
New principles for auxetic periodic design

Ciprian S. Borcea* and Ileana Streinu†

*Department of Mathematics, Rider University, Lawrenceville, NJ 08648, USA

†Computer Science Department, Smith College, Northampton, MA 01063, USA

Abstract

We show that, for any given dimension d ≥ 2, the range of distinct possible designs for periodic 

frameworks with auxetic capabilities is infinite. We rely on a purely geometric approach to auxetic 

trajectories developed within our general theory of deformations of periodic frameworks.
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1 Introduction

New digital manufacturing techniques have vastly expanded the possibilities of generating 

complex three-dimensional structures, across length scales, and have opened up new 

opportunities for kinematic and geometric design to address functional desiderata. This 

paper is concerned with periodic structures and metamaterials with auxetic capabilities, a 

challenging and fast evolving topic at the intersection of mathematics, mechanical design 

and materials science [6, 8, 14, 18]. Our contribution is to derive new principles for auxetic 

design from the geometric theory of auxetic deformations recently introduced in [6].

Auxetic behavior

When stretched, most materials will shrink laterally. Auxetic behavior is the rather counter-

intuitive property exhibited by some materials that widen laterally upon stretching. In 

elasticity theory, such materials are said to have negative Poisson’s ratios [10]. The promise 

of various applications and increased interest in obtaining synthetic structures or 

metamaterials with this type of response to tensile loading has led to a sequence of studies, 

with emphasis on cellular and periodic structures [1, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20]. 

However, the repertory of auxetic designs proposed in the literature remained confined to a 

few dozen examples in dimension two and much less in dimension three [8]. The authors of 

[14] remark on p.4792 that “it has been a challenge to design 3D auxetic micro-/nano-
structured materials”.
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New foundations for periodic auxetics

In [6], we introduced a purely geometric approach to auxetic deformations for crystalline 

materials and man-made mechanical structures modeled as periodic bar-and-joint 
frameworks. This approach, reviewed in Section 2 below, presents a number of distinct 

advantages over the conventional route through Poisson’s ratios. First of all, as a rigorous 

mathematical theory, the model can be applied to a wide range of structures, across length 

scales, provided that a periodic bar-and-joint framework organization is the dominant 

feature. There is no need for experimental or simulated determinations of Poisson’s ratios, 

since auxetic capabilities can be recognized by strictly geometric criteria. In fact, our 

mathematical theory works in arbitrary dimension. Moreover, the geometric approach 

clarifies the analysis of flexible structures with several degrees of freedom. In this case, 

certain deformation trajectories may be auxetic, while many other trajectories would not be 

auxetic. Thus, the notion of auxetic behavior must refer only to a certain type of one-

parameter deformations of a periodic structure.

Auxetic design

The ascendancy of the geometric approach is probably most conspicuous in matters of 

design. We have shown in [3, 5] that the stronger notion of expansive behavior, when all 

distances between joints increase or stay the same, can be completely elucidated in 

dimension two in terms of a class of periodic structures called periodic pseudo-
triangulations (and kinematic equivalence classes of refinements to pseudo-triangulations). 

An example is presented in Figure 1.

We have also shown that expansive implies auxetic, hence this leads to an infinite gallery of 

planar auxetic periodic mechanisms, by virtue of the fact that all periodic pseudo-

triangulations have exactly one degree of freedom to deform. While periodic pseudo-

triangulations are easy to generate (see [6] section 5(i) for a description and illustration of 

the procedure), proving their stated properties is not so elementary. Interested readers can 

find the full treatment in [5].

The expansive implies auxetic principle is valid in arbitrary dimension, but the structure of 

expansive periodic frameworks in three or higher dimensions is only partially understood 

[4]. In [6], we have relied on the suggestive value of necessary conditions for expansiveness 

for a couple of new designs of three dimensional periodic frameworks with auxetic 

capabilities.

Main contribution

In the present work, we formulate and prove, in arbitrary dimension d ≥ 2, a general 

principle for converting a finite linkage with adequate prerequisites on d pairs of 
unconnected joints into a periodic framework with auxetic capabilities. From the standpoint 

of geometric auxetics [6] these prerequisites are natural, elementary and easily satisfied. 

