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Abstract

Positron emission tomography (PET) is an essential technique in many clinical applications such 

as tumor detection and brain disorder diagnosis. In order to obtain high-quality PET images, a 

standard-dose radioactive tracer is needed, which inevitably causes the risk of radiation exposure 

damage. For reducing the patient’s exposure to radiation and maintaining the high quality of PET 

images, in this paper, we propose a deep learning architecture to estimate the high-quality 

standard-dose PET (SPET) image from the combination of the low-quality low-dose PET (LPET) 

image and the accompanying T1-weighted acquisition from magnetic resonance imaging (MRI). 

Specifically, we adapt the convolutional neural network (CNN) to account for the two channel 

inputs of LPET and T1, and directly learn the end-to-end mapping between the inputs and the 

SPET output. Then, we integrate multiple CNN modules following the auto-context strategy, such 

that the tentatively estimated SPET of an early CNN can be iteratively refined by subsequent 

CNNs. Validations on real human brain PET/MRI data show that our proposed method can 

provide competitive estimation quality of the PET images, compared to the state-of-the-art 

methods. Meanwhile, our method is highly efficient to test on a new subject, e.g., spending ~2 

seconds for estimating an entire SPET image in contrast to ~16 minutes by the state-of-the-art 

method. The results above demonstrate the potential of our method in real clinical applications.
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1. Introduction

Positron emission tomography (PET) is a functional imaging technique, which produces 3D 

in-vivo observation of the metabolic process in the body. It provides molecular information 

on the biology of many diseases. Accordingly, PET has been increasingly recognized as an 

important tool for diagnosis [1, 2], determination of prognosis [3, 4], and response 

monitoring in oncology [5, 6]. There are also other imaging technologies, such as computed 

tomography (CT) and magnetic resonance imaging (MRI). Recently the introduction of 

PET/CT and PET/MRI scanners enables the acquisition of both structural and functional 

information in a single scan session.

The high-quality PET images play a crucial role in diagnosing brain diseases and disorders 

[7], because they can provide detailed functional information for assessment and diagnosis. 

In order to obtain the high-quality PET images, a standard-dose tracer injection to tissue or 

organ is needed, which inevitably raises the risk of radioactive exposure. To address this 

problem, the well-known As Low As Reasonably Achievable (ALARA) [8] principle is 

adopted to minimize the radiation exposure in clinical practice. Although the principle helps 

to decrease the risk of radiation exposure, it also degrades the quality of PET images and 

potentially involves unnecessary noises and artifacts. Two examples of the low-dose PET 

(LPET) and their corresponding standard-dose PET (SPET) images are shown in Fig. 1. It 

can be observed that the quality of the LPET images is worse than that of the SPET images.

In order to improve the quality of the acquired PET images, numerous reconstruction and 

denoising methods have been developed. Mejia et al. [9] proposed a multi-resolution 

approach for noise reduction of PET images by employing specific filters to homogeneous 

and heterogeneous image regions. Pogam et al. [10] succeeded in addressing the issue of 

resolution loss with standard denoising by combining the complementary wavelet and 

curvelet transforms. Bagci et al. [11] used the singular value thresholding concept and the 

Stein‟s unbiased risk estimation method to optimize the soft thresholding rule for denoising. 

These techniques are mainly designed for SPET images only. However, our objective here is 

to estimate the SPET image from the corresponding LPET image, which is acquired with 

low-dose tracer injection. Similar works can be found for the quality enhancement of CT 

images. For example, Alban et al. [12] proposed an adaptive iterative dose reduction (AIDR) 

method to achieve the high-quality images, while reducing the radiation dose in CT 

acquisition.

Multi-modality data has been proven to provide complementary and effective information 

for increasing the quality of each single modality [13, 14]. It is shown in the literature that 

the anatomical or the structural information (e.g., from CT or MRI [15, 16]) contributes to 

better SPET image quality. In our work, we utilize both the LPET images and the 

corresponding structural T1 images for the estimation of the high-quality SPET images. We 

will detail the way to combine T1 images and LPET images using convolutional neural 

network (CNN) to estimate SPET images in Section 3.1.

