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Testing Genetic Pleiotropy with GWAS Summary
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ABSTRACT There is growing interest in testing genetic pleiotropy, which is when a single genetic variant influences multiple traits.
Several methods have been proposed; however, these methods have some limitations. First, all the proposed methods are based on the
use of individual-level genotype and phenotype data; in contrast, for logistical, and other, reasons, summary statistics of univariate
SNP-trait associations are typically only available based on meta- or mega-analyzed large genome-wide association study (GWAS) data.
Second, existing tests are based on marginal pleiotropy, which cannot distinguish between direct and indirect associations of a single
genetic variant with multiple traits due to correlations among the traits. Hence, it is useful to consider conditional analysis, in which a
subset of traits is adjusted for another subset of traits. For example, in spite of substantial lowering of low-density lipoprotein
cholesterol (LDL) with statin therapy, some patients still maintain high residual cardiovascular risk, and, for these patients, it might be
helpful to reduce their triglyceride (TG) level. For this purpose, in order to identify new therapeutic targets, it would be useful to identify
genetic variants with pleiotropic effects on LDL and TG after adjusting the latter for LDL; otherwise, a pleiotropic effect of a genetic
variant detected by a marginal model could simply be due to its association with LDL only, given the well-known correlation between
the two types of lipids. Here, we develop a new pleiotropy testing procedure based only on GWAS summary statistics that can be
applied for both marginal analysis and conditional analysis. Although the main technical development is based on published union-
intersection testing methods, care is needed in specifying conditional models to avoid invalid statistical estimation and inference. In
addition to the previously used likelihood ratio test, we also propose using generalized estimating equations under the working
independence model for robust inference. We provide numerical examples based on both simulated and real data, including two large
lipid GWAS summary association datasets based on �100,000 and �189,000 samples, respectively, to demonstrate the difference
between marginal and conditional analyses, as well as the effectiveness of our new approach.

KEYWORDS GEE; likelihood ratio test; multiple-trait association testing; structural equation models; union-intersection test; Wald test

THERE has been a growing interest in testing genetic
pleiotropy, which is when a single genetic variant (or

gene) influences multiple traits (Solovieff et al. 2013). As
pointed out by Schaid et al. (2016), detecting pleiotropy
may shed light on the underlying biological mechanism of a
genetic association, with important implications for thera-
peutic development, such as drug repurposing. Testing plei-
otropy can be also useful in checking an assumption (i.e., no
pleiotropic effects of a genetic instrument variable on both a
risk factor/exposure and an outcome) imposed by Mendelian
randomization for causal inference. There is accumulating
empirical evidence to support pervasive pleiotropy for com-

plex diseases and traits (Cotsapas et al. 2011; Q. Wang et al.
2015). Leveraging pleiotropy in GWAS with multiple traits
may boost statistical power in detecting genetic associations
(Chung et al. 2014) as well as improving genetic risk pre-
diction (Li et al. 2014). Most existing methods for analysis
of multiple traits test on a global null hypothesis that none of
the traits is associated with a genetic variant, which, if re-
jected, cannot tell whether the genetic variant is associated
with only one or with two or more traits (e.g., Y. Wang et al.
2015; Kim et al. 2016; Z. Wang et al. 2016 and references
therein). In pleiotropy testing, the target of interest is not the
global null hypothesis, but rather that the genetic variant is
associated with no more than one trait. A simple approach
would first conduct a univariate association test on each trait
separately, then check whether two or more P-values are
significant after a proper multiple testing adjustment. As
shown in a later example, this naïve approach is often too
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low powered due to the univariate nature of this test. Accord-
ingly, some methods have been developed to test pleiotropy.
Cotsapas et al. (2011) developed a cross-phenotype meta-
analysis (CPMA) method to test pleiotropy using summary sta-
tistics, which seems straightforward, but requires that we already
know of the existence of one significant association, which may
not be practical. In addition, it imposes a strong parametric as-
sumption on the distribution of themarginal association P-values
under the alternative hypothesis,whichmay lead to loss of power
when the assumption does not hold. Alternatively, othermethods
explore which of the multiple traits are associated (Stephens
2013;Majumdar et al. 2016). Schaid et al. (2016) not only nicely
surveyed existingmethods, but also proposed a newand rigorous
pleiotropy test based on the intersection-union testing approach
(Berger 1997) with individual-level genotype and phenotype
data. However, Schaid et al. (2016) focused mainly on the mar-
ginal analysis of each trait (with possible covariates). Sometimes,
a single-nucleotide polymorphism (SNP) might influence a trait
through some intermediate traits, which means the effect on the
trait is indirect. It is well-known that marginal analysis cannot
distinguish direct and indirect effects. In contrast, conditional
analysis can, and thus might be more useful. For example, al-
though low-density lipoprotein (LDL) cholesterol remains the
primary treatment target to reduce cardiovascular disease
(CVD) risk, it has been shown that high triglyceride (TG) level
is a possible independent risk factor for CVD, even in patients
with treatment-controlled LDL levels (Boekholdt et al. 2012;
Sampson et al. 2012; Do et al. 2013; Toth 2016). Hence, to
identify new targets for new therapy to reduce levels of TG or
other non-LDL lipids, it is more desirable to detect genetic vari-
ants associated with TG and non-LDL lipids after adjusting for
LDL; otherwise, due to the known correlations among various
lipids, an identified association, say with TG, could simply be due
to an indirect effect through LDL.

Importantly, since we most often have summary association
statistics only frommeta- or mega-analyzed large genome-wide
associationstudy(GWAS)data, rather thanindividual leveldata,
it would be useful to have a pleiotropy test applicable to GWAS
summary statistics. With these considerations, we first propose
extending the likelihood-ratio test (LRT) of Schaid et al. (2016)
with individual-level data to that with only summary statistics
for marginal analysis with possible covariates (i.e., exogenous
variables). Next, for either individual-level GWAS data or sum-
mary statistics, we develop a new testing procedure for condi-
tional analysis with some traits as both responses and predictors
inmultiple conditional regression equations; care has to be taken
in this extension to avoid biased estimation and inference. To test
a composite null hypothesis, we adopt the union-intersection
testing strategy as used in Schaid et al. (2016). In particular,
we consider conditional regression equationswith some traits as
both responses and predictors, for which, in addition to extend-
ing the LRT of Schaid et al. (2016), for simplicity and robust-
ness, we propose using the Wald test in generalized estimating
equations (GEE) with the working independence model.

We will use simulations to show the feasibility of marginal or
conditionalanalysiswithsummarystatisticsaswellasthedifference

betweenmarginal and conditional analyses.Wewill also apply the
methods to real data to further demonstrate these points.

