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Ventilation imaging using 4D CT is a convenient and low-cost functional imag-
ing methodology which might be of value in radiotherapy treatment planning to 
spare functional lung volumes. Deformable image registration (DIR) is needed to 
calculate ventilation imaging from 4D CT. This study investigates the dependence 
of calculated ventilation on DIR methods and ventilation algorithms. DIR of the 
normal end expiration and normal end inspiration phases of the 4D CT images was 
used to correlate the voxels between the two respiratory phases. Three different 
DIR algorithms, optical flow (OF), diffeomorphic demons (DD), and diffeomorphic 
morphons (DM) were retrospectively applied to ten esophagus and ten lung cancer 
cases with 4D CT image sets that encompassed the entire lung volume. The three 
ventilation extraction methods were used based on either the Jacobian, the change 
in volume of the voxel, or directly calculated from Hounsfield units. The ventila-
tion calculation algorithms used are the Jacobian, ΔV, and HU method. They were 
compared using the Dice similarity coefficient (DSC) index and Bland-Altman 
plots. Dependence of ventilation images on the DIR was greater for the ΔV and 
the Jacobian methods than for the HU method. The DSC index for 20% of low-
ventilation volume for ΔV was 0.33 ± 0.03 (1 SD) between OF and DM, 0.44 ± 
0.05 between OF and DD, and 0.51 ± 0.04 between DM and DD. The similarity 
comparisons for Jacobian were 0.32 ± 0.03, 0.44 ± 0.05, and 0.51 ± 0.04, respec-
tively, and for HU they were 0.53 ± 0.03, 0.56 ± 0.03, and 0.76 ± 0.04, respectively. 
Dependence of extracted ventilation on the ventilation algorithm used showed good 
agreement between the ΔV and Jacobian methods, but differed significantly for 
the HU method. DSC index for using OF as DIR was 0.86 ± 0.01 between ΔV and 
Jacobian, 0.28 ± 0.04 between ΔV and HU, and 0.28 ± 0.04 between Jacobian and 
HU, respectively. When using DM or DD as DIR, similar values were obtained 
when comparing the different ventilation calculation methods. The similarity 
values for the 20% high-ventilation volume were close to those found for the 20% 
low-ventilation volume. The results obtained with DSC index were confirmed 
when using the Bland-Altman plots for comparing the ventilation images. Our 
data suggest that ventilation calculated from 4D CT depends on the DIR algorithm 
employed. Similarities between ΔV and Jacobian are higher than between ΔV and 
HU, and Jacobian and HU. 
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I.	 Introduction

Radiation pneumonitis has traditionally been cited as the main dose limiting factor in radiation 
therapy for non-small cell lung cancer (NSCLC).(1) Previous studies evaluating the risks of 
pulmonary toxicity have typically reported that the two best predictors were the volume of lung 
receiving at least 20 Gy(2,3) and, alternatively, the mean radiation dose to normal lung.(4-11) To 
help predict radiation toxicity, many researchers have tried to model the effects of radiation 
by examining how much normal tissue receives a given dose.(5) There has been much work 
presented on normal tissue complication probability (NTCP) models.(7-9,12,13)  

Most of the current models for radiation toxicity of the lung are based on a uniformly function-
ing lung.(5,7-9,12,13) Although most people have redundant pulmonary reserve, it is well known 
that lung function is not uniform, and there is a wide range of ventilation and perfusion levels 
throughout the lung.(14-16) In particular, lung cancer patients have been shown to have regions 
of lung with poor ventilation. Jeraj et al.(17) suggest that imaging of normal tissue function may 
be useful in reducing normal tissue toxicity.

