which is 0.0333679 Å3 for 

water at ambient temperature and pressure. Combining Eq. 16 and 4, we obtain the 

corresponding pKa correction,

(18)

where the negative sign is for acid groups and positive sign is for basic groups. Note, 

charging a basic group refers to the opposite of the deprotonation reaction. Thus, ΔpKa
corr is 

negative for both acidic and basic groups.

Results and Discussion

Model parameterization and titration

To validate the implementation, we first examine the PMF for model compound titration. It 

is expected that the GRF- and PME-based results are similar, while they are quite different 

from the hybrid-solvent simulation since the latter uses the GB model to calculate 

electrostatic forces along titration coordinates. Fig. 1 shows the average force obtained from 

thermodynamic integration and corresponding PMF for model Asp and Lys. It can be seen 

that linear fitting of the average force is perfect for hybrid-solvent simulations, while there is 
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a small but negligible deviation for GRF- and PME-based simulations due to the use of 

explicit solvent (see earlier discussion). Thus, quadratic function is an accurate 

approximation of the PMF function for model compound titration. Comparing the GRF- and 

PME-based forces, we see that the deviation between the two becomes larger as λ 
approaches 1 for Asp (Asp−) and 0 for Lys (Lys+). This is because PME provides more 

stabilization for the charged state as compared to GRF, as shown in our previous study.30 

Consequently, the free energy of deprotonation, i.e., charging for Asp and discharging for 

Lys, is larger in the PME-based simulation, consistent with our previous finding.30 It is 

worthwhile noting that the charging free energy for Asp and Lys (PMF difference between λ 
0 and 1) is very similar in the hybrid-solvent but not in the GRF- and PME-simulations. This 

is because the all-atom simulations are able to capture the phenomenon of charge 

asymmetry, attributable to the stronger interactions of anions with water,42,49 which is 

neglected in the GBSW implicit-solvent model.

Next we examine the titration simulations of model compounds using PME-based CpHMD 

in comparison to the hybrid-solvent and GRF-based CpHMD (Table 1). It is encouraging 

that, with 5 ns sampling per replica, the PME-based CpHMD is able to achieve a precision 

similar to experiment (0.04–0.08 for the model alanine pentapeptide Ac-AA-X-AA-NH2 

where X denotes the titratable residue).50 This precision is on par with the hybrid-solvent 

CpHMD, which is known to deliver very fast convergence due to the use of the GB model 

for calculation of solvation forces along titration coordinates.8,9 Remarkably, the 

performance of the PME-based simulations is much better than that of the GRF-based 

simulations. With half of the sampling time per replica, random errors are reduced by more 

than half, which may be attributed to the energy fluctuation in the cutoff-based electrostatic 

methods. We note that, due to small fitting errors and perhaps nonlinearity in solvent 

response (see earlier discussion), there is often a small deviation between the calculated 

model pKa and reference value. In this work using the original fitting parameters, the 

deviations for Lys/Asp/Glu/His were 0, 0.1, 0.2 and 0.3, respectively. The deviations were 

then minimized using the iteration of titration simulation, pKa calculation and parameter 

adjustment (details see Table S5).

Convergence of protein titration simulations

We test the performance of PME-CpHMD using titration simulations of four proteins, HP36, 

BBL, HEWL and SNase. These proteins were chosen, since they have been used to 

benchmark the previous versions of CpHMD methods,8,25,40 and more importantly, they 

contain residues with large pKa shifts and coupled titration and as such serve as a stringent 

test for the accuracy of pKa calculations. 53 The pKa’s of SNase are particularly challenging 

for the traditional PB-based electrostatic calculations and empirical pKa prediction 

methods,53–56 as there are many buried residues clustered together and titrating in a similar 

pH range (strong coupling).

We first examine the pKa convergence by monitoring the pKa’s cumulatively calculated as a 

function of simulation time (Fig. 2) and comparing the pKa values calculated with the first 

and second half of the 10-ns simulation. Compared to the GRF-based simulations, the 

convergence is much faster for all four proteins. Half of the 37 pKa’s converge within 5 ns 
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(per replica), defined as the difference between the first and second half of the simulation 

below 0.1 units. In contrast, only 7 pKa’s become stable after 5 ns in the GRF-based 

simulations. At 10 ns, most pKa’s are converged in the PME-based simulations but not in the 

GRF-based simulations.