Methods

Marginal analysis with individual level data

In this section, we give a brief review of the pleiotropy test of
Schaid et al. (2016). Throughout this paper, a marginal anal-
ysis is defined as one in which no proper subset of traits is
used as response in some regression models and as covariate
in some other regression models. Hence, a marginal analysis
allows the adjustment for nontrait covariates like multiple
SNPs. Correspondingly, a conditional analysis is based on
multiple regression models including some traits as both re-
sponses and covariates.

Suppose that the individual level data contain p traits and q
SNPs (or other covariates) forn subjects. AsmentionedbySchaid
et al. (2016), the covariates may be either trait-varying or not
trait-varying. For simplicity, we just assume the same q SNPs
across different traits. Let Yj ¼ ðyj1; yj2; :::; yjnÞ9 denote the
measured jth trait, and Xk ¼ ðxk1; xk2; :::; xknÞ9 denote the kth
SNP for all n subjects. Assume they are all centered at 0.

The regression model can be expressed as

Y ¼ Xbþ e，

where

Y ¼ �Y19 . . . Yp 9
�
9;

X ¼
�
X1* . . . Xq*

�
;

Xk* ¼ Ip5Xk;

b ¼ �b19 . . . bq9
�
9;

bk ¼
�
bk1 . . . bkp

�
9;

e � Nð0;VÞ; and

V ¼ S5In:

In is a n3n identity matrix,5 is the Kronecker product, and
the p3 p matrix S is the covariance matrix for the errors
within subjects. All the q SNPs are adjusted for in this model.

Suppose the null hypothesis is H0: at most one of the
parameters b11; ..., b1p is nonzero. It is equivalent to test
whether one of the following pþ 1 tests holds:

Hj0 : b1j 6¼ 0; b1j1 ¼ 0 ðj1 6¼ jÞ and

H00 : b1j ¼ 0 ðj ¼ 1; 2; :::; pÞ

Let V0 ¼ ð Ip 0 Þ be a p3 ðpqÞ matrix. Denote the matrix
obtained after deleting the jth row of V0 by Vj: Then, Hj0 is
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equivalent to Vjb ¼ 0: Schaid et al. (2016) proposed using
the test statistic

tj ¼ ~Y9~Xð~X9~XÞ21Vj9½Vjð~X9~XÞ21Vj9�21Vjð~X9~XÞ21~X9~Y;

where ~X ¼
�
V21=2X1* . . . V21=2Xq*

�
; ~Y ¼ V21=2Y; and

V ¼ S5In: Use ordinary least squares to estimate b; and
then S can be estimated using the residuals.

According to Schaid et al. (2016), T ¼ min
j¼0;:::;p

tj is the LRT
statistic for H0:

Since the null distribution of T is complicated, they tested
H0 in two stages. The first stage uses t0; and the second stage
uses

T1 ¼ min
j¼1;:::;p

tj:

t0 asymptotically follows x2
p when b1 ¼ 0: T1 asymptotically

follows x2
p21 when only one of b11; ..., b1p is nonzero. Reject

H0 only if t0 . x2
pðaÞ and T1 . x2

p21ðaÞ:
Marginal analysis with summary statistics

In this section, we describe a few steps to calculate the pre-
vious test statistics based only on GWAS summary statistics.

1. If we have each b̂kj; the marginal effect of Xk on Yj; and its
variance cvarðb̂kjÞ; as well as some reference panel and
summary statistics of null SNPs (i.e., not associated with
any traits), we can estimateXk9Yj;Xk19Xk2 and Yj19Yj2: If we
only have Z-statistics, we can regard them as b̂kj’s and
assume cvarðb̂kjÞ ¼ 1: This approach turns out not to influ-
ence the result for marginal analysis, but may change the
result for conditional analysis.
1a. Suppose we have individual level data Xref ¼

ðXref
1 ⋯ Xref

q Þ centered at 0 from some refer-
ence panel for the SNPs of interest, where Xref

i is
the ith SNP for nref subjects. We can estimate
ðXk19Xk2Þq3 q=n by ðXref

k19X
ref

k2Þq3 q=n
ref ; and

ðXk19Xk2Þq3 q by ðXref
k19X

ref
k2Þq3 qn=n

ref : Note that
multiplying ðXk19Xk2Þq3 q by a constant does not

affect the test results, so we do not really have
to use the scalar n=nref : For marginal analysis with
only one SNP, we can simply assume X19X1 is 1.

1b. Estimate Yj9Yj using

Yj9Yj2X19X1b̂1j
2 ¼ ðn2 1ÞX19X1cvarðb̂1jÞ;

where we plug in our estimate of X19X1 as X19X1:

1c. Suppose we have Z-statistics Zj for marginal analysis
of Yj with many null SNPs. We can estimate Yj19Yj2 asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yj19Yj1Yj29Yj2

p
corðZj1;Zj2Þ when j1 6¼ j2; using the

idea of Kim et al. (2015) and Kwak and Pan (2016,
2017) that

Yj19Yj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yj19Yj1Yj29Yj2

p � corðYj1;Yj2Þ � corðZj1;Zj2Þ:

1d. Estimate Xk9Yj using

Xk9Yj ¼ b̂kjXk9Xk:

2. Estimate the ordinary least squares (OLS) estimate
B̂ ¼

�
b̂1 . . . b̂q

�
Note that the OLS estimate and the

GLS estimate are the same when there is no trait-specific
covariate, which is true in our current scenario. The for-
mula is simply

vecðB̂Þ ¼ ðX9XÞ21X9Y:

X9Y and X9X can be obtained by

X9Y ¼ �X19Y1 . . .X19YpX29Y1 . . .X29Yp . . .Xq9Y1 . . .Xq9Yp
�
9;

X9X＝
�
Xk19Xk2

�
q3 q5Ip:

3. Estimate Ŝ from the residuals. Ŝ can be expressed as

Table 1 Type I errors for set-up A with b11 ¼ 1; b1j ¼ 0 ð j 6¼ 1Þ

Sample size # Traits r

Nominal type-I ER = 0.05 Nominal type-I ER = 0.01

LRT-Ind LRT-Sum Wald-Ind Wald-Sum LRT-Ind LRT-Sum Wald-Ind Wald-Sum

500 4 0.2 0.049 0.048 0.049 0.048 0.013 0.013 0.013 0.013
0.5 0.044 0.046 0.043 0.046 0.014 0.015 0.014 0.015
0.8 0.051 0.048 0.050 0.048 0.015 0.015 0.015 0.015

10 0.2 0.056 0.054 0.053 0.054 0.013 0.012 0.012 0.012
0.5 0.056 0.052 0.051 0.052 0.013 0.014 0.013 0.014
0.8 0.055 0.053 0.052 0.053 0.013 0.015 0.013 0.015

1000 4 0.2 0.039 0.040 0.039 0.040 0.009 0.008 0.009 0.008
0.5 0.039 0.041 0.039 0.041 0.010 0.009 0.010 0.009
0.8 0.042 0.046 0.042 0.046 0.009 0.008 0.009 0.008