In this paper, we first use a basic four-layer CNN to build a relatively simple model, which 

derives the SPET image from the LPET image and the T1 image. As an end-to-end 
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architecture, the deep network maps the LPET and the T1 inputs to the SPET output directly 

without using handcrafted features. Then, we treat the tentatively estimated SPET image as 

the source of the context information [17]. In addition to the context information, both 

original LPET and T1 images are also used as inputs to a new four-layer CNN. In this way, 

we gradually concatenate multiple CNNs into a much deeper network. The entire network, 

which consists of multiple four-layer CNNs, can be optimized altogether with back-

propagation. The experimental results reveal that the proposed method can effectively utilize 

the structural information in T1 image for the estimation of the high-quality SPET image. 

Meanwhile, the auto-context [18] strategy allows us to gradually improve the quality of the 

SPET estimation, given multiple four-layer basic CNNs. In general, our method achieves 

competitive performance regarding the quality of the estimated SPET images while its time 

cost is significantly reduced compared to the state-of-the-art methods.

The rest of this paper is organized as follows. We will review the related work in Section 2, 

and then describe the details of our proposed method in Section 3. Section 4 quantitatively 

analyzes key components of the proposed method and conducts comparisons with the state-

of-the-art methods. The conclusions are drawn in Section 5.

2. Related Work

Research efforts have been made in the literature to directly estimate the SPET images from 

the LPET images. The estimation often requires the input of the tracer-free MRI scan and 

relies on the sparse learning technique. For example, in [14], the mapping-based sparse 

representation (m-SR) was adopted for SPET image reconstruction. To speed up the process, 

the patch-selection-based dictionary construction method was used to build a relatively small 

but representative dictionary, which can heavily reduce the processing time. Subsequently, a 

semi-supervised tripled dictionary learning method was used for SPET image reconstruction 

[19]. This method can improve the prediction results by utilizing multiple modalities (i.e., 

T1 image, fractional diffusivity and mean diffusivity from diffusion weighted data). It also 

allows a certain modality to be missing, thus including huge clinical data for training. 

Recently, An et al. [20] proposed the data-driven multilevel canonical correlation analysis 

(MCCA) scheme to map the SPET and the LPET image data into a common space, where 

the patch-based sparse representation was then utilized to generate the coupled LPET and 

SPET dictionaries. These sparse-learning-based methods consist of several steps generally, 

including patch extraction, encoding, and reconstruction. Most of these methods are time-

consuming particularly when testing new cases, which have to solve a large number of 

optimization problems and thus might not be applicable in real clinical practice.

CNN dates back to decades [21], and deep CNNs have shown an explosive popularity 

partially due to its success in image classification tasks [22, 23]. This technique has been 

successfully applied to many computer vision fields, such as face detection [24–26], 

semantic segmentation [27, 28], and object tracking [29–31]. There are also some successful 

applications in medical image fields, such as cell detection [32, 33] and prostate 

segmentation [34, 35]. There are several factors that lead to its success: (i) the efficient 

implementation on modern powerful GPUs to train large networks with huge number of 

parameters [23], (ii) the proposal of useful tricks like Rectified Linear Unit (ReLU) [36] and 
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dropout [37] that avoid the problems of gradient vanish and overfitting, and (iii) an 

abundance of labeled data (like ImageNet [38]) for training deep architectures. Recently, the 

proposed mechanism called batch normalization [39] also helps to speed up convergence in 

training very deep neural networks, leading to better performance. Specifically, Li et al. [40] 

proposed a deep-learning-based imaging data completion method to predict PET image from 

structural MRI image. Our method differs from this method in two ways. First, we apply 

deep neural network to estimate SPET by using multiple modalities, i.e., LPET and T1 

images. Second, compared to [40], which has only three convolution layers, our network is 

much deeper and effectively leverage the auto-context information for the purpose of SPET 

estimation.

Recently, Dong et al. [41] presented a method namely Super-Resolution Convolutional 

Neural Network (SRCNN) for single image super-resolution, which directly learns an end-

to-end mapping between low-resolution and high-resolution images. This model, which 

takes the low-resolution image as input and outputs the high-resolution one, partly inspired 

our work for SPET image estimation from the LPET image. However, different from Dong’s 

work, we propose to incorporate the structural T1 image in the input layer of the CNN 

architecture, and refine the estimation of the SPET image iteratively in an auto-context way 

based on the inputs of multiple modalities, which makes our model much deeper compared 

to Dong’s model.