This implies endless possibilities for auxetic design in arbitrary dimension.
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Overview

In order to control the number of degrees of freedom, we start with a finite linkage in ℝd 

without self-stress, that is, with infinitesimally independent edge constraints. If the linkage 

has d pairs of vertices which provide, as free vectors, a basis of ℝd, we adopt the lattice 

generated by these vectors as periodicity lattice and obtain an associated periodic framework 

by replicating the finite piece via all translations in the periodicity lattice. This basic 

construction converts the finite linkage into a periodic framework with the same number of 

(periodic) degrees of freedom, or, more precisely, with the same smooth local deformation 

space. Thus, in order to obtain auxetic capabilities for the periodic framework we have to 

require adequate deformations for the finite linkage. It will be seen, as we unfold this 

scenario, that the resulting requirement is simply an expression of the defining property of 

auxetic trajectories and can be satisfied by an infinite gallery of finite linkage designs. We 

emphasize the fact that both the simplicity of the principle and the unlimited variety of 

possible examples have their roots in our geometric theory of auxetic deformations [6].

After reviewing in Section 2 the essential ingredients of this geometric approach, we 

describe the passage from finite linkages to periodic frameworks in Section 3. The design 

requirement for obtaining periodic frameworks with auxetic capabilities is stated in Section 

4 and then construction techniques for finite linkages with appropriate features are 

developed in Section 5. Procedures for reducing the number of degrees of freedom to one 

and obtaining auxetic periodic mechanisms are described next. In Section 7 we show that 

affine transformations of a periodic framework preserve the infinitesimal auxetic cone. This 

result is relevant for classification criteria. A gallery of examples in Section 8 presents an 

infinite series of auxetic periodic mechanisms in dimension three. We mention some topics 

worthy of further investigation in our concluding Section 9.

2 The geometric theory of periodic auxetics

In this section, we review the essential notions of our geometric theory of auxetic one-

parameter deformations of periodic frameworks. For more background and full details, we 

refer to [2, 6].

Periodic graph

A d-periodic graph is a pair (G, Γ), where G = (V, E) is a simple infinite graph with vertices 

V, edges E and finite degree at every vertex, and Γ ⊂ Aut(G) is a free Abelian group of 

automorphisms which has rank d, acts without fixed points on vertices and edges and has a 

finite number of vertex and orbits. The group Γ is isomorphic to Zd and is called the 

periodicity group of the periodic graph G. Its elements γ ∈ Γ ≃ Zd are referred to as periods 
of G.

Periodic placement of a periodic graph

A periodic placement of a d-periodic graph (G, Γ) in ℝd is defined by two functions:
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where p assigns points in ℝd to the vertices V of G and π is an injective homomorphism of 

Γ into the group T(ℝd) of translations in the Euclidean space ℝd, with π(Γ) being a lattice of 

rank d. These two functions must satisfy the natural compatibility condition: p(γv) = π(γ)

(p(v)).

Periodic framework

A placement which does not allow the end-points of any edge to have the same image 

defines a d-periodic bar-and-joint framework in ℝd, with edges (u, v) ∈ E corresponding to 

bars (segments of fixed length) [p(u), p(v)] and vertices corresponding to (spherical) joints. 

Two frameworks are considered equivalent when one is obtained from the other by a 

Euclidean isometry.

Periodic deformation

A one-parameter deformation of the periodic framework (G, Γ, p, π) is a (smooth) family of 

placements pτ : V → ℝd parametrized by time τ ∈ (−ε, ε) in a small neighborhood of the 

initial placement p0 = p, which satisfies two conditions: (a) it maintains the lengths of all the 

edges e ∈ E, and (b) it maintains periodicity under Γ, via faithful representations πτ : Γ → 
T(ℝd) which may change with τ and give an associated variation of the periodicity lattice of 
translations πτ(Γ).

After choosing an independent set of generators for the periodicity lattice Γ, the image πτ(Γ) 

is completely described via the d × d matrix Λτ with column vectors given by the images of 

the generators under πτ. The associated Gram matrix is given by:

Auxetic path

A deformation path (G, Γ, pτ, πτ), τ ∈ (−ε, ε) is called auxetic when the curve of Gram 

matrices ω(τ) defined above has all its tangents in the cone of positive semidefinite 

symmetric d × d matrices. When all tangents are in the positive definite cone, the 

deformation is called strictly auxetic.