To evaluate convergence, we also inspect the titration plots, i.e., fitting of the unprotonated 

fractions at different pH to the generalized Henderson-Hasselbalch (HH) equation, as 

unconverged pKa’s typically manifest themselves in the “non-HH” behavior of the 

unprotonated fractions. As shown in Fig. 3, the fitting quality is excellent for all residues, 

with the chi-square value ranging from 0.00017 to 0.038 and correlation coefficient greater 

than 0.9955, even for Asp19 and Asp21 of SNase, which appear to have slightly larger 

fitting errors than other residues based on visual examination (see later discussion). These 

data are consistent with the overall good convergence. Finally, convergence of protonation 

state sampling can perhaps be best judged by examining the unprotonated fractions (S) 

cumulatively calculated as a function of simulation time. This is because S values are the 

direct representation of protonation state sampling and as such they are more sensitive than 

pKa values. Consistent with the calculated pKa’s vs. time (Figure 2), most S values converge 

after 10 ns, except for Glu35/Asp48 of HEWL, and Asp19/Asp21/Glu75 of SNase, which 

are among those with large pKa errors (Supporting Information, Fig. S1–S4). However, 

encouragingly, the changes of S are all but one in the direction of decreasing the pKa 

deviations from experiment (see later for more discussion).

Overall accuracy of protein titration simulations

Next we examine the accuracy of the calculated pKa’s in comparison to the GRF-based as 

well as the hybrid-solvent CpHMD data (Table 2 and Fig. 4). The latter are used because 

hybrid-solvent CpHMD gives the most accurate pKa prediction thus far within the CpHMD 

framework.8,57 The overall average absolute and rms deviations from the PME-based 

simulations are respectively 0.61 and 0.77, significantly lower than the GRF-based 

simulations (1.1 and 1.4), and similar to the hybrid-solvent data (0.59 and 0.76). Linear 

regression of the calculated pKa shifts (relative to model values) vs. experimental data gives 

a correlation coefficient of 0.79 for the PME-based simulations, significantly higher than the 

GRF-based (0.61) and hybrid-solvent data (0.70). Remarkably, the regression slope is about 

1 and intercept is nearly 0 for the PME-based data, suggesting the absence of significant 

systematic errors. In contrast, the GRF-based data gives a sizable intercept of 0.77, 

indicative of a systematic overestimation of pKa shifts, which may be attributed, in part to 

the overstabilization of neutral states by GRF as shown in our previous work,30 and in part 

to the lack of a finite-size correction as shown by Reif et al. in simulations based on the 

Baker-Watts reaction field.31,32 The hybrid-solvent data shows a slope well below one 

(0.61), indicative of a systematic underestimation of pKa shifts, which is due to the 

underestimation of desolvation penalty by the GBSW model (”too wet”).8,9,57 The above-

mentioned trend can also be seen from the histogram of pKa deviations, pKa
calc - pKa

expt 

(Fig. S6). Accordingly, the histogram of hybrid-solvent simulations shows a larger 

population in the negative region, while the histogram of GRF simulations shows a larger 

population in the positive region. In contrast, the histogram of PME simulations is more or 

less symmetric around 0.
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Sources for the deviations between calculated and experimental pKa’s

To understand the cause for the deviations between experimental and calculated pKa’s by 

PME-CpHMD, we identified 11 residues that show absolute errors above 0.6 units (Table 2, 

highlighted with asterisks): His142 (−1.1) and His166 (−1.3) of BBL; His15 (−1.5), Glu35 

(1.0) and Asp52 (2.0) of HEWL; Asp19 (1.1), Asp40 (−1.0), Glu52 (0.8), Glu101 (0.9), 

Glu129 (1.7) and Glu135 (−0.8) of SNase. Among these residues, except for Asp40 and 

Glu135 of SNase, the calculated pKa’s for the acidic groups are too high, while those for 

histidines are too low, indicating that the neutral state was consistently overly favored in the 

simulation. We examine the structural environment and dynamical interactions involving 

these residues.