3. Method

We present the details of our deep CNNs for SPET estimation in this section. We first 

introduce the basic multi-modal CNN, which maps the inputs of LPET and T1 to the output 

of SPET within four convolution layers only. Then, we concatenate multiple basic CNN 

modules into a deeper network following the auto-context fashion, such that the tentative 

SPET estimation can be iteratively refined with the help of the context information and the 

original LPET/T1 input images.

3.1 The Basic Multimodality CNN Architecture

In this work, we propose to use the CNN model for estimating the SPET image from LPET 

and T1 images. Our work is motivated by the fact that, in addition to the low-quality 

functional data, structural T1 images can help the estimation of the high-quality functional 

images. Although CNNs have been used for similar tasks in the literature, it is still 

challenging to fuse multiple medical image modalities. To this end, we treat multimodality 

images as different feature maps, and input them to CNN after concatenation. In this way, 

we present a straightforward solution for combining multi-modality image data. Since T1 

image contains complementary information other than the functional PET data, our CNN 

architecture is capable of better estimating SPET from LPET and T1 images.

Considering the limited number of training images, we switch to solve the problem slice by 

slice here. That is, we extract all axial slices and treat them as separate images independently 

in training. For a new test subject, we estimate all slices and then stack them into the 3D 

volume along the inferior-superior direction. Our experiments confirm that the final results 

are observably satisfactory along the inferior-superior direction, as shown in Fig. 9.
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The multimodality CNN, whose architecture is shown in Fig. 2, aims to learn the end-to-end 

mapping between the input LPET and T1 images and the output SPET image. Note that 

there are two input feature maps of this CNN in the input layer, corresponding to T1 image 

and LPET image, respectively. The network consists of four convolution layers, without 

using any pooling. The main reason is that pooling is commonly used in recognition and 

classification for reducing the dimension of feature maps and also making the network 

invariant to small translation of the input. Therefore, pooling might not be suitable for pixel-

wise image quality enhancement in this work. On the other hand, the convolution layers 

provide similar functions regarding sparse coding, including patch extraction and 

representation, non-linear mapping, and reconstruction [42].

In our basic multimodality CNN model, we concatenate the two patches of LPET and T1 in 

the input layer, followed by four convolution layers. The first convolution layer contains n1 

filters of the support m × f1 × f1, where m is the number of the feature maps (with m = 2 

here), and f1 × f1 denotes the spatial size of the filter. In general, the first layer can be 

expressed as

(1)

where * represents the convolutional operator, Y and Z denote the LPET and T1 image 

patches respectively, and [, ] means the concatenation operation that combines two patches. 

W1 and B1 denote the filters and the biases, respectively. Intuitively, W1 applies n1 

convolution filters on the input image patches, each of which has a kernel size of m×f1×f1. 

The output thus consists of n1 feature maps.

The second, third, and fourth convolution layers can be configured in the similar way. For 

example, we set the second convolution layer to contain n2 filters of the size n1 × f2 × f2. So 

the parameters of the second layer can be represented as W2 and B2. After the second 

convolution layer, we will get n2 feature maps as the output. Eventually, in the fourth 

convolution layer, there is only one filter (n4 = 1). The single output of the fourth layer 

corresponds to the expected output of the SPET image patch, which shares the same center 

location with the input LPET and T1 image patches. All other parameters of individual 

layers are shown in Fig. 2. In particular, we set m = 2, n1 = n2=n3 = 64, and f1 = f2 = f3 = 3. 

We do not use any padding in each convolution layer, so the sizes of the feature maps 

decrease when the layer becomes deeper. For example, as shown in Fig. 2, the original size 

of the input LPET in training is 27 × 27, and the size of the output is 19 × 19.