This form of the auxeticity criterion, established in [6], Thm. 3.1, will be convenient for our 

present purposes. We note that the auxetic character of a one-parameter deformation is 

determined by the curve of Gram matrices of a basis of periods and strict auxeticity at one 

instance implies strict auxeticity in a neighborhood.

3 From finite to periodic

We assume a given dimension d ≥ 2. A linkage in ℝd is a pair L = (G, p), where G = (V, E) is 

a simple connected graph with n = |V| vertices and m = |E| edges and p : V → ℝd is a 

placement of the vertices in ℝd. Edges are then conceived as rigid straight bars between the 

corresponding vertices, which serve as spherical joints for the linkage. It is assumed here 

that all edges correspond to non-zero segments. Linkages which differ by an isometry of ℝd 
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are considered equivalent, that is T ○ p and p are equivalent placements for any Euclidean 

isometry T. Simply put, equivalent linkages are identified.

The kinematics of linkages is a classical topic and we mention here only aspects and results 

directly relevant for our constructions. In particular, we use only linkages with 
infinitesimally independent edge constraints. In other words, the rows of the rigidity matrix 
are linearly independent. By the implicit function theorem, the local deformation space will 

be smooth, of dimension

(1)

where  is the dimension of the Euclidean isometry group E(d). We will need f ≥ 1, 

when f is also called the number of degrees of freedom of the linkage.

For the construction we are about to describe, we assume that d pairs of vertices {vi(k), vj(k)} 

⊂ V, k = 1, …, d, have been given, with the property that the vectors

(2)

form a basis of ℝd. Note that, while in each pair vi ≠ vj, different pairs may share one vertex.

Let , be the rank d lattice generated by this basis. This lattice 

will play the role of periodicity lattice for the periodic framework associated to our linkage 

with marked pairs.

We observe first that when we identify in G all vertices which appear in one of the given 

pairs, that is, if we put vi(k) ≡ vj(k), k = 1, …, d and maintain all edges (some possibly 

converted into loops), we obtain a quotient multigraph with exactly ñ = n − d vertices and 

 edges.

Let  be a complete set of representatives for the n − d vertices of the quotient 

multigraph. Then, the vertices  of the periodic graph will be recorded as symbols v + λ, 

, λ ∈ Λ and placed by  at . The edge set  of the periodic 

graph  is made of all (formal) Λ translates of E (with V seen as included in ). 

For periodicity group Γ we have Λ itself, with the natural action on . The resulting periodic 

framework , where π is the identification Γ = Λ, does not depend on the choice 

of representatives .

Figure 2 illustrates the procedure for d = 2. The planar linkage is a four-bar mechanism 

configured as a pseudo-triangle. The chosen pairs of vertices correspond to the diagonals. 

The associated periodic framework is a periodic pseudo-triangulation described as a “double 

arrowhead” pattern.
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We summarize the general procedure as follows.

Theorem 1

Let L = (G, p) be a connected linkage in ℝd, with n vertices and  edges, 

such that:

a. the m edges impose infinitesimally independent constraints,

b. there are d marked pairs of vertices, with the corresponding vectors (2) providing 

a basis of ℝd.

Then, there is a unique periodic framework , with the following four 
properties:

i. the periodicity group Γ is identified with the lattice generated by the given basis,

ii. the linkage L is contained in the framework ,

iii. the edges of L provide a complete set of representatives for the edge orbits of 

under periodicity,

iv. every vertex orbit of  has at least one representative in L and the quotient 

is the finite multigraph described above.

This unique associated periodic framework  has ñ = n − d vertex orbits and  edge 

orbits and the local deformation spaces of L and  can be identified. Their common 

dimension is

(3)

The claim on preservation of degrees of freedom follows immediately from [2], p.2641. In 

particular, the last term in (3) is the dimension formula for periodic deformations when edge 

constraints are infinitesimally (and hence locally) independent.

The reader may observe that the planar framework in Figure 1 can also be obtained (in two 

ways) by a passage from finite to periodic.

4 The main auxetic design principle

The correspondence described in Theorem 1 turns a finite linkage L = (G, p) into a periodic 

framework  with the same local deformation space. Thus, a one-parameter 

local deformation (G, pτ) for L turns into a (periodic) one-parameter local deformation 

 for . If we want the latter to be an auxetic path, the criterion of [6], Thm. 3.1, 

recalled above at the end of Section 2, requires the generators of the periodicity lattice to 

give a curve of Gram matrices ω(τ) with tangent directions  in the positive 
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semidefinite cone. Obviously, this curve is determined by the effect of the linkage 

deformation pτ on the d pairs of vertices marked on the linkage at the outset.