First, acidic residues that form persistent salt bridges show underestimated pKa’s to favor the 

charged state. For example, Asp40 and Glu135 of SNase form salt-bridge interactions with 

Arg35 and Arg105, respectively, leading to the underestimation of the pKa’s by 0.9 and 0.8 

units, respectively. This type of error is also seen in the hybrid-solvent data (Table 2, 

underestimation of 0.8 and 0.4 units, respectively) as well as the previous GB-based 

CpHMD simulations,8 which can be reduced given more extensive sampling of the solvent-

separated configurations.8,40 In fact, the significant improvement (by 0.6 units) of the pKa of 

Asp48 from HEWL in the second 5 ns of the simulation is due to the weakened salt bridge 

with Arg61 (Fig. S7).

Second, (partially) buried residues that form persistent hydrogen bonds have the pKa’s 

overly shifted to favor the neutral state. For example, His15 of HEWL forms persistent 

hydrogen bond with the hydroxyl group of Thr89, showing an overly downward-shifted pKa 

by 1.5 units. Glu129 of SNase is in persistent hydrogen bonding with the backbone amide 

group of Val111, showing a calculated pKa too high by 1.7 units. We suggest the 

overstabilization of the neutral state in these cases is due to the inadequate structural 

relaxation of the buried site, which results in an overestimation of the desolvation penalty. 

The same trend can be seen in the GRF-based data, although the overshifts there are 

exacerbated. Such overshifts are not seen in the hybrid-solvent simulations, which may be in 

part attributed to the fortuitous cancellation of errors between the underestimation of 

desolvation by the GBSW model and the overestimation of desolvation resulting from 

inadequate structural relaxation based on our previous studies of buried residues.9,57

The third group of residues with moderately large pKa errors (1–1.5 units) are those whose 

solvent accessibility is blocked by hydrophobic groups in direct contact. In order for 

CpHMD to reproduce experimental pKa’s of buried residues, our previous work showed that 

the ionization-induced increase in solvent exposure needs to be accurately captured in the 

simulation, which sometimes requires local unfolding.57 The latter aspect has been also 

demonstrated by the work of Warshel group58 and Garcia-Moreno group.59 In the PME-

based simulations, we found that H142, H166 of BBL and Glu101 of SNase are in persistent 

contact with Leu167, Leu144 and Leu124, respectively, preventing them from becoming 

fully exposed to solvent upon charging. As a result, the charged state is insufficiently 

stabilized, leading to the pKa underestimation by 1.1, 1.3 units for H142, H166 and 

overestimation by 0.9 units for Glu101. Note, the overestimated pKa shifts due to under-

solvation of charged state can also be seen in the GRF-based results, although the deviation 

Huang et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for Glu101 is much worse (pKa is 2.5 units too high). The pKa overshifts are not seen in the 

hybrid-solvent simulations due to the error cancellation mentioned previously.

The last group of residues, Glu35 and Asp52 of HEWL and Asp19 and Asp21 of SNase, 

showing large pKa deviations from experiment are the so-called coupled residues, which are 

often found as catalytic dyad in enzyme active sites. with one elevated and one depressed 

pKa relative to the model value. In addition to desolvation and electrostatic repulsion, these 

residues may also be involved in hydrogen bonding and electrostatic interactions, making 

the pKa’s challenging to predict, as individual energetics needs to be modeled accurately. 

Our calculated pKa’s for Glu35 and Asp52 of HEWL are 7.1 and 5.6, respectively, in correct 

order but respectively 1.0 and 2.0 units higher than experiment (6.1 and 3.6). The calculated 

pKa shift of Asp52 has a wrong direction and carries the largest absolute error among all the 

calculated pKa’s. We suggest the error can be attributed to the aforementioned inadequate 

structure relaxation in the presence of persistent hydrogen bonding with the sidechain amide 

group of Asn59 in addition to the insufficient sampling of the coupled titration. The 

significant improvement (by 0.7 units) of the calculated pKa for Glu35 in the second 5 ns of 

the simulation is due to a deprotonation-induced increase in the solvent exposure (Fig. S7).