10 0.2 0.056 0.060 0.055 0.060 0.016 0.013 0.013 0.013
0.5 0.056 0.059 0.056 0.059 0.016 0.013 0.014 0.013
0.8 0.056 0.053 0.054 0.053 0.016 0.012 0.015 0.012
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Ŝ ¼ 1
n2 pq

Xn
i¼1

�
_Yi 2 B̂ _Xi

��
_Yi2B̂ _Xi

�
9:

where _Yi ¼ ðy1i; y2i; :::; ypiÞ9 and _Xi ¼ ðx1i; x2i; :::; xqiÞ9: By
simple algebra, we have

ðn2 pqÞŜ ¼
Xn
i¼1

_Yi _Yi9þ B̂
�Xn

i¼1

_Xi _Xi9

�
B̂9

2 B̂
Xn
i¼1

_Xi _Yi92

�
B̂
Xn
i¼1

_Xi _Yi9

�9
;

Xn
i¼1

_Yi _Yi9 ¼ ðYj19Yj2Þp3 p;

Xn
i¼1

_Xi _Xi9 ¼
�
Xk19Xk2

�
q3 q; and

Xn
i¼1

_Xi _Yi9 ¼ ðXk9YjÞq3 p:

Thus, we can obtain Ŝ using Xk9Yj; Xk19Xk2; Yj19Yj2 and B̂:
Then V̂ is simply Ŝ5In:

4. Now we only need to know ~X9~X and ~X9~Y: By simple alge-
bra, and replacing V with V̂; we have

~X9~X ¼ �Xk19Xk2
�
q3q5Ŝ

21
;

~X9~Y ¼
�
ðX1*9V̂

21 YÞ9⋯ ðXq*9V̂
21

YÞ9
�
9;

ðXk*9V̂
21

YÞ9 ¼
�Pp

j¼1
a1jXk9Yj ⋯

Pp
j¼1

apjXk9Yj

�
;

where akj is the ðk; jÞth entry of V̂
21 ¼ Ŝ

21
5In: Finally,

we can calculate the statistics

tj ¼ ~Y9~Xð~X9~XÞ21Vj9½Vjð~X9~XÞ21Vj9�21Vjð~X9~XÞ21~X9~Y:

The remaining testing procedure is the same as that in
the previous section.

Conditional analysis with LRTs

For conditional analysis, we consider adjusting for a proper
subset of the traits in the regression models for another (non-
intersecting) subset of the traits as the responses. The derivation
of the above LRT can still be carried out. If we have individual
level data, the original method of Schaid et al. (2016) should
allow incorporation of some traits as trait-specific covariates,
though their R package “pleio” allows taking only one SNP
without any other covariates. If we only have summary statis-
tics, similar to what was done in Deng and Pan (2017), we can
follow the previous idea to derive a similar procedure.

Now, the matrix notation we use is

Y ¼ XyG
�
b
a

�
þ e;

e � Nð0;VÞ;

V ¼ S5In:

Y is the same as before, while

Xy ¼
�
X1* . . . Xq* Y1* . . . Yp*

�
;

Xk* ¼ Ip5Xk;

Yj* ¼ Ip5Yj:

Thus, Xy is a ðnpÞ3 ðpqþ p2Þ design matrix combining the
information of X and Y: XyG is a refined version of Xy with
ðpqþ p2 2 pÞ columns.

G is a ðpqþ p2Þ3 ðpqþ p2 2 pÞ matrix obtained by delet-
ing the ðpqþ 1Þth, ðpqþ pþ 2Þth, ..., ðpqþ p2Þth columns of
an identitymatrix of order pqþ p2: The purpose ofmultiplying

Table 2 Type I errors for set-up B with b11 ¼ 0; b1j ¼ 0 ð j 6¼ 1Þ

Sample size # Traits r

Nominal type-I ER = 0.05 Nominal type-I ER = 0.01

LRT-Ind LRT-Sum Wald-Ind Wald-Sum LRT-Ind LRT-Sum Wald-Ind Wald-Sum

500 4 0.2 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001
0.5 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001
0.8 0.008 0.008 0.008 0.008 0.001 0.001 0.001 0.001

10 0.2 0.010 0.009 0.008 0.009 0 0 0 0
0.5 0.010 0.008 0.008 0.008 0 0 0 0
0.8 0.008 0.008 0.008 0.008 0 0 0 0.001

1000 4 0.2 0.003 0.003 0.003 0.002 0 0 0 0
0.5 0.004 0.005 0.004 0.005 0.001 0.001 0.001 0.001
0.8 0.006 0.005 0.006 0.005 0.001 0.001 0.001 0.001

10 0.2 0.013 0.011 0.012 0.011 0 0 0 0
0.5 0.011 0.012 0.010 0.012 0 0 0 0
0.8 0.009 0.009 0.008 0.009 0 0 0 0
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Xy by G is to delete the corresponding columns of Xy so that
the model will be Yj � X1 þ :::þ Xq þ Y1 þ :::þ Yj21þ
Yjþ1 þ :::þ Yp instead of Yj � X1 þ :::þ Xq þ Y1 þ :::þ Yp:

Denote the effect of the kth SNP on the jth trait by bkj and
the lth trait on the jth trait by alj: b ¼ �b19 . . . bq9

�
9;

bk ¼
�
bk1 . . . bkp

�
9: Vector a is pðp2 1Þ dimen-

sional. a ¼ ða19 . . . ap9 Þ9; al ¼
�
al1 . . . al;l21

al;lþ1 . . . alp
�
9:

The detailed testing procedure is described below.
Now the test statistic is

tj ¼ ~Y9~Xð~X9~XÞ21Vj9½Vjð~X9~XÞ21Vj9�21Vjð~X9~XÞ21~X9~Y;

where ~X ¼ V21=2XyG; ~Y ¼ V21=2Y: Besides, in the new sce-
nario, Vj is ðp2 1Þ3 ðpqþ p2 2 pÞ rather than ðp2 1Þ3 ðpqÞ:
We only need to add zeros to the right of the previous Vj:

Following the previous procedure, we can get tj’s using a
few steps:

1. Estimate Xk9Yj; Xk19Xk2 and Yj19Yj2 using the summary sta-
tistics, reference panels, and null SNPs. The procedure is
described in point (1) in the previous section.