Let us denote the output image estimated by the basic four-layer CNN as Fbasic(Yi, Zi; 

θbasic). Here, F indicates the end-to-end mapping, and θbasic = 

{W1,W2,W3,W4,B1,B2,B3,B4} records the estimated network parameters. We term Xi as the 

ground-truth SPET for the i-th training subject image patch. The input LPET and T1 image 

patches are denoted as Yi and Zi, respectively. θbasic can thus be solved by minimizing the 

error between the reconstructed output Fbasic(Yi,Zi;θbasic) and the corresponding ground-

truth Xi of the same size with that of the output for training. We use the Mean Squared Error 

(MSE) as the loss function:
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(2)

where M is the number of the training image patches. We use stochastic gradient descent 

with the standard back-propagation [43] to minimize the loss function. Using the L2 loss 

function favors a high Peak Signal to Noise Ratio (PSNR). Note that PSNR is a widely used 

metric for quantitatively evaluating image restoration quality, as it is related to the perceptual 

quality. Our goal is to make the estimated SPET and the ground- truth SPET as similar as 

possible.

Note that the input/output sizes shown in Fig. 2 apply to the training process only. In testing, 

we treat the trained CNN model as fully convolutional network (FCN) [41] which can take 

the entire LPET and T1 images as inputs. This operation avoids to apply CNN for each 

patch independently and can save large computational cost. Since there is no padding in each 

convolution layer, we apply zero padding to the input test image to make sure that the sizes 

of the input image and the final output image are the same. For example, if the size of the 

input test image is 100 × 100 and it intends to pass four convolution layers of many 3×3 

filters, we pad the input image and augment its size to 108 × 108 prior to the first 

convolution layer. In this way, the final output image will reduce to the size of 100 × 100.

Meanwhile, batch normalization was recently introduced by Ioffe et al. [39] to ease the 

training of deep neural networks. It reflects the fact that neural networks tend to learn more 

efficiently when their inputs are normalized to zero mean with unit variance. This strategy 

can be extended to the internal layer of CNNs. To this end, we apply batch normalization for 

every convolution layer in our implementation. For each convolution layer in Fig. 2, the 

output from the precedent layer can thus be processed through batch normalization and then 

feed as the input to the subsequent convolution layer.

3.2 Deep Auto-Context CNNs for SPET Estimation

We propose to concatenate multiple CNNs to formulate a much deeper structure, to improve 

the quality of the estimated SPET image gradually. The concatenated CNNs, which are 

shown in Fig. 3, lead to a deep auto-context-like learning architecture [17, 18]. First, we use 

the basic four-layer CNN (shown in Fig. 2) to estimate the SPET image based on both LPET 

and T1 images. Then, the tentatively estimated SPET, along with the original LPET and T1 

images, are all input to the subsequent new four -layer CNN. That is, there are three input 

channels for the second and latter CNNs, i.e., the tentatively estimated SPET, LPET, and T1 

images.

In our implementation, we concatenate three four-layer CNNs to formulate the deep 

structure. The output of the 1st CNN (namely after “Step 1”) is combined with the original 

LPET and T1 images, which are cropped from the center to get the same size with the output 

of CNN 1. The 2nd (Step 2) and the 3rd (Step 3) CNNs share the same architecture with Step 

1, though the numbers of the input feature maps vary slightly as in Fig. 3. The sizes of the 

outputs of the 2nd and the 3rd CNNs are 11×11 and 3×3 in training, respectively.
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With three four-layer CNNs concatenated in our implementation, there are totally 12 

convolution layers, which make our architecture deep enough to estimate SPET from LPET 

and T1. Note that our deep architecture is significantly different from the conventional 12-

layer convolutional neural network. Specifically, the LPET and T1 image inputs are 

forcefully directed to Step 2 and Step 3 in our method. Concerning the high similarity 

between LPET and SPET, the estimation of SPET can easily be dominated by LPET while 

ignoring T1 image. Meanwhile, the learning may end within a few convolution layers (e.g., 

only four layers in Step 1) as the mapping from LPET to SPET is not complex. With 

concatenated CNNs, T1 images are directly used as the inputs of each step and thus can play 

a more important role in the estimation of SPET even though its appearance is very different 

from SPET (compared with LPET especially). The influence of the structural information 

from T1 now can arrive at the very deep layers in our architecture through the concatenated 

CNNs. For fair comparison, in Section 4.4, we will conduct experiments with the 

conventional 12-layer CNN, where our method clearly shows better SPET estimation 

capability than simply increasing the number of layers in CNN.