The essence of our auxetic design principle can be stated already.

Theorem 2

The periodic framework  has a non-trivial auxetic deformation path if and only if the finite 

linkage L has a local one-parameter deformation with the following property: the Gram 

matrix of the basis given by the d marked pairs of vertices evolves (in the space of d × d 
symmetric matrices) as a non-constant curve with all its tangents in the positive semidefinite 

cone.

An important case, which involves only infinitesimal considerations, is when the tangent 

direction  at the initial moment τ = 0 is actually in the positive definite cone. By 

continuity, this is enough to guarantee an interval τ ∈ (− ε, ε) where the tangent remains in 

the positive definite cone and the periodic deformation is strictly auxetic.

For explicitness, we unfold the more formal details. With notations introduced above in (2), 

the variation with τ of the marked basis is given by

(4)

The d × d matrix with these column vectors is denoted Λ(τ), hence the Gram matrix of the 

marked basis is

(5)

The velocity vector at moment τ for this parametrized curve is

(6)

The auxeticity requirement is that all velocity vectors (6) for τ in a small neighborhood of 0 

belong to the positive semidefinite cone. At moment τ = 0, we have Λ(0) = Λ and

(7)

with the derivative  depending only on the infinitesimal deformation corresponding to 

pτ. As noticed above, when (7) is in the interior of the positive semidefinite cone, that is 
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 is positive definite, strict auxeticity follows for small enough τ. We state explicitly 

this corollary, since this form of the principle implicates only infinitesimal deformations of L 
and is most useful for constructing examples.

Corollary 3

If, for some infinitesimal deformation of L, the corresponding infinitesimal variation 

of the Gram matrix is positive definite, the periodic framework  has a strictly auxetic 

deformation path.

For a simple illustration, we revisit the example given in Figure 2. The quadrilateral has one 

degree of freedom and the obvious local deformation for our symmetric configuration, 

shown in Figure 3, increases the lengths of the two diagonals, while maintaining their 

orthogonality. This means that  is a diagonal 2 × 2 matrix with positive diagonal 

entries. Hence, the double arrowhead periodic framework is a strictly auxetic one degree of 

freedom periodic mechanism (as long as the quadrilateral remains concave i.e. remains a 

pseudo-triangle).

5 Construction techniques

In this section we discuss construction techniques for obtaining finite linkages L which 

satisfy the auxetic requirement formulated in Theorem 2, or rather the strict auxetic criterion 

of Corollary 3. It will soon become apparent that examples can be constructed ad libitum in 

any dimension d ≥ 2. The general construction ideas surveyed here offer wide opportunities 

for applications, since additional specifications can be met by ingenuity and refinement in 

the finite linkage design.

We begin with an examination of the case when all d pairs of vertices marked on the linkage 

L = (G, p) have a common vertex v0. Convenient labeling will have our basis expressed as

(8)

with the Gram matrix ω = (〈λi, λj〉)ij, 1 ≤ i, j ≤ d. Thus, we aim at designing L, so that it has 

an infinitesimal deformation making the corresponding infinitesimal variation  of 

the Gram matrix positive definite.

We may assume, without violating the condition on infinitesimally independent edge 

constraints, that L contains a rigid part (e.g. a d-dimensional simplex) and we shall refer to it 

as the “scaffold”. Then, we can attach to this scaffold, without any redundancy of new bars, 

other elements of the linkage, with adequate control on the possible motion of certain 

“vertices of interest”. In our case, the vertices of interest are those labeled v0, …, vd, and we 

may connect them to the scaffolding as follows: v0 is rigidly connected, while each vk, k = 1, 

…, d is attached via a “hinge connection”, to be described in the next lemma, which allows 
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only one degree of freedom relative to the scaffold, namely the rotation of vk around that 

hinge.

Lemma 4

Suppose we have a (spanning and minimally) rigid linkage in ℝd, referred to as a “scaffold”. 