2. Estimate the OLS estimate B̂v by

B̂v ¼ ðG9Xy9XyGÞ21G9Xy9Y:

Denote
�
X1* . . . Xq*

�
by X* and

�
Y1* . . . Yp*

�
by

Y*: Xy9Y and Xy9Xy can be obtained by

Xy9Y ¼ � ðX*9YÞ9 ðY*9YÞ9 �9;
Xy9Xy ¼

�
X*9X* X*9Y*

Y*9X* Y*9Y*

�
:

Following ideas similar to those presented above, we can
easily get

X*9Y¼�X19Y1 . . .X19YpX29Y1 . . .X29Yp . . .Xq9Y1 . . .Xq9Yp
�
9;

Y*9Y¼�Y19Y1 . . .Y19YpY29Y1 . . .Y29Yp . . .Yp9Y1 . . .Yp9Yp
�
9;

X*9X*＝
�
Xk19Xk2

�
q3 q5Ip;

X*9Y*＝ðXk9YjÞq3 p5Ip; and

Y*9Y*＝ðYj19Yj2Þp3 p5Ip:

3. Estimate Ŝ from the residuals. Ŝ can be expressed as

Ŝ ¼ 1
n2 pðqþ p21Þ

Xn
i¼1

�
_Yi2 B̂ _Xi

��
_Yi2B̂ _Xi

�
9;

where _Yi ¼ ðy1i; y2i; :::; ypiÞ9 and _Xi ¼ ðx1i; :::; xqi; y1i; :::;
ypiÞ9: Here, _Xi includes both SNPs and traits. Note
that B̂ ¼ ðb̂1 . . . b̂qâ1* . . . âp*Þ; while B̂v ¼ ðb̂19 . . .
b̂q9â19 . . . âp9Þ: âj*’s are p dimensional vectors
obtained by adding a 0 element between the
ðj2 1Þth and jth elements of âj’s. Hence, we can
get B̂ from B̂v: By simple algebra, we have

½n2 pðqþ p2 1Þ�Ŝ ¼
Xn
i¼1

_Yi _Yi9þ B̂
�Xn

i¼1

_Xi _Xi9

�
B̂9

2 B̂
Xn
i¼1

_Xi _Yi92

�
B̂
Xn
i¼1

_Xi _Yi9

�9
;

Xn
i¼1

_Yi _Yi9 ¼ ðYj19Yj2Þp3 p;

Xn
i¼1

_Xi _Xi9 ¼
 �

Xk19Xk2
�
q3 q ðXk9YjÞq3 p

ðYj9XkÞp3 q ðYj19Yj2Þp3 p

!
; and

Xn
i¼1

_Xi _Yi9 ¼
��

Xk9Yj

�
q3 p9

�
Yj19Yj2

�
p3 p

�9
:

Thus we can obtain Ŝ using Xk9Yj; Xk19Xk2; Yj19Yj2 and B̂v:

Then, V̂ is simply Ŝ5In:

4. Again, we only need to know ~X9~X and ~X9~Y: By simple
algebra, and replacing V with V̂; we have

~X9~X ¼ G9

  �
Xk19Xk2

�
q3 q ðXk9YjÞq3 p

ðYj9XkÞp3 q ðYj19Yj2Þp3 p

!
5Ŝ

21
!
G;

Xk1
*9V̂

21
Xk2

* ¼
0@ a11Xk19Xk2 0

⋱
0 appXk19Xk2

1A;

Table 3 Power

# Associated traits r

Nominal type-I ER = 0.05 Nominal type-I ER = 0.01

LRT-Ind LRT-Sum Wald-Ind Wald-Sum LRT-Ind LRT-Sum Wald-Ind Wald-Sum

2 0.2 0.465 0.447 0.441 0.449 0.223 0.203 0.206 0.208
0.5 0.772 0.752 0.749 0.744 0.516 0.491 0.490 0.499

3 0.2 0.845 0.835 0.829 0.835 0.647 0.618 0.621 0.624
0.5 0.980 0.979 0.975 0.977 0.927 0.916 0.915 0.914

5 0.2 0.980 0.979 0.979 0.981 0.943 0.933 0.937 0.938
0.5 1.000 1.000 0.999 0.999 0.994 0.994 0.993 0.990
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Yj1
*9V̂

21
Yj2

* ¼
0@ a11Yj19Yj2 0

⋱
0 appYj19Yj2

1A; and

Xk*9V̂
21

Yj* ¼
0@ a11Xk9Yj 0

⋱
0 appXk9Yj

1A;

where alj is the ðl; jÞth entry of V̂
21 ¼ Ŝ

21
5In: As for ~X9~Y;

we can derive

~X9~Y ¼ G9
�
ðX1*9V̂

21 YÞ9⋯ ðXq*9V̂
21 YÞ9 ðY1*9V̂

21 YÞ9⋯

ðYp*9V̂
21

YÞ9
�
9;

ðXk*9V̂
21

YÞ9 ¼
�Pp

j¼1
a1jXk9Yj ⋯

Pp
j¼1

apjXk9Yj

�
;

ðYj1
*9V̂

21
YÞ9 ¼

� Pp
j2¼1

a1j2Yj19Yj2 ⋯
Pp
j2¼1

apj2Yj19Yj2

�
:

Hence, we can get everything we need as long as we can
estimate Xk9Yj; Xk19Xk2 and Yj19Yj2: These estimates are
obtained in step (1).

We can modify the model with a different form of G:
One model we are interested in is Yi � X1 þ :::þ Xqþ
Y1 þ :::þ Yi21: To fit this model, we let G be a
ðpqþ p2Þ3 ðpqþ pðp2 1Þ=2Þ matrix. It is obtained by com-

bining the first pq columns of an identity matrix of order
pqþ p2 with columns pqþ ipþ j; where i ¼ 1; :::; p21;
j ¼ 1; :::; i: Following this notation, vector a becomes
a ¼ ða29 . . . ap9 Þ9; where aj ¼ ðaj1 . . . aj;j21 Þ9:

Our specified model for conditional analysis is a so-called
recursive system: (1) it contains a hierarchical model with
some traits as predictors for other traits, but not otherwise,
and (2) the error terms in the different regression equations
are independent; the OLSE is unbiased for a recursive system
(Hanushek and Jackson 1977, p. 229).

Conditional analysis with GEE-based Wald tests

TheLRTdepends criticallyon theNormalityassumption,which
may be violated. Instead, we propose using GEE for its much
weaker assumptions: for large samples, it depends only on the
correct specification of the regression models for the mean
function of the traits, but not even on the correct specifications
of the variance-covariance matrix of the traits. We propose
conducting a union-intersection test with theWald test in GEE
with a working independence model; that is, instead of the
GLSEandLRT,weproposeusing theOLSEand the correspond-
ing sandwich covariance matrix estimate for valid inference.