The concatenation of CNNs also leads to auto-context-like learning [18]. Specifically, the 

tentative estimation of each four-layer CNN (e.g., Step 1) can be further refined with the 

subsequent CNNs (e.g., Step 2). Moreover, the parameters of the concatenated CNNs can be 

optimized jointly with back-propagation. This differs from the conventional auto-context 

learning framework where the concatenated classifiers/regressors are often trained 

independently. In the final, we formulate the entire architecture of the concatenatd CNNs 

into an end-to-end mapping, which estimates SPET from the combination of LPET and T1 

images directly.

It is worth noting that direct training of the convolutional network with such a large depth 

may easily fall into local minima. Inspired by previous studies on training neural networks 

with deep supervision [44, 45], the weighted auxiliary loss is also adopted in the network to 

further strengthen the training process. In particular, the auxiliary loss is computed from the 

end of each step. We derive from (2) the loss after Step i and denote it as Li. The total loss 

Ltotal for the entire deep auto-context CNN architecture is:

(3)

where φ(θtotal) is the L2-norm regularization term upon the estimated network parameters. In 

our experiments, β is adopted to balance the auxiliary losses among individual steps. Note 

that the term Xi in Eq. (2) varies for different steps when computing the auxiliary loss. We 

compute the loss for each step as the mean squared error between the estimated SPET and 

the ground-truth SPET. To this end, we need to crop the ground-truth SPET, such that it has 

the same size as the estimated SPET patch in each step. For example, the ground-truth SPET 

is cropped to 19×19 in Step 1, then 11×11 in Step 2, and 3×3 in Step 3.

Xiang et al. Page 7

Neurocomputing. Author manuscript; available in PMC 2018 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Experimental Results

We first introduce the dataset used in the experiments and discuss the parameter settings 

(Sections 4.1–4.2). After that, we investigate the impact of using the structural information 

(i.e., T1 images) for the estimation of the functional SPET data (Section 4.3). Next, we 

explore how our proposed deep auto-context CNNs gradually refine the SPET estimation by 

concatenating multiple CNNs (Section 4.4). Finally, we compare the proposed method with 

state-of-the-art method to demonstrate its effectiveness (Section 4.5).

4.1 Dataset

Our dataset contains 16 subjects, each of which has LPET, SPET, and T1 images. All data 

were acquired on a Siemens Biograph mRI PET-MR system. Their demographic information 

is summarized in Table 1. This study is approved by the University of North Carolina at 

Chapel Hill Institutional Review Board.

Before the PET scanning, each subject is administered an average of 203 MBq (from 191 

MBq to 229 MBq) of 18F-2-deoxyglucose (18FDG). During PET scanning, an SPET image 

is obtained in a 12-minute period within one hour of tracer injection, based on standard 

imaging protocols. The LPET scans are acquired in a three-minute short period, with 

standard-dose tracer injection, to simulate the acquisition at a reduced dose of radioactive 

trace. The simulation is equivalent to a quarter of the standard dose. The SPET and LPET 

images are acquired separately, so the noises in SPET and LPET are not correlated. All PET 

scans are reconstructed using standard methods from the vendor. Attenuation correction, 

scatter and scanner uniformity are included using the vendor‟s standard procedure. Each 

PET image has a voxel size of 2.09× 2.09 × 2.09mm3. Meanwhile, the T1-weighted 

MPRAGE image is acquired with 1 × 1 × 1mm3 resolution. For each subject, the T1 image 

is linearly aligned onto the corresponding PET image via affine transformation [46], 

followed by skull stripping [47] and intensity normalization. All images are further aligned 

to the space of a selected subject using FLIRT [48]. At last, we crop each image to the size 

of 120 × 100 × 100 voxels to remove the redundant background.