Suppose we have a new vertex v and we want to connect it to the scaffold in such a way that 

it has only one degree of freedom with prescribed direction for its infinitesimal motion 

relative to the scaffold. Then, we choose a (d − 2)-simplex, referred to as a “hinge” and 

position it in the hyperplane through v with normal direction prescribed by the infinitesimal 

motion allowed for v (but away from v). We connect this hinge rigidly (and without 

redundancy) to the scaffold and connect v to the (d − 1) vertices of the simplex. The 

resulting linkage allows only a rotation of v around the hinge as relative motion and the 

infinitesimal direction of motion is the one prescribed.

Remark

In more suggestive terms, this lemma may be called “the trapdoor principle”, since v and the 

hinge form a panel (codimension one “trapdoor”) and this panel can only rotate around its 

fixed hinge. In Figure 4 we show the result of applying this principle to obtain a linkage in 

R3 with controlled motion for three vertices relative to a (fixed) tetrahedral scaffold. The 

three marked arrows would be λk, k = 1, 2, 3 and this shows that their infinitesimal variation 

can be arranged to yield a positive definite , as argued in the next lemma.

Lemma 5

Suppose p0, p1, …, pd are points in ℝd with

a basis of ℝd. The point p0 is assumed fixed and may be taken as the origin. The points pk 

are subject to infinitesimal displacements μk ≠ 0 which have the direction of the 

corresponding altitude from pk in the simplex [p0…pd] and are all pointing outwards. Then, 

the resulting infinitesimal variation  of the Gram matrix ω = (〈λi, λj〉)ij is positive definite.

Proof—Let us assume that only one point, say pk, moves infinitesimally by μk ≠ 0, with the 

other points fixed. Then  is positive semidefinite of rank one, with the only non-zero entry 

at (k, k). The lemma follows by linear combination (with all coefficients one).

In summary, the trapdoor principle (Lemma 4) shows how to design a linkage with 

prescribed infinitesimal motions for marked vertices v0, …vd. When these prescriptions are 

as in Lemma 5 (with pi = p(vi)) we obtain a positive definite infinitesimal variation of the 

Gram matrix of periods, hence strictly auxetic capabilities for the associated periodic 

framework. Figure 5 illustrates this type of construction for d = 2.

Figure 6 shows the three-dimensional version of the same scheme.
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Note that these constructions lead to linkages with d degrees of freedom. In Section 6 we 

describe a simple reduction procedure to one degree of freedom and strictly auxetic motion 

for the associated periodic framework.

It is fairly transparent by now that similar scenarios apply for other patterns of d pairs of 

vertices in the finite linkage L. If we consider, for instance, the case of no common vertex 

for any two pairs, we may label the pairs (vk, wk), with basis

We may design L with all vk, k = 1, …, d fixed to the scaffold and λk mutually orthogonal 

and each wk constrained by hinge connections to move infinitesimally along λk. Again, we 

obtain associated periodic frameworks with strictly auxetic capabilities.

For other patterns of d marked pairs one may use orthogonal splittings of ℝd and maintain 

orthogonality for adequate partitions of the d pairs. We dispense with further inventory 

pursuits here and consider instead a type of structure which will be useful for deriving an 

explicit infinite series of non-isomorphic d-periodic graphs underlying auxetic periodic 

mechanisms for d ≥ 3.

Let d ≥ 3 and consider the finite linkage in ℝd with n = d + 2 vertices and m = 2d edges 

which corresponds to the case shown in Figure 7 for d = 3. For a more suggestive 

description, we adopt the following language. There is a hyperplane, to be called ‘floor’, 

which contains d of the placed vertices, configured as a regular (d − 1)-simplex, but not 

connected by edges. The two remaining vertices lie above the center of the (d − 1)-simplex 

and both are connected by edges to all d points on the floor. As a result, all bars from one or 

the other of the two points are of equal length and the line through the two points is 

orthogonal to the floor (and will be called ‘vertical’). The vectors given by d marked pairs of 

vertices are: the vertical vector between the two points above the floor and the (d − 1) 

‘horizontal’ vectors from one point on the floor to the remaining (d − 1) points on the floor.

The indicated vectors become periods and generate the periodicity lattice for the associated 

periodic framework. We see that, when using horizontal periods, the floor hyperplane goes 

to itself and gives a floor for the periodic framework. Repeated translations by the vertical 

period will generate an infinite array of such floors. Floors do not contain edges. In Figure 7, 

replicas of the floor (d − 1)-simplex are highlighted.