The highly coupled pKa’s for Asp19 and Asp21 of SNase are notoriously difficult to predict 

due to hydrogen bonding between Asp19 and the backbone amide group of Asp21. In fact, 

in the blind pKa prediction exercise of 2009,54 neither the empirical PROPKA,56 Poisson-

Boltzmann calculations55 or GBSW-based CpHMD9 were able to reproduce the 

experimental pKa order. Remarkably, our calculated pKa’s for Asp19 and Asp21 of SNase 

are 3.3 and 6.0, in correct order, although respectively 1.1 units too high and −0.5 units too 

low compared to experiment (2.2 and 6.5). The overestimation of the pKa of Asp19, which is 

the lower of the two catalytic pKa’s, is consistent with that of Asp52 in HEWL (calculation 

error of 2 units), and can be linked to the stable hydrogen bonding network with the 

sidechain hydroxyl, backbone amide of Thr22 and the backbone amide of Asp21. In addition 

to the correct order, the splitting of the two pKa’s (4.3) is well reproduced by the PME-based 

CpHMD (2.7), as compared to the GRF- (−0.5) and hybrid-solvent (1.2) simulations.

Effect of prolonged sampling

The above analysis suggests that inadequate sampling of structural relaxation accompanying 

the switch in protonation state is a major contributor to the deviations between experimental 

and calculated pKa’s with 10-ns sampling time. To investigate the sampling issue, which is 

particularly relevant for SNase where out of 17 Asp/Glu residues, 12 titrate in the pH range 

3–4 (Fig. 3), we prolonged the simulations to 16 ns per replica. Time series of the 

unprotonated fractions and pKa’s of Asp19/Asp21/Glu75 that are not converged at 10 ns are 

converged after 12 ns (Fig. S4 and S5). To understand if the extra 6-ns sampling offers 

improvement in accuracy, we compare the pKa’s calculated based on 10–16 ns to those 

based on 5–10 sampling for the aforementioned residues with absolute deviations greater 

than 0.6, Asp19 (1.1), Asp40 (−1.0), Glu52 (0.8), Glu101 (0.9), Glu129 (1.7) and Glu135 

(−0.8). For Asp19, Asp21, Asp40 and Glu135, the deviations are decreased by 0.1, 0.3, 0.4 

and 0.2, respectively; for Glu52 and Glu129 the deviations are increased by 0.2, 0.1; and for 

Glu101 the deviation is unchanged. Overall, the maximum, average and rmsd of the 
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calculated pKa’s based on 10–16 ns are nearly the same as those based on 5–10 ns. These 

data suggest that while improvement is visible (for example, coupled residues Asp19 and 

Asp21), significant longer simulations may be needed in order to achieve overall 

improvement.

Concluding remarks

We developed the PME-based all-atom CpHMD and demonstrated the accuracy and 

convergence in protein titration simulations. Using 10 ns sampling per replica, the average 

absolute and rms errors of the calculated pKa’s are significantly lower than those from the 

GRF-CpHMD, and similar to the hybrid-solvent CpHMD (average absolute and RMS 

deviations are smaller by 0.01). The correlation with experimental pKa shifts are 

significantly improved over both GRF- and hybrid-solvent based simulations. Remarkably, 

the PME-based simulations give a linear regression slope of 1 and intercept near 0, 

suggesting that systematic errors are largely absent.

Analysis showed that large deviations are from buried residues and those in stable hydrogen 

bond or salt bridge, which presents kinetic barrier to the configurations favored by the 

alternative protonation state. These data suggest that the pKa deviations observed in this 

work can be reduced given more extensive sampling of the ionization-induced change in 

solvent exposure as well as the breakage of hydrogen bond or salt bridge. Additional 6 ns 

sampling for SNase showed that, while some pKa’s are brought closer to experimental 

values, an overall improvement may require significantly longer simulations. Nevertheless, 

the agreement between the predicted and experimental pKa’s for the highly coupled catalytic 

dyad Asp19/Asp21 in SNase (in correct order and deviations of 1.1/−0.5 with 10 ns or 

1.0/−0.2 with 16 ns simulations) is remarkable and suggests that the method may be 

deployed for the investigation of pH-coupled conformational dynamics of enzymes.

We note a major limitation of the current implementation is speed. Compared to the 

conventional PME MD, PME-CpHMD adds about 30% CPU time (based on the timing 

statistics of the four test proteins), similar to the hybrid-solvent and GRF-based CpHMD. 