4.2 Experimental Configuration

The leave-one-out cross-validation strategy is employed for evaluation. That is, each time 

one subject is used for testing and the other images are for training. In this paper, CAFFE 

[49] is used to implement the CNN architecture. In the training phase, we use the same 

strategy with [42] that randomly selects 30,000 patches from each training image. There are 

totally 4.5 × 105 training patches in every leave-one-out case. The size of each patch is 

defined as 27 ×27. In Step 1, the filter sizes of the four convolution layers are set to 3 × 3, 

and the size of the output patch after Step 1 is thus 19 × 19. The numbers of the filters of the 

initial three convolution layers are the same, n1 = n2 = n3 = 64, while there is only one filter, 

n4 = 1, in the last layer of Step 1. Step 2 and Step 3 share similar parameters with Step 1, 

though their feature map sizes vary as in Fig. 3. The learning rates are 1 × 10−4 for Step 1 

and Step 2, and 1 × 10−5 for Step 3. A smaller learning rate in the last four-layer CNN (i.e., 

Step 3) is helpful to the convergence of the network in training [50]. We adopt “SGD” as the 

solver for the simultaneous optimization of all steps in back-propagation. Although we use a 
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fixed patch size in training, the deep networks can be applied to images of arbitrary sizes 

during testing.

To evaluate the performance of the proposed method quantitatively, we use the normalized 

mean squared error (NMSE) in (4) and the peak signal-to-noise ratio (PSNR) in (5):

(4)

(5)

where X is the ground-truth SPET image,  is the estimated SPET image, D is the intensity 

range of image X, and N represents the total number of voxels in the image. Lower NMSE 

and higher PSNR indicate better quality of the estimated SPET.

4.3 Contribution of T1 in Estimating SPET, using Basic 4-Layer CNN

To demonstrate the effectiveness of integrating multimodality data for the estimation of 

SPET, we compare the performances achieved by using LPET input only and by using the 

combination of LPET and T1 images. When dealing with the single LPET input, we employ 

the same setting as in Fig. 2, but the input layer only considers the LPET image. The 

performances achieved by using different input settings are shown in Fig. 4. As we use the 

leave-one-out strategy, each subject is chosen for testing in turn. ‘LPET’ indicates the 

PSNR/NMSE scores by comparing the input LPET image with the ground-truth SPET 

image directly. ‘Estimation by LPET’ represents the estimation SPET results when using 

LPET as the input for our basic four-layer CNN only. ‘Estimation by LPET+T1′ represents 

the estimation SPET results when using the combined inputs of LPET and T1 as in Fig. 2.

We can observe that the results of ‘Estimation by LPET’ are worse than ‘Estimation by 

LPET+T1′. In particular, the average PSNR scores of ‘Estimation by LPET’ and 

‘Estimation by LPET+T1′ are 23.11 and 23.85, respectively. And the average NMSE scores 

of ‘Estimation by LPET’ and ‘Estimation by LPET+T1′ are 0.0299 and 0.0254, 

respectively. The PSNR scores and the NMSE scores are significantly different between 

‘Estimation by LPET’ and ‘Estimation by LPET+T1′ (p-value<0.01 in paired t-test). The 

results above imply that the structural information from T1 yields important cues for 

estimating the high-quality functional SPET, even though structural T1 differs from PET 

significantly regarding their appearances. We also provide two examples (corresponding to 

two rows) in Fig. 5 for visual observation, where our method yields more satisfactory 

estimation results regarding the ground-truth.
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4.4 Concatenation of Basic CNNs

Different from simply increasing the number of the layers in conventional CNN, we follow 

the auto-context strategy and concatenate three 4-layer basic CNNs in this work. Both LPET 

and T1 image patches, as well as the tentatively estimated SPET (if available), are used as 

the inputs to each of the three CNNs. In order to evaluate the effectiveness of concatenating 

multiple CNNs for auto-context-like estimation of SPET, we show the performances 

(measured by PSNR/NMSE) after individual steps of CNNs in Fig. 6. The average PSNR 

scores after Steps 1, 2, and 3 are 23.85, 24.55 and 24.76, respectively. The average NMSE 

scores after Steps 1, 2, and 3 are 0.0254, 0.0215 and 0.0205, respectively. The t-tests also 

yield p-values that are lower than 0.01 when comparing the resulted PSNRs and NMSEs 

between Step 2 and Step 1, and between Step 3 and Step 2. These results reveal that the 

estimation quality improves greatly after refining the output of Step 1 in Step 2. The 

improvement of the overall PSNR/NMSE score becomes relatively limited when Step 3 is 

applied. To this end, we argue that the concatenation of multiple CNNs is effective to 

improve the quality of the estimated SPET. However, too many steps would increase the 

complexity of the entire network significantly, which could come with higher difficulty and 

more time cost for training. We have concatenated more CNNs but this fails to yield better 

performance. In general, we choose to concatenate three four-layer CNNs, considering both 

the performance and the computational efficiency.