There are  degrees of freedom and a natural set of parameters for the deformations of the 

finite linkage would be the (squared) distances between the vertices of the floor simplex. A 

strictly auxetic deformation trajectory for the periodic framework can be immediately 

proposed based on a dilation motion for the floor simplex. The vertical vector remains 

orthogonal to the floor since the two end-points project to the circumcenter of the floor 

simplex. The end-point closer to the floor approaches faster than the remote one, resulting in 

a (squared) length increase for the vertical period vector. Thus,  is clearly positive definite 
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for this kind of local deformation trajectory. Other auxetic trajectories (with  semipositive 

definite of rank two) will be described in the next section, in connection with ways of 

reducing from  degrees of freedom to one.

6 Reduction to one degree of freedom

In this section we show first that the periodic frameworks with d degrees of freedom 

obtained when using our auxetic design principle in the manner described in Section 5 can 

be turned into periodic frameworks with a single degree of freedom which are locally strictly 

auxetic.

More precisely, let us assume that we have constructed a finite linkage L = (G, p) in ℝd, with 

d pairs of vertices marked as (v0, vk), k = 1, …, d. We assume at the same time, that the rigid 

part of L called scaffold is fixed and includes v0, which is placed at the origin. The linkage 

has d degrees of freedom due to the hinge connections of the d vertices vk, k = 1, …, d, to 

the scaffold.

We let pk = p(vk), k = 1, …, d denote the initial positions and consider a deformation path 

with infinitesimal displacements  for the vertices vk, as needed when satisfying a strictly 

auxetic prerequisite. In particular, this is the setting illustrated above in connection with 

Figures 5 and 6.

Lemma 6

The linkage L can be turned into a linkage L* which has a single degree of freedom and a 

deformation path with the same infinitesimal displacements  for the vertices vk, k = 1, …, 

d.

Proof—We introduce a new vertex w with a sufficiently general position q. We connect w 
with all vk, k = 1, …, d. Then, the infinitesimal displacement  of w which is compatible 

with the infinitesimal displacements  is uniquely determined by the linear system:

(9)

Now, we may apply the ‘trapdoor principle’ (Lemma 4) and construct a hinge connection for 

w to the scaffold, with  as the allowed direction of infinitesimal displacement. Thus, a total 

of (2d − 1) edges emanate from w. This yields the desired linkage L* with one degree of 

freedom.

We illustrate in Figure 8 a simple conversion of the linkage used earlier in Figure 5 into a 

linkage with just one degree of freedom. Obviously, this kind of operation has considerable 

leeway.
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Remark

For the associated periodic framework we obtain strict auxeticity (i.e.  positive definite) at 

the initial moment, hence a strictly auxetic deformation path defined on some interval (− ε, 
ε).

A somewhat different procedure will be described presently for the type of frameworks 

related to Figure 7. In this setting, d ≥ 3 and the task is to reduce the degrees of freedom 

from  down to one. For simplicity and the benefit of figures, we conduct our discussion 

in dimension three. The arguments in higher dimensions are completely analogous.

The main idea is illustrated in Figure 9. We operate in the associated periodic framework, 

where we want to introduce  new edge orbits, that is (for d = 3) two new edge 

orbits. Recall that highlighted triangles belong to stacked floors. Floors do not contain 

edges, but are organized by horizontal periodicity. The figure shows three triangles in one 

floor and one triangle in the floor above. The representatives TN and TC of the two new 

edge orbits are shown as darker segments.

Note that the three edges from the top vertex to the triangle in the upper floor belong, by 

periodicity, to the original periodic framework, which has six edges incident to every vertex. 

Recall that we assumed an initial configuration with equilateral floor triangles and the 

vertical periods positioned over the centers of floor triangles. With the two new edge orbits, 

we obtain a periodic framework with the same periodicity lattice, but with eight edges 

incident to every vertex. In the figure, only the top vertex shows all eight bars incident to it. 

With these caveats taken into account, we proceed with the arguments which prove the 

auxetic character of the resulting periodic mechanism.

The triangle TAC is determined by the two edges TA and TC, together with the median TB. 

This means that the horizontal period AB has determined length. Since MN is the same 

period, the triangle TMN is completely determined. Thus, the periodic mechanism can only 

open up the dihedral angle of the planes TAB and TMN which have a common line with the 

direction of the period AB. Since T remains on the perpendicular bisector of AB, so does M. 