Using the previous notation, we define the sandwich co-
variance estimator C and the naive covariance estimator
Cnaive as

C ¼ ðXy9XyÞ21ðXy9V̂XyÞðXy9XyÞ21 and

Cnaive ¼ ŝ2ðXy9XyÞ21;

Figure 1 Type I errors in simulation set-up A with b11 ¼ 1; b1j ¼ 0 ðj 6¼ 1Þ: n ¼ 1000; p ¼ 4: Wald-N denotes the GEE Wald test using individual level
data and the naive covariance matrix estimate; 1000 null SNPs were generated once for analysis with summary statistics. We used 1000 replications to
calculate the rejection rates. A nominal significance level of 0.05 is marked by a dashed line.
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where ŝ2 is the estimated variance of the error terms for the
naive model, which assumes the error terms are identically
independently distributed.

The new testing procedure includes a few steps.

1. Estimate Xk9Yj; Xk19Xk2 and Yj19Yj2 using the summary sta-
tistics, reference panels, and null SNPs.

2. Obtain the OLS estimate B̂v ¼ ðG9Xy9XyGÞ21G9Xy9Y:
3. Estimate Ŝ and V̂ ¼ Ŝ5In from the residuals. The pro-

cedure is the same as step 3 in the previous section.
4. Calculate the ðpqþ p2 2 pÞ3 ðpqþ p2 2 pÞ sandwich co-

variance matrix estimate

C ¼ ðG9Xy9XyGÞ21G9ðXy9V̂XyÞGðG9Xy9XyGÞ21:

where Xy9Xy can be obtained in the same way as we did in
the previous section, and Xy9V̂Xy can be derived by

Xy9V̂Xy ¼
 �

Xk19Xk2
�
q3 q ðXk9YjÞq3 p

ðYj9XkÞp3 q ðYj19Yj2Þp3 p

!
5Ŝ:

For the naive method, we can simply use ½n2 pðqþ
p2 1Þ�S=½2n2 pðqþ p2 1Þ� to estimate ŝ2; where S is the
sum of the diagonal elements of Ŝ: By simple algebra,
½n2 pðqþ p2 1Þ�S is indeed the sum of squared errors for
the naive model.

5. The test statistics are

tj ¼ B̂v9Vj9½VjC21Vj9�21VjB̂v and

T1 ¼ min
j¼1;:::;p

tj:

We reject H0 only if t0 . x2
pðaÞ and T1 . x2

p21ðaÞ: If we
want to apply the naive method instead, replace C
with Cnaive ¼ ŝ2ðXy9XyÞ21:

Note that this method can also be applied to the analysis
adjusting for a few SNPs only, or only for a subset of traits, or
their combination. We may extend the methods to sequential
tests of multiple associated traits as discussed in Schaid et al.
(2016) in the future.

Dealing with different samples

Sometimes the summary statistics for different traits may be
based on completely different samples (i.e., no overlapping
subjects). We can modify the Wald test to carry out the cor-
responding pleiotropy testing. There are two possible ways.

Approach 1: Note that the OLS estimates for the joint model
of all traits vs. SNPs are the same as OLS estimates for sepa-
rate models of each trait vs. SNPs. Also, since different traits
are obtained from different subjects, they are independent,
meaning that Ŝ should be diagonal. The jth diagonal element
of Ŝ should simply be the estimated variance of the error term
in the regression model for trait j vs. SNPs, which can be
calculated by ½seðb̂1jÞ�2Xind;j9Xind;j; where Xind;j9Xind;j is the
sum of squares of X for the jth sample (the sample for getting
marginal effects on trait j). We can estimate Xind; j9Xind; j by
cni; assuming Xind; j9Xind; j is proportional to the sample size.

Figure 2 Type I errors with b11 ¼ b22 ¼ 1; b12 ¼ b21 ¼ 0; n ¼ 1000; and a nominal significance level of 0.05.
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Since the scale of X does not affect the result, we can simply
set c to be 1.

Approach 2: Assume different samples with sample sizes nj
are obtained by a random partition of a whole sample with
sample size n ¼P ​nj: Build the joint model for all

P
​ nj sub-

jects so that we do not need to change our previous model.
We can assume that b̂kj based on all n subjects is the same
as that based on just nj subjects (when the sample size is large).
NowðYj9YjÞ* 2 ðX19X1Þ*b̂1j

2 ¼ ðnj 21ÞðX19X1Þ*cvarðb̂1jÞ;where
ðYj9YjÞ* and ðX19X1Þ* are the Yj9Yj and X19X1 for nj subjects.
We can also assume Yj9Yj for all subjects is approximately
nðYj9YjÞ*=nj; X19X1 approximately nðX19X1Þ*=nj: As a result,
we still have Yj9Yj 2X19X1b̂1j

2 � ðn2 1ÞX19X1cvarðb̂1jÞ:
Hence, we do not need to modify any formulas. We just need
to input n as

P​ nj:
The two approaches address two different questions. Take a

simple example with two traits Y1; Y2 and one SNPX: Suppose
n1 subjects were taken to obtain the summary statistics for Y1

vs. X; and different n2 subjects were used to calculate the
summary statistics for Y2 vs. X: For the first approach, the

alternative hypothesis is that X is associated with the two pop-
ulations, from which the n1 subjects (for Y1) and the n2 sub-
jects (for Y2) were drawn respectively, allowing the two sets of
subjects to come from two, possibly different, populations.
Rejecting the null hypothesis does not guarantee that X is also
associated with the first population’s second trait Y2:However,
for the second approach, the alternative hypothesis is that X
influences bothY1 andY2; assuming all the subjects came from
the same population. Hence, the results of the two approaches
may be different if the study populations for different traits are
indeed different. Nevertheless, in our opinion, the second ap-
proach is preferred under the common assumption that the
study populations are the same, since it can then tell whether
a SNP is indeed associated with more than one trait for the
same population, which follows the definition of pleiotropy. Of
course, in the second approach we have to assume a common
population, which may be violated in practice.

Data availability

The Cotsapas dataset can be downloaded from the online
version of Cotsapas et al. (2011). The 2010 (Teslovich et al.

Figure 3 Power with b11 ¼ 1;b22 ¼ 1; r ¼ 0:3;b12 ¼ 0; n ¼ 1000; nref ¼ 1000; and a nominal significance level of 0.05.

Table 4 Type I errors with n ¼ 1000

b1 b3

Nominal significance level = 0.05

Marginal Conditional

LRT-Ind LRT-Sum LRT-Ind LRT-Sum Wald-Ind Wald-Sum Wald-Ind-N Wald-Sum-N

0 0.3 0.042 0.041 0.041 0.041 0.040 0.041 0.040 0.040
0.6 0.042 0.041 0.041 0.041 0.040 0.041 0.040 0.040
0.9 0.042 0.041 0.041 0.041 0.040 0.041 0.040 0.040
1.2 0.042 0.041 0.041 0.041 0.040 0.041 0.040 0.040

10,000 null SNPs were generated once for methods with summary statistics.
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2010) and 2013 (Willer et al. 2013) lipid data are also pub-
licly available at http://csg.sph.umich.edu/abecasis/public/
lipids2010 and http://csg.sph.umich.edu/abecasis/public/
lipids2013/, respectively. The R package for our new meth-
ods is publicly available at Github: https://github.com/
yangq001/Plei.