In order to further reveal the power of our proposed method, here we compare our deep 

auto-context architecture (12 layers in total) with the 12-layer conventional CNN model. The 

results are also shown in Fig. 6. We can see that our model outperforms the 12-layer CNN. 

The average PSNR scores of our proposed method and the 12-layer CNN are 24.76 and 

23.98, respectively. The average NMSE scores of our proposed method and the 12-layer 

CNN are 0.0206 and 0.0247, respectively. The differences between our method and the 12-

layer CNN are statistically significant. These results show that, by concatenating multiple 

CNNs and forcefully directing information flows, the auto-context-like network is more 

effective than simply increasing the number of layers in the conventional CNN.

We concatenate multiple CNNs and build a deep structure, the training of which may 

become challenging. Therefore, we adopt the batch normalization strategy in modeling the 

network. In Fig. 7, we plot the changes of the training losses with respect to the number of 

iterations during training. The comparisons are conducted between the proposed method and 

the conventional 12-layer CNN, with and without batch normalization. Clearly, the strategy 

of batch normalization greatly contributes to the convergence of training. For example, 

without batch normalization, the conventional 12-layer CNN can hardly be trained. 

Meanwhile, we note that, with directed data flow in our concatenated CNNs, the training 

process can converge faster than the conventional CNN (i.e., by comparing the red and the 

green curves). The observation confirms that our method can effectively model the 

estimation of SPET from LPET and T1.

4.5 Comparison with Sparse-Learning-Based MCCA Method

We also compare our method with state-of-the-art MCCA method [20], which has achieved 

the best performance in the literature. The MCCA method, which belongs to the category of 
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patch-based sparse learning, adopts the data-driven scheme and can iteratively refine the 

estimation results of the SPET images. All the PSNR/NMSE results of our method and 

MCCA are shown in Fig. 8. Our method performs comparatively, which yields the average 

PSNR of 24.76 and NMSE of 0.0206, compared to 24.67 and 0.021 by MCCA. Visual 

results are also provided in Fig. 9(a), where we can observe competitive results between the 

two methods.

Importantly, our method behaves significantly better in terms of its processing time 

especially in testing. Table 2 compares the time costs of our method and MCCA for both 

training and testing. Although our method spends more time on training, the testing 

procedure is much faster. Concretely, it only takes 2.03 seconds to test a subject by our 

method, while 1,008 seconds by MCCA. The main reason is that MCCA optimizes sparse 

coding problems in testing, whereas our method is a completely feed-forward convolution 

operation without any pre-/post-processing. All the experiments are carried out on an 

ordinary computer with Intel Core i7 4.00GHz processor, 16 GB RAM, and an NVIDIA 

Geforce GTX Titan X GPU.

Though our method carries out the computation from the axial plane slice by slice, the 

estimated results are still satisfactory in 3D view. In particular, after we complete the 

estimation upon all the slices, we stack them back to get the 3D image volume. A subject is 

shown in Fig. 9(b), where the axial, sagittal and coronal views are all available. We conclude 

that our estimation still appears to be isotropic, even though the CNN-based learning 

happens on the axial plane.

5. Conclusion

In this paper, we propose a novel deep auto-context CNN architecture for SPET image 

estimation using multimodality data, including both LPET and T1 images. Different from 

previous sparse-learning-based techniques that contain time-consuming steps such as patch 

representation, nonlinear mapping and reconstruction, our proposed method uses a deep 

neural network to map the inputs to the output directly, without any pre/post-processing 

beyond the optimization in the training stage. When testing a subject, our method performs a 

single feed-forward to get the estimation result. In this way, our method can conduct the 

estimation of SPET very fast. Experimental results on a real human brain image dataset 

demonstrate that, compared to state-of-the-art method, our method has achieved competitive 

estimation quality, but it is up to 500 × faster.