However, we should note that current implementation is not optimized and is based on an 

MD engine CHARMM c36b2 which does not utilize the more recent parallelization 

methods. In principle, PME-based CpHMD adds only a fractional computational cost, 

because the number of titration coordinates is about two orders of magnitude smaller than 

the number of solute atoms. Another area of improvement is in the use of titratable 

water,16,25 which allows solute-solvent proton exchange and serves to maintain the total 

system charge neutral, an important part in PME-based simulations.45 However, for the latter 

purpose, alternatives such as the recently developed proton buffer method60 may be 

computationally more efficient. Thus, with the emergence of GPUs and new algorithms of 

parallel processing, we expect the integration of PME-based CpHMD in standard MD 

packages to enable pH-controlled MD simulations on the order of hundreds of nano seconds 

on routine basis. As such we also anticipate a systematic improvement of accuracy in the 

calculated pKa’s. Finally, we shall emphasize that the PME-CpHMD can be applied to any 

system that current force fields can represent, thus opening a door to new insights into pH-
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dependent phenomena involving not only soluble proteins but also transmembrane proteins, 

nucleic acids, surfactants and polysaccharides.

Computational Details

Preparation of simulation systems

Model compounds are single amino acids (Asp, Glu, His and Lys) acetylated at N-terminus 

(ACE) and N-methylamidated at C-terminus (CT3), hydronium (H3O+) and hydroxide 

(OH−). The four test proteins are: the 36-residue subdomain of villin headpiece, HP36(PDB: 

1VII), 45-residue binding domain of 2-oxoglutarate dehydrogenase multienzyme complex, 

BBL (PDB: 1W4H), 129-residue hen egg white lysozyme, HEWL (PDB: 2LZT), and 135-

residue hyperstable variant (Δ+PH) of staphylococcal nuclease (PDB: 3BDC). N-terminus of 

all proteins was left in the free and charged form, while the C-terminus was blocked with 

CT3. The terminal groups were not made titratable, as they do not interact with the protein 

and often times no experimental pKa’s are available to compare with. However, this is an 

issue that will be addressed in our future work, perhaps by utilizing the model data obtained 

and collected by Pace group50,66 For protein structures, the crystal waters and hydrogens (if 

any) were stripped and the HBUILD function in CHARMM was used to add hydrogen 

atoms. Model compounds were constructed using CHARMM.20 The structure was solvated 

in a box (cubic for model compounds and truncated octahedron for proteins) filled with the 

CHARMM modified TIP3P water20 with a distance of at least 10 Å between the solute and 

edges of the box. The unit-cell lattice parameters are: 30 (model compounds), 54 (HP36), 59 

(BBL), 69 (HEWL) and 70 Å (SNase). To test the finite-size effects and corrections, 

additional box sizes were considered for the two smaller proteins HP36 (43 Å) and BBL (49 

Å).

To maintain a constant net charge for the system, Ntitr randomly chosen TIP3P water was 

replaced with titratable water that can convert to hydroxide or hydronium.25 For simplicity, 

we refer to the former titratable water as hydroxide and the latter as hydronium. For model 

compounds, 1 hydroxide or hydronium was added for the titration of model Asp/Glu or 

model His/Lys. For proteins, 4 hydroxide were added for HP36, 2 hydronium/6 hydroxide 

for BBL, 1 hydronium/9 hydroxide for HEWL, and 2 hydronium/17 hydroxide for SNase. 

To neutralize the simulation box, Na+ or Cl− counterions were then added. For proteins, 

additional salt ions were added to reach the experimental ionic strength: 150 mM for 

HP36,67 200 mM for BBL,62,63 50 mM for HEWL,64 and 100mM for SNASE.65 Thus, the 

model compound simulations contained 1 Na+ for Asp/Glu and 1 Cl− for His/Lys, while the 

protein simulations contained 10 Na+/13 Cl− for HP36, 16 Na+/20 Cl− for BBL, 2 Na+/12 

Cl− for HEWL, and 15 Na+/24 Cl− for SNASE.

Simulation protocol

The method described in this work was implemented in an inhouse modified version of 

CHARMM (release c36b2).20 Particle mesh Ewald (PME) method was added to the PHMD 

module to account for the electrostatic force on the fictitious λ-particles. The CHARMM22/

CMAP additive force field was used to represent the proteins and the CHARMM modified 
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TIP3P water model was used to represent nontitratable solvent. The force field parameters 

for titratable water are taken from our previous work.25

All simulations were performed using the pH replica-exchange (pH-REX) protocol,8 where 

each replica underwent constant NPTpH molecular dynamics (MD) at 300 K, 1 atm pressure 

and specified pH. The temperature, pressure and pH were controlled by Hoover 

thermostat,68 Langevin piston pressure coupling algorithm,69 and CpHMD,6,7 respectively. 