Results

Simulations for marginal analysis

To seewhether themarginal analysis using summary statistics
can control Type-I errors, we conducted simulations similar to
those presented in Schaid et al. (2016). In the simulations,
only a single SNP with minor allele frequency (MAF) 0.2 was
used. The traits were generated from multivariate normal
distributions. The variances of the error terms was all 1’s with
an exchangeable correlation structure with correlation r:

Since our method only uses summary statistics, we also
generated 1000 null SNPs with the same sample size to
estimate the correlation between the traits. We centered
the data, and performed a univariate association analysis.
Then, we applied our method to the resulting summary
statistics. To estimate the rejection rates, we used 1000 rep-
lications under each setting.

Now the true model (for set-up A) is

Yj ¼ X1b1j þ ej ðj ¼ 1; :::; pÞ;

ð e19 . . . ep9 Þ9 � Nð0;VÞ; and

V ¼ S5In;

where the diagonal elements of S are all 1’s and the other
elements are r: The fitted model for marginal analysis can be
simply expressed as Y � X1:

First, we considered the case when only one trait is asso-
ciated with the SNP. According to Table 1, all methods had
similar performances in terms of type I errors. The results
were also close to those in Schaid et al. (2016). For conve-
nience, we denote the various analysis methods as:

LRT-Ind: the original LRT of Schaid et al. (2016) with indi-
vidual level data as implemented in R package “pleio.”

LRT-Sum: the LRT with summary statistics.
Wald-Ind: the GEE-based Wald test with individual level

data (to calculate X’X and correlations between traits).

Wald-Sum: the GEE-based Wald test with summary statis-
tics; using a reference panel and some null SNPs to cal-
culate X’X and correlations between traits.

Next,weconsidered thecasewhennotrait is associatedwith
the SNP (set-up B). Again, as shown in Table 2, all themethods
performed similarly. They seemed to be conservative in this
case, which is expected. Recall that the pleiotropy tests are like
two-stage tests, and the first stage is the overall test of non-
association, which should have a rejection rate of 0.05 (or
0.01) under this setting. The rejection rate of the combined
tests is ,0.05 (or 0.01), since, to reject pleiotropy, both the
overall test and the second-stage test must reject their respec-
tive null hypothesis. As a result, all these pleiotropy tests turn
out to be conservative, as shown in Schaid et al. (2016).

To compare statistical power of the variousmethods,we let
some associated traits have a nonzero effect size of 0.25. The
sample size was 500, and the number of traits was 10. As
shown in Table 3, the new methods performed similarly to
the original methods using individual level data.

Under the first simulation setting, we also carried out the
Wald test in GEE (under the working independence model)
using the naive covariance estimate, instead of the sandwich
covariance estimate. As shown in Figure 1, as expected, this
approach, denotedWald-N, led to inflated type I errors when
the error terms were strongly correlated (as the working in-
dependence model did not hold). Hence, we recommend
using the sandwich covariance.

The above cases included only one SNP. To be more
general, we considered a simple scenariowith two SNPs, both
with MAF 0.2. The correlation between the SNPs is r. We
generated the traits using the true model�

Y1i
Y2i

�				
X1i;X2i

� N
��

b11 b21
b12 b22

��
X1i
X2i

�
;

�
1 r
r 1

��
:

After centering the simulated data, we obtained the summary
statistics and conducted analysis adjusting for SNPs. For
comparison, we also did an “unadjusted” marginal analysis
with only SNP 1. We aimed to test for pleiotropy for SNP 1.

For themethodsusingonlysummarystatistics, toestimatethe
correlation of the traits, we generated 1000 null SNPs and
obtained their Z-scores by regressing each trait on each null
SNP. In addition,we generated SNPs fornref subjects usingMAF
0.2 and correlation r. These were used to estimate Xk19Xk2: For
each replication, a new reference dataset was generated.

Table 5 Power with n ¼ 1000

b1 b3

Nominal significance level = 0.05

Marginal Conditional

LRT-Ind LRT-Sum Wald-Ind Wald-Sum Wald-Ind-N Wald-Sum-N

0.1 0.3 0.416 0.416 0.416 0.415 0.414 0.414
0.6 0.416 0.416 0.416 0.415 0.414 0.414

0.2 0.3 0.955 0.952 0.956 0.955 0.952 0.952
0.6 0.955 0.953 0.956 0.955 0.952 0.952
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Now the fitted models are Yi ¼ b1X1i þ e1i for the “unad-
justed”marginal analysis, and are Yi ¼ b1X1i þ b2X2i þ e2i for
“adjusted” marginal analysis, where each Y includes the two
traits. We considered three versions of the Wald-Sum test:

Wald-Sum-s: using summary statistics and reference data.
nref ¼ 1000:

Wald-Sum-l: using summary statistics and reference data.
nref ¼ 10; 000:

Wald-Sum-x: using summary statistics and true Xk19Xk2:

Based on Figure 2, it appears that the unadjustedmarginal
analyses had the highest type I error rates. This is expected
because SNP 1 is associated with trait 1, and trait 1 and
trait 2 are correlated. As a result, SNP 1 is also marginally
associated with trait 2, leading to that the unadjusted mar-
ginal analyses rejects the null hypothesis. Our adjusted mar-
ginal analysis using summary statistics and true Xk19Xk2; Y9Y
could control type I errors, but using estimates from refer-
ence data resulted in inflated type I errors. The reason was
that the estimated Xk19Xk2 and the true Xk19Xk2 were different.
Note that Wald-Ind and Wald-Sum-x almost had the same
results, suggesting that using the null SNPs to estimate Y9Y
was sufficient.

Next, we also looked at the power of different methods.
According to Figure 3, as expected, the adjustedmethodswere
more conservative than the unadjustedmethodswhenb12 had
the same sign as b11; since the adjustedmethods could control
the type I errors. Whenwe changed the sign of b12; the power
of the unadjusted marginal analysis became very low, while
the adjusted marginal analysis could maintain its power. Our
explanation for this phenomenon is that, when two SNPs are
positively correlated but have effects on the trait in different
directions, their marginal effects will be diluted, so the unad-
justed marginal analysis is less likely to detect pleiotropy. Note
that, using the sandwich covariance and the naive covariance,
matrix estimates performed similarly in the above settings,
even though the two traits were correlated.

Simulations for conditional analysis

Consider a situation with one SNP and two traits. We gener-
ated one SNP with MAF 0.2. The true model is

Y1i ¼ b1Xi þ e1i;

Y2i ¼ b3Xi þ e2i:

where ðe1i; e2iÞ’s (k ¼ 1; 2; i ¼ 1; 2; :::; n) are independent
normal random variables with mean 0 and variance 1 (and
correlation 0).