Thus, N remains on the perpendicular bisector of BC. We have argued earlier that the 

vertical period remains vertical (i.e. perpendicular on the floor) and increases in length. All 

in all, the infinitesimal variation of the Gram matrix of periods has two positive diagonal 

entries (corresponding to the vertical period and AM) and zero elsewhere. Hence the motion 

is auxetic.

Remark

For a suggestive reading of Figure 9 in higher dimension d, the AB part of the floor triangle 

should be conceived as a facet of the floor simplex. The vertex T will be connected to all but 

one of the vertices and edge-midpoints of the duplicated simplex in the lower floor. All 

edges incident to T in the resulting one degree of freedom periodic framework are contained 

in two hyperplanes (‘roofs’), which play the role of the two planes TAC and TMN in the 
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figure. The auxetic mechanism may be fancied as a periodic array of (crisscrossing and 

interlaced) opening roofs as proposed in Figure 10.

We may observe at this point that there are other ways of introducing new edge orbits for a 

reduction to one degree of freedom mechanisms. If we follow the pattern indicated in Figure 

11, we obtain a series of non-isomorphic periodic graphs with framework realizations which 

are auxetic periodic mechanisms. Since the roof planes are the same in this series, the 

resulting auxetic mechanisms are kinematically equivalent, although structurally distinct. 

This shows that equivalence criteria in periodic auxetics must be introduced with some care. 

Another aspect deserving attention when attempting classifications is affine equivalence, 

discussed in the next section.

7 Affine transformations

In this section we show that the infinitesimal auxetic cone of a periodic framework is 

preserved under affine transformations, that is, the natural isomorphism of the corresponding 

vector spaces of infinitesimal deformations [2], Prop. 3.7, pg. 2639, takes one auxetic cone 

to the other. While this fact is not directly intuitive, it has a straightforward and short proof 

in our geometric theory of periodic auxetics.

We adopt the following notations and setting:  is a periodic framework in 

ℝd, with n vertex orbits and m edge orbits. After a choice of independent generators for Γ, 

the lattice of periods π(Γ) of the framework is described by a d×d matrix Λ, with columns 

given by the images of the generators. We denote by pi, i = 1, …, n the positions of a 

complete set of representatives for the vertex orbits. An infinitesimal deformation of the 

framework  is determined by the infinitesimal variation  of the positions pi and the 

infinitesimal variation  of the periodicity matrix Λ.

Since the effect of translations is trivial, we assume our affine transformation to be a linear 

map A : ℝd → ℝd. Then the transformed framework  has vertex representatives at Api 

and periodicity matrix Λ1 = AΛ. The natural isomorphism between infinitesimal 

deformations takes  for  to  for . Thus,  and 

Auxetic deformations for  are those with positive semidefinite  and the 

isomorphism gives

(10)

confirming the preservation of the auxetic cone.

Remark

When interpreted in the context of our auxetic design principles, this result says that if a 

finite linkage L in ℝd satisfies the strict auxetic prerequisites for d pairs of vertices, then any 
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affine transform of L will satisfy those prerequisites for the corresponding d pairs. 

Nevertheless, the intervals where an auxetic path for the associated periodic frameworks 

would be defined may well differ.

8 An infinite gallery

Our gallery is dedicated to new examples in dimension three. We show that our main auxetic 

design principle can be applied to an infinite series of finite linkages in R3 of a rather 

elementary nature. We use minimally rigid linkages with one edge removed and adequate 

marking of three pairs of vertices.

Let k ≥ 3 be an integer and consider a regular polygon with 3k edges inscribed in the unit 

circle. The plane of the circle will be called horizontal. We mark as v0, v1, v2 three vertices 

which have from one to another exactly k edges and form an equilateral triangle. Then, we 

take two points w1, w2 on the vertical axis through the center of the circle. We assume w1 

closer to the horizontal plane. The linkage denoted Mk has n = 3k +2 vertices and m = 9k 
edges and is obtained from the regular polygon by connecting w1 and w2 to all its vertices. 