The current gold standard for imaging ventilation involves the acquisition of single photon 
emission computed tomography (SPECT) images. The images are acquired after the patient 
breathes a radioaerosol (99mTc-DTPA) or radioactive gas. The median diameter of the aerosol 
particles is close to 1.0 μm, making them susceptible to deposition in airways.(16,18) This deposi-
tion may cause artificially high ventilation in some regions of the lung. As a result, the aerosol 
technique is better at identifying regions with low gamma ray emissions and thus low regional 
ventilation.(16,19-22) Other limitations of SPECT compared to 4D CT include its lower spatial 
resolution, as well as the longer time needed for image acquisition.(16,23)  

Guerrero et al.(24) suggested a pulmonary ventilation imaging algorithm that would calculate 
the ventilation image from a 4D CT image set. Deformable image registration (DIR) provides 
a point-to-point deformation matrix which is applied to determine the deformation from nor-
mal end expiration to normal end inspiration. Guerrero’s method uses DIR, and quantifies the 
density change within a particular voxel between the two end points of the respiratory cycle. 
The corresponding Hounsfield unit (HU) changes are used to calculate the local ventilation. An 
algorithm presented by Zhang et al.(25,26) calculates the ventilation from the volume change (ΔV). 
The ΔV method is a direct geometrical calculation of the volume change. A specific volume 
change is obtained by applying the DIR transformation to each of the eight vertex positions 
of a voxel and then calculating the volume of the deformed volume element. Similarly, the 
algorithm presented by Reinhardt et al.(27-29) derives ventilation by calculating the Jacobian of 
the deformation field to approximate the change in volume of voxels. Local volume change 
of the lung is calculated using the Jacobian of the transformation that maps the end expiration 
phase of 4D CT image to the end inspiration phase.  

The effect of the DIR on the ventilation algorithm is unknown, but if ventilation algorithms 
are robust, then they will be insensitive to the precise DIR used, provided the DIR is accurate. 
To test this hypothesis, we investigated the dependence of calculated ventilation on the DIR 
methods and on the ventilation algorithms. This paper compares ventilation images calculated 
from 4D CT scans using DIR and the three ventilation algorithms (VA). The DIR algorithms used 
in this study are optical flow (OF),(30-33) diffeomorphic morphons (DM),(34,35) and diffeomor-
phic demons (DD).(34,36,37) The algorithms used for calculating ventilation are HU, ΔV, and the 
Jacobian. A total of nine combinations of methods are used to calculate ventilation images. 

 
II.	 Materials and Methods

We used three DIR algorithms (OF, DM, and DD) and three ventilation algorithms (HU, ΔV, 
and Jacobian) to calculate ventilation images. In order to minimize any registration errors, a 3 × 
3 × 3 mm3 spatial averaging of all the resulting ventilation images was performed to generate 
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the final ventilation image. In this retrospective study, we examined the 4D CT images acquired 
at the time of simulation, from ten esophageal and ten lung cancer cases. We used the Dice 
similarity coefficient (DSC) index to quantify the similarities between the images generated 
with each method and to study the dependence of the ventilation images on the DIR and VA 
used. A total of 180 ventilation images, nine for each case, were analyzed.

A. 	 Deformable image registration methods
The OF algorithm is based on two fundamental assumptions: (1) the intensity change with time 
of a point in an image is minimal, and (2) the nearby points move in the same manner. This is 
known as the velocity smoothness constraint. It finds the voxel correspondence by computing 
a displacement field describing the apparent motion represented in the two images by matching 
the image intensity gradient.(32,33,38) 

The DM algorithm is based on matching of edges and lines.(34) The morphon iteratively 
deforms a moving image into a target image by morphing the moving image. The process 
can be divided into three parts: estimation of displacement, accumulation of the deformation 
field, and deformation. Estimation of displacement is based on quadrature phase difference. 
The accumulation of the deformation field uses the estimate of the displacement to update 
the deformation field. Finally, the deformation morphs the moving image to the target image 
according to the accumulated deformation field. These steps are done iteratively as long as the 
displacement estimates indicate further morphing to be done. 