Now the fitted model for marginal analysis is
Y1i ¼ b1Xi þ e1i; Y2i ¼ b3Xi þ e2i: For conditional analysis,
the model is Y1i ¼ b1Xi þ e1i; Y2i ¼ b3Xi þ b2Y1i þ e2i:We ex-
amined the estimated type I errors and power of marginal
analysis and conditional analysis. Denote the GEE-based
Wald tests by Wald-Ind-N and Wald-Sum-N after replacing
the sandwich covariance matrix estimate with the naive co-
variance matrix estimate.

As shown in Table 4, all the methods could control type
I errors. As expected, replacing the sandwich covariance
estimate by the naive covariance estimate did not really
influence the result; since the error terms were uncorre-
lated, the working independence model used in GEE held,
leading to the good performance of the naïve covariance
estimate.

As shown in Table 5, all methods gave similar power in this
case. We noticed that, when b3 . b1; increasing b3 did not
increase the power. One possible explanation is that, in this
situation, the pleiotropy tests largely depend on whether b1 is
significant. The overall test and the test for b3 are almost
always significant, so only the test for b1 influences the com-
bined test.When b3 is increased, the estimates ofb1 and its SE
do not change much for marginal analysis, so the power does
not improve. Sometimes, the estimated SE for b1 may become
larger, making the test for b1 less likely to reject the null. The
extent of this is slightly greater for the conditional model. As a
result, the conditional methods may even lose a little power.

In another scenario, suppose the SNP has an indirect effect
on one trait through another trait. Now the model we use to
simulate traits is

Y1i ¼ b1Xi þ e1i and

Y2i ¼ b2Y1i þ b3Xi þ e2i:

where ðe1i; e2iÞ’s (k ¼ 1; 2; i ¼ 1; 2; :::; n) are bivariate nor-
mal random variables with variance 1 and correlation 0.
They are independent of the SNP.

Again we centered the data and conducted different ways
of analysis. The fitted model for marginal analysis is
Y1i ¼ b1Xi þ e1i; Y2i ¼ b3Xi þ e2i: For conditional analysis,
the model is Y1i ¼ b1Xi þ e1i; Y2i ¼ b3Xi þ b2Y1i þ e2i:

Table 6 Type I errors with n ¼ 1000;b3 ¼ 0

b1 b2

Nominal significance level = 0.05

LRT-Ind LRT-Sum Wald-Ind Wald-Sum

0.3 0.3 0.335 0.335 0.047 0.048
0.6 0.808 0.807 0.047 0.050

0.6 0.3 0.882 0.882 0.049 0.059
0.6 1 1 0.049 0.058

1000 null SNPs were generated once for methods with summary statistics. We used the true correlation matrix to estimate Xi ’Xj ; and 3000 replications to calculate the
rejection rates.
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As shown in Table 6, the newmethods could control type I
errors when using individual level data, but might have
slightly inflated type I error rates when using summary sta-
tistics. In contrast, the marginal analysis could not control
type I errors at all. Again, using the naive covariance or the
sandwich covariance estimate did not matter in this case.

The Cotsapas data

We looked at the data offered by Cotsapas et al. (2011). The
dataset contains marginal Z-scores of 107 SNPs on each of
seven autoimmune diseases: celiac disease (CeD), Crohn’s
disease (CD), multiple sclerosis (MS), psoriasis (Ps), rheuma-
toid arthritis (RA), systemic lupus erythematosus (SLE), and
type 1 diabetes (T1D). The original paper found many SNPs
with pleiotropy using their proposed CPMA. For comparison,
we applied various pleiotropy tests.

Note that this dataset does not contain SE, so we took the
Z-scores as effect sizes and assumed the SEwas 1. In addition,
the summary statistics for different traits used different sam-
ples, so we could apply the two approaches discussed earlier
for the Wald method.

We applied different approaches to the Cotsapas data
(107 SNPs, seven traits). First, we assumed we already knew
that each SNP was significant for one specific trait. Then, we
testedwhethermore traitswere associated, and compared the
result with CPMA. Then, we tested pleiotropy without that
assumption.

As shown in Table 7, our proposed Approach 2 detected
more SNPs with pleiotropy, and covered most of the signifi-
cant SNPs identified by CPMA. In this situation with marginal
analysis, the Wald test and the LRT gave very similar results.
When we directly applied CPMA “without assumption,”
93 SNPs became significant, which, however, were obtained
because, in this case, CPMAwas testing whether there was at
least one association, not necessarily pleiotropy.

The lipid data

The Global Lipids Genetics Consortium GWAS study (Willer
et al. 2013) has shown many loci associated with more than
one trait among LDL, HDL, TG and TC. To study this further,
we conducted pleiotropy tests for single SNPs. We applied
the methods to two summary association datasets based on

�100,000 and �189,000 subjects, respectively (Teslovich
et al. 2010; Willer et al. 2013), which we call the 2010 and
2013 data, respectively. The 2013 data are an expanded ver-
sion of the 2010 data with more study subjects.

First, following the idea of Kim et al. (2015), we used the
Z-scores of 2,371,319 nonsignificant SNPs for all traits from
the 2013 data to estimate the correlations among the four
types of lipids, confirming their moderate to high correla-
tions, which imply possible differences between marginal
and conditional analyses. The results are shown in Table 8.

Next we conducted a genome-wide scan on each dataset.
We tested pleiotropy for 2,363,472 SNPs that are included in
both 2010 Lipids data and 2013 Lipids data. These SNPs are
also present in the 1000 Genomes Project data (The 1000 Ge-
nomes Project Consortium et al. 2015). We applied both mar-
ginal analysis and conditional analysis. As some previous
studies have shown, LDL-lowering treatments might increase
the risk of type 2 diabetes partly due to their ontarget mech-
anisms (Swerdlow et al. 2015; Hemani et al. 2016). It might
be useful to identify new drug targets by identifying genetic
variants with pleiotropic effects on non-LDL lipids. To ex-
clude the indirect effects of a genetic variant through LDL,
we chose to conduct a conditional analysis of other lipids
after adjusting for LDL. The marginal model is

LDLi ¼ b1Xi þ e1i;

TCi ¼ b2Xi þ e2i;

TGi ¼ b3Xi þ e3i; and

HDLi ¼ b4Xi þ e4i:

In contrast, the conditional model is

LDLi ¼ b5Xi þ e5i;

TCi ¼ b6Xi þ a6LDLi þ e6i;

TGi ¼ b7Xi þ a7LDLi þ e7i; and

HDLi ¼ b8Xi þ a8LDLi þ e8i:

Note that a pleiotropic effect detected by marginal analysis
could be due to indirect effect through LDL: for example, if an
SNP is causal for high LDL but not for any other three traits,
then, by the correlations among the traits, itwill bemarginally
associated with all the traits. However, with the conditional
model, we can avoid such false positives; we aim to test for

Table 7 Numbers of significant SNPs (P-value <0.01)

CPMA

LRT-Sum
with

Approach 2
(overlap)

Wald-Sum
with

Approach 1
(overlap)

Wald-Sum
with

Approach 2
(overlap)

With
assumption

47 57 (46) 48 (47) 57 (46)

Without
assumption

52 (43) 46 (45) 52 (43)

“With assumption”: assuming each SNP is already known to be significant for one
trait, then testing whether there is at least one more significant association; “With-
out assumption”: directly testing whether there are at least two significant associ-
ations for each SNP; “Overlap”: the numbers of the significant SNPs that are also
among the 47 detected ones by CPMA (“With assumption”).