We have also shown that our auto-context strategy is capable of building a very deep CNN 

architecture to further promote the estimate quality. Meanwhile, the entire network is still 

trained in an end-to-end way with back-propagation. Our model can be applied to other 

similar applications such as mapping one modality to the other. In the future, we will 

investigate the acceleration of the training process to make this method more efficient.
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Fig. 1. 
Two examples of the LPET images and their corresponding SPET images.
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Fig. 2. 
The architecture of the basic four-layer CNN used to estimate SPET from LPET and T1 

images. The inputs include two feature maps corresponding to LPET and T1 image patches, 

respectively. The output is the corresponding SPET image patch. There are four convolution 

layers in this basic CNN model.
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Fig. 3. 
Illustration of the deep auto-context CNN architecture. ‘Concat’ represents concatenation 

operation that concatenates individual feature maps. ‘Conv’ represents the convolutional 

operation. ‘Crop’ represents the crop operation that keeps the sizes of different feature maps 

consistent. In Step 1, the inputs of the basic four-layer CNN are LPET and T1 images. In 

Step 2 and Step 3, the tentatively estimated SPET image from the last step is also included 

as an additional input.
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Fig. 4. 
The performances of using different input image settings, measured by PSNR and NMSE. 

(a) and (b) give the PSNR and NMSE scores of each subject in the leave-one-out validation. 

(c) and (d) give the average PSNR and NMSE scores of all the subjects. ‘LPET’ indicates 

the PSNR/NMSE between the original LPET and the ground-truth SPET. ‘Estimation by 

LPET’ represents the scores of the results estimated using only LPET as the input. 

‘Estimation by LPET+T1′ represents the scores of the results estimated using both LPET 

and T1 images.
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Fig. 5. 
Visual examples of using multimodality inputs for SPET estimation. The two rows represent 

two different subjects. Original inputs of the LPET and the T1 images are in the blue dashed 

box. The estimated SPET images using different input settings are in the green dashed box. 

The ground-truth SPET images are in the red dashed box. ‘T1′ represents the input T1 

image. ‘LPET’ is for the input LPET image. ‘Estimation by LPET’ represents the estimated 

SPET image by using only LPET as the input. ‘Estimation by LPET+T1′ represents the 

estimated SPET by using both LPET and T1 images as the inputs. ‘Ground-Truth’ is for the 

SPET image acquired in our dataset.
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Fig. 6. 
The performances of concatenating multiple basic CNNs, in terms of PSNR and NMSE. (a) 

and (b) give the PSNR and NMSE scores of each subject by using the leave-one-out 

validation. (c) and (d) give the average PSNR and NMSE scores of all the subjects. Note that 

our method concatenates three basic CNNs, which is also indicated by ‘After Step 3′ in this 

figure. The results of the conventional 12-layer CNN are also shown in the figure.
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Fig. 7. 
Training loss with respect to the number of iterations for the 12-layer CNN and our 

proposed deep CNN architecture, with and without batch normalization.
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Fig. 8. 
Comparisons of our proposed deep auto-context CNNs with the MCCA method. (a) and (b) 

show the evaluation results of PNSR and NMSE scores for all 16 subjects in the leave-one-

out testing. (c) and (d) give the average results of PSNR and NMSE of all the subjects.
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Fig. 9. 
Visual comparisons of our method and the MCCA method. Each row of (a) shows a subject 

from the axial view. (b) shows another subject from the axial, coronal and sagittal views, 

respectively. ‘T1′ represents the input T1 image, and ‘LPET’ represents the input LPET 

image. ‘MCCA’ represents the SPET image estimated by the MCCA method. The last 

column represents the ground-truth SPET images.
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Table 1

Demographic information of the subjects in the experiments.

Subject ID Age Gender Weight (kg)

1 26 Female 50.3

2 30 Male 137.9

3 33 Female 103.0

4 25 Male 85.7

5 18 Male 59.9

6 19 Female 72.6

7 36 Female 102.1

8 28 Male 83.9

9 65 Female 68.0

10 86 Male 68.9

11 86 Female 74.8

12 66 Female 58.9

13 61 Male 83.9

14 81 Male 106.5

15 70 Female 61.2

16 72 Female 77.1
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Table 2

Training time and testing time of two different methods.

Method Training Time Testing Time

MCCA 2.9h 1008s

Proposed 4.2h 2.03s
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