Periodic boundary condition was applied to all simulations. The SHAKE algorithm was 

applied to all bonds involving hydrogen atoms to allow a 2-fs integration time step. In the 

PME calculation, the real-space cutoff was 12 Å and grid spacing was 1 Å. The van der 

Waals energies and forces were smoothly turned off over the range of 10–12 Å via a 

switching function. The titration (λ) coordinates were propagated using the Langevin 

algorithm with a collision frequency of 5 ps−1 (default setting in PHMD). The mass of the λ 
particles was set to 10 atomic mass units (default setting in PHMD). The parameter β used 

in Ubarr was set to 2.0 kcal/mol for all titratable residues (see Table S5).

For derivation of model PMF functions, thermodynamic integration was performed using 1-

ns CPT MD at θ values of 0.2, 0.4, 0.6, 0.7854, 1.0, 1.2, and 1.4. The second half of the 

trajectory was used to determine the average force 〈∂U/∂θ〉. Five independent pH-REX 

simulations were conducted for each model compound. Each pH-REX simulation utilized 

five pH replicas occupying the pH conditions of pKa
ref−2, pKa

ref−1, pKa
ref, pKa

ref+1, 

pKa
ref+2, where pKa

ref refers to the reference model pKa value. Each pH replica was 

simulated for 5 ns.

Prior to simulations energy minimization was performed using steepest descent (SD) and 

adoptive basis Newton-Ralphson (ABNR) methods. Three rounds of minimization each 

consisting of 50 steps SD followed by 50 steps ABNR were performed. Finally, 100 steps of 

SD followed by 100 steps of ABNR minimization were performed. Protein simulations 

began with a heating stage followed by equilibration at pH 7 before invoking pH-REX 

simulations. In the heating stage, the desired temperature of 300K was achieved in 120 ps 

with the heavy atoms harmonically restrained by a force constant of 5.0 kcal/mol·Å. In the 

equilibration stage, two 20-ps simulations were performed with the force constants of 1.0 

and 0.1 kcal/mol·Å, respectively, followed by a 20-ps unrestrained MD.

In the pH-REX simulation, identical starting structure was used in all pH replicas and unless 

otherwise noted each replica was simulated for 10 ns. The pH spacing was 0.5 pH unit and 

the pH range extended at least 1 unit above and below the highest and lowest experimental 

pKa values. Specifically, the pH range was 1 to 6.5 for HP36, 0.5 to 8.0 for BBL, −1.0 to 9.5 

for HEWL and SNase. An exchange between adjacent pH replicas was attempted every 100 

MD steps or 0.2 ps in model compound titration and 500 steps or 1 ps in protein simulations. 

The average replica-exchange ratio was above 40%. In the simulations of HP36, BBL and 

HEWL, most replicas walked through the entire pH range, while in the simulation of SNase, 

only half of the replicas did so (Fig. S8–S11).

Huang et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pKa calculation

Based on the λ values, which were collected after each exchange step, the unprotonated 

fractions (S) were calculated using the same two cutoffs (0.9/0.1) as in the previous versions 

of CpHMD,6–8,16,25,40

(19)

Here NU and NP represent the number of deprotonated (λ > 0.9) and protonated (λ < 0.1) 

states, respectively. The pKa was then calculated by fitting S at simulated pH conditions to 

the generalized Henderson-Hasselbalch or Hill equation,

(20)

where n is the Hill coefficient.

We compared the pKa’s calculated using two sets of λ cutoffs: 0.1/0.9 and 0.2/0.8 (see Table 

S6). Most pKa’s are the same; the largest difference is 0.1; the overall comparison with 

experiment is also very similar. The RMSD, regression slope and intercept from the 

calculations using the 0.1/0.9 cutoffs are 0.77, 0.98 and 0.06, while the corresponding values 

with the 0.2/0.8 cutoffs are 0.76, 1.01 and 0.11. This behavior is consistent with the previous 

versions of CpHMD.6–8,16,25,40 With the two sets of cutoffs, the fraction of mixed states is in 

the range of 0.1–0.45 and 0.05–0.3, respectively. Very low fractions of mixed states are 

typically found at low and high pH conditions, whereas higher fractions are found around 

the titration pH. We note that, given a set of cutoffs such as 0.1/0.9, the parameter β that 

controls the barrier height can be adjusted to achieve a desired fraction of mixed states, 

taking into account higher barrier height leads to slower λ transition. Optimization of the β 
parameter will be a topic in our future work.