Table 8 Estimated correlations between the lipid traits

TG LDL HDL TC

TG 0.228 20.414 0.324
LDL 20.087 0.873
HDL 0.138
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pleiotropic effects after adjusting for LDL, which may help
identify new targets for new drugs as alternatives to LDL-
lowering drugs like statin. The null hypothesis for both mar-
ginal and conditional pleiotropic tests is that none, or only
one, of b1; b2; b3; and b4 is nonzero.

To show the difference between conditional analysis and
marginal analysis, we generated some Manhattan plots. As

shown in Figure 4 and Figure 5, generally the results from
2010 data and 2013 data agreed with each other, except that
the latter results seemed more statistically significant, which
is expected given the larger sample size of the 2013 data.
Interestingly, most SNPs that were highly significant in mar-
ginal analysis became less significant in conditional analysis,
which means that part of their associations might be indirect

Figure 4 Manhattan plots for pleiotropic testing with the 2010 lipid data.
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through LDL as an intermediate. Take SNP rs10043960 on
chromosome 5 as an example. The P-value for the pleiotropy
test in marginal analysis was 9:23 10210; while it became
nonsignificant at 0.74 after adjusting for LDL.

Note that if the conditional model is true, and LDLi ¼
b5Xi þ e5i; TCi ¼ 0 � Xi þ a6LDLi þ e6i; which means the
SNP does not affect TC directly, then EðTCijXiÞ ¼

E½EðTCijLDLi;XiÞjXi� ¼ Eða6LDLijXiÞ ¼ a6b5Xi: As a result,
the coefficient b2 in the marginal model TCi ¼ b2Xi þ e2i
should be b2 ¼ a6b5: Also notice that CovðLDLi;TCiÞ ¼
CovðLDLi;a6LDLi þ e6iÞ ¼ a6VarðLDLiÞ; and CorðLDLi;TCiÞ ¼
a6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðLDLiÞ=VarðTCiÞ

p
: If we assume VarðLDLiÞ � VarðTCiÞ;

(which may or may not hold since we do not have individual-
level data to verify,) then we have a6b5 � CorðLDLi;TCiÞb5;

Figure 5 Manhattan plots for pleiotropic testing with the 2013 lipid data.
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suggesting that the estimated marginal effect should be ap-
proximately equal to the product of the estimated conditional
effect and the correlation between the two traits. For SNP
rs10043960, the marginal effect sizes on TG, LDL, HDL, and
TC were 0.0096, 0.0402,20.0050, and 0.0401, respectively.
If we multiply the effect size on LDL by the estimated corre-
lation between LDL and each of the other traits (shown in
Table 8), we get 0.0092, 20.0035, and 0.0351 for TG, HDL,
and TC, which are close to the estimated marginal effects.
This may suggest that indirect effects through LDL can ex-
plain the marginal effects of the SNP on TG, HDL, and TC.

Meanwhile, the significance levels of some SNPs did not
change, or even increased after adjusting for LDL. For SNP
rs7259679 on chromosome 19, the P-value for marginal
pleiotropic effects was 4:031026; while the conditional
P-value was 6:33 10213: The sign of the effect on LDL and
the signs of the effects on TG and TCwere opposite, while the
estimated correlations between LDL, and TG and TC were
positive and not small, which resembles the special case dis-
cussed above (Table 5). The true effects on LDL, TG, and TC
were very likely to be larger than the marginal effects. As a
result, the conditional method detected pleiotropy by looking
at the true effects, while the marginal method did not.

A simple (and perhaps popular) way to conduct marginal
analysis is to look at the marginal P-values for each SNP vs.
each trait. If a SNP has at least two significant P-values, we
reject the null hypothesis of no pleiotropy. Since this ap-
proach involves multiple testing across multiple traits, we
apply the Bonferroni adjustment, leading to a genome-wide
significance threshold of 5e28 divided by the number of
traits (i.e., four here). To distinguish this from the marginal
analysis described in the previous sections, called “marginal,
new,” we call this univariate/single trait testing-based
method “marginal, univariate.” Next, we mapped the signif-
icant SNPs to loci for each analyses, following the same pro-
cedure as used by Schizophrenia Working Group of the
Psychiatric Genomics Consortium et al. (2014). As shown in
Figure 6, most of the loci detected by “marginal univariate”
analysis were recovered by the new marginal test, while the
latter found many more significant loci. The results of condi-
tional analysis and marginal analysis differed, which might
suggest that the effects of certain loci on some traits were
indirect, with LDL as an intermediate.

Discussion

We have presented new tests for genetic pleiotropy based on
eithermarginal analysis or conditional analysis using summary
statistics. For marginal analysis with only nontrait covariates
(i.e., exogenous variables), we extend and apply the LRT of
Schaid et al. (2016). For conditional analysis with some traits
as both responses and predictors (i.e., endogenous variables),
in addition to extending the LRT of Schaid et al. (2016), for
robustness, we also propose using the Wald test in GEE with
the working independence model and its corresponding sand-
wich covariance matrix estimate. Note that we assume a re-
cursive system, for which the OLSE (i.e., GEE estimator with
the working independence model) is unbiased (Hanushek and
Jackson 1977, p. 229);more general structural equationmod-
els (Li et al. 2006; P.Wang et al. 2016)may require a two-stage
least squares estimator, which is much more complex and,
more importantly, it is unclear whether it can be applied to
summary statistics only. Our extensive simulations showed
that our conditional method performed better than marginal
analysis in terms of controlling type I errors when indirect
effects existed. In some cases, the conditional analysis even
had higher power than the marginal analysis. Marginal anal-
ysis adjusting for SNPs is also better than unadjusted marginal
analysis in certain cases. We applied our methods to the Cot-
sapas data, and foundmore SNPs with genetic pleiotropy, cov-
eringmost of those detected by Cotsapas et al. (2011).We also
applied different approaches to the 2010 and 2013 lipid data
to show possible differences between marginal and condi-
tional analyses.

In the future, we may extend our methods to sequential
tests of multiple associated traits as discussed in Schaid et al.
(2016).
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