When w1 and w2 are on opposite sides of the horizontal plane, we have the one-skeleton of a 

convex polyhedron with triangular faces. By Cauchy’s theorem, the linkage is minimally 

rigid. When we reflect the vertex w1 and its adjacent edges in the horizontal plane, minimal 

rigidity will hold as well, since all vertices on the horizontal circle must remain on the circle 

of intersection of two spheres (centered at w1 and w2). We’ll need the case with w1 and w2 

on the same side, say above the horizontal plane. The linkage to be used for obtaining a 

periodic framework is denoted Lk and is derived from Mk by deleting an edge from the 

polygonal chain between v1 and v2 and marking the three pairs of vertices (w1, w2), (v0, v1) 

and (v0, v2). Figure 12 shows L3 next to the planar diagram used for describing its motion.

The deformation mechanism of Lk is easily represented since the vertices of the horizontal 

polygon must remain on a circle. When following the deformation trajectory in the direction 

of an augmenting radius for this circle, the vector from w1 to w2 remains orthogonal to the 

circle plane and locally increases in length. Thus, for strict auxeticity, we have to examine 

only the variation of the 2 × 2 Gram matrix of the two vectors, say λ1, λ2, corresponding to 

the pairs (v0, v1) and (v0, v2). This is an elementary computation. With the radius r of the 

circle as parameter, we find:

(11)

where the expression of θ as a function of r is given by

(12)

For the Gram matrix ω(r) = (〈λi, λj〉), 1 ≤ i, j ≤ 2, it follows that  is positive definite. 

We conclude (via Corollary 3) that the one degree of freedom periodic framework associated 
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to Lk is a strictly auxetic periodic mechanism in a neighborhood of the initial position. Thus, 

with k ≥ 3, we obtain an infinite series of distinct auxetic periodic structures.

Remark

Considering that a small enough change in the placement of the vertices will maintain strict 

auxeticity, the self-crossing resulting in the periodic framework from the planarity of the 

polygonal vertices in Lk can be avoided by starting with a slightly distorted version of Lk.

9 Conclusion

The mathematical design principles presented here are based on the geometric foundations 

of periodic auxetics introduced in [6]. We have shown that, in spite of a rather sparse 

collection of auxetic designs in the existing literature, there are unlimited possibilities for 

generating periodic frameworks with auxetic capabilities in any dimension. The main 

procedure discussed in this paper converts any finite bar-and-joint mechanism in ℝd with 

adequate motion for d marked pairs of joints into an auxetic periodic framework mechanism.

This work has brought to higher visibility a number of topics and features which deserve 

further investigation. We propose them as open problems.

1. Identify the class of periodic graphs obtained by the passage from finite to 

periodic described in Section 3.

2. Formulate precise and useful criteria for equivalence/non-equivalence of auxetic 

periodic mechanisms.

3. Determine and control the interval where a deformation path remains auxetic.
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Figure 1. 
A planar periodic pseudo-triangulation.
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Figure 2. 
A planar four-bar mechanism with two marked pairs of vertices and the associated “double 

arrowhead” periodic framework.
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Figure 3. 
Deforming the quadrilateral in Figure 2.
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Figure 4. 
Paneled simplex
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Figure 5. 
A finite linkage with two degrees of freedom with auxetic capabilities for the associated 

periodic framework. The deployed configuration on the right can be reached via an auxetic 

path.
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Figure 6. 
The d = 3 version of the planar scenario in Figure 5. The finite linkage is a paneled 

tetrahedron, as in Figure 4. Only one ‘in depth’ translate is shown.
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Figure 7. 
A finite linkage in R3, with 5 vertices, 6 edges and 3 pairs of vertices marked by arrows. A 

fragment of the associated periodic framework is shown nearby. It has 2 orbits of vertices 

and 6 orbits of edges modulo periodicity.
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Figure 8. 
The planar linkage in Figure 5 has two degrees of freedom but can be converted to a single 

degree of freedom mechanism which retains the desired infinitesimal deformation on the 

vertices v0, v1, v2.
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Figure 9. 
Two new edge orbits in the associated periodic framework.
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Figure 10. 
Auxetic mechanism. The fragment shows three floors. Alternative view as “breathing 

stacked roofs”. Inhaling is auxetic. The one degree of freedom deformation can be 

parametrized by the dihedral angle of a roof. The floors vary accordingly. The framework 

edges are all contained in roof planes. Floors contain no edges but must respect periodicity 

constraints.
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Figure 11. 
Alternative way for introducing new edge orbits (in the same roof planes).
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Figure 12. 
The finite linkage L3 with a diagram for the deformation effect in the horizontal plane.
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