Finite-size correction of protein pKa’s

We applied Eqs. 17 and 18 to calculate the pKa corrections to account for the box size 

dependence. It follows that the corrections are: −0.5 for Asp/Glu of HP36; −0.5 for Asp and 

−0.4 for Glu/His of BBL; −0.9 for Asp/Glu and −0.8 for His of HEWL; and −0.9 for 

Asp/Glu/His of SNase. These corrections are very similar to those pre-calculated using the 

lattice-parameter-based volume of the protein system (Table S1 and S2). Thus, the pKa 

corrections will be incorporated into the reference pKa’s and implemented in the CpHMD 

code in the future. More details are given in SI. Finally, to test the finite-size effects and 

validate the pKa corrections, we performed additional simulations for two small proteins, 

HP36 and BBL, using a smaller box. The differences in the pKa’s are very similar to those 

estimated using the finite-size corrections (Table S3).

Huang et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average force and corresponding potential of mean force (PMF) for deprotonation of model 

compounds Asp and Lys. (a) Average force 〈∂U/∂λ〉 calculated at different values of λ. The 

average force was obtained from the second half of the 1-ns thermodynamic Integration (SI). 

Lines are the best fits to a linear function 2A(λ − B) (see Eq. 5). (b) Corresponding PMF 

function of λ (integration of the average force). In (a) and (b), data from the hybrid-solvent,8 

GRF-25 and PME-based CpHMD simulations are shown in black, green and red, 

respectively. The unit of force or PMF is kcal/mol.
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Figure 2. 
Convergence of the calculated pKa’s for HP36 (a), BBL (b), HEWL (c) and SNase (d). pKa 

calculation was performed every 2 ns per replica based on the cumulative values of the 

unprotonated fractions at all pH. The left and right panels present the GRF-25 and PME-

based CpHMD simulations.
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Figure 3. 
Titration plots of HP36, BBL, HEWL and SNase. Unprotonation fractions at different pH 

were calculated based on the 10-ns CpHMD simulations. Solid curves represent best fits to 

the generalized HH equation. For all curves, chi-square of fitting is in the range 0.00017–

0.038 and correlation coefficient is in the range 0.9955–0.999965.
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Figure 4. 
Correlation between the experimental and calculated pKa shifts relative to model compound 

values for hybrid-solvent, GRF-, and PME-based CpHMD simulations. The diagonal gray 

line is added to guide the eye. The red line represents linear regression with the slope, 

intercept (interc) and correlation coefficient (r) indicated. The corresponding pKa’s are given 

in Table 2.
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Table 1

Calculated pKa’s for model Asp, Glu and His

Model Ref Hybrid GRF PME

Asp 4.0 3.8±0.02 3.5±0.17 4.0±0.09

Glu 4.4 4.1±0.01 4.1±0.13 4.5±0.09

His 6.5 6.9±0.01 6.8±0.10 6.5±0.02

His-Nδ 6.6 – – 6.7±0.03

His-Nε 7.0 – – 6.9±0.03

Lys 10.4 10.4±0.02 10.4±0.12 10.4±0.04

Average pKa’s and standard deviations based on five independent sets of pH-replica CpHMD simulations. Reference pKa’s refer to the 

experimentally measured pKa’s of blocked single amino acids.51 The microscopic pKa’s of His-Nδ and His-Nε are taken from Ref.52 All these 

values are identical to the previous CpHMD work.6–8,25 The hybrid-solvent simulation used 5 replicas, each of which was sampled for 10 ns with 

λ-update every 10 MD steps. The GRF-based simulation used 10 pH replicas, each of which was sampled for 10 ns.25 The PME-based simulation 
used 5 pH replicas, each of which was sampled for 5 ns. The PMF functions with parameters slightly adjusted to minimize the deviations from the 
reference pKa’s were used (see Table S5).
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