The methodological basis of the DD algorithm is intensity-matching. The main requirement is 
that the voxels in the moving image (M) have the minimal intensity change as the corresponding 
voxels in the target image (T).(36,39) Demons forces are applied on the moving image until there 
is an overlap in intensities between the two. The difference in intensity between the two (M - T) 
determines the applied force and its direction. When the difference between the two is greater 
than zero, M moves in the direction of ; however, when the difference is less than zero, M 
moves against . The demons stop exerting force when the images overlap completely. 

The deformation field produced by the DM and DD algorithms is smoothed by a Gaussian 
filter and iteratively used to transform the moving image, and register onto the static image. 
The DD uses a Gaussian regularization, similar to a diffusion, of the displacement field, which 
yields smoother deformation fields. Regularization is applied to reduce the influence of extreme 
values in a deformation field.(40)

The OF, DM, and DD DIR were validated by various groups using landmarks, phantoms, 
and other models.(31,34,41-45) We also previously validated all three DIR methods using the 
dataset from a point-validated pixel-based breathing thorax model (POPI model), which is 
a landmark-based model used for validation of registration algorithms.(46) The methods had 
a maximum registration error of less than 4 mm or two voxels with insignificant differences 
between them (p = 0.373).(47) 

B. 	 Jacobian ventilation
The Jacobian method is a mathematical representation of volume change that uses the first 
derivative of the deformation field to approximate the change in volume of the voxels.(27-29,48) 
Local volume change of the lung is calculated using the Jacobian of the transformation that 
maps the end expiration phase of 4D CT image to the end inspiration phase. Consider a function 
that represents a vector displacement D(x,y,z) that transforms a voxel from its end expiration 
image to its corresponding location in the end inspiration image, so that the voxel at (x,y,z) in 
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the end expiration image is displaced by a vector D(x,y,z) to map it to its corresponding loca-
tion in the end inspiration image. The Jacobian J of this transformation is: 

 
 		

			 
		

(1)

	
	

where I is the identity matrix, Dx(x,y,z) is the x component, Dy(x,y,z) is the y component, and 
Dz(x,y,z) is the z component of D(x,y,z). The Jacobian operator is used to extract volume 
changes on a voxel level directly from the deformation field. The determinant of the Jacobian 
is calculated at each voxel position according to Eq. (1). If the determinant of the Jacobian is 
zero, then there is no local tissue expansion or contraction; if the determinant is greater than 
zero, then there is local tissue expansion; and if the determinant is less than zero, then there is 
local tissue contraction.
 
C. 	 ΔV ventilation
The ΔV method is a direct geometrical calculation of the volume change.(26) Each cuboid vol-
ume in a CT is composed by eight neighboring voxels as vertices. This cuboid can be used to 
represent the volume of the voxel. The vertices of the cuboid are changed to create a 12-face 
polyhedron. The polyhedron is still comprised by the eight vertices; however, it is now deformed 
and the correspondence between the deformed vertices and the original ones is established 
by DIR. Furthermore, the cuboid and the polyhedron are comprised of six tetrahedrons. The 
volumes of the cuboid and the deformed polyhedron are the sums of the volumes of their cor-
responding tetrahedrons. During the local volume change calculation, the volume of each voxel 
is calculated using the corresponding vertices of each respective polyhedron. 

The fundamental volume calculation derives from calculating the volume of each tetrahedron. 
The volume of each tetrahedron is calculated by using the coordinates of its four vertices:

	 	 (2)

where  are the vertices of the tetrahedron as vectors. The volume of a given polyhe-
dron is calculated by summing the volumes of the six tetrahedrons. The coordinates of the 
deformed tetrahedron are given by the deformation matrix, which is derived from the DIR of 
the original voxel.

D. 	HU  ventilation
The HU method uses DIR to correlate voxels from the expiration image set to the anatomically 
corresponding voxels in the inspiration image. The change in density is calculated by direct 
comparison of Hounsfield units (HUs).(49,50) The volume change in the lung due to respiration 
is because of air volume difference. Therefore, in ventilation calculations using the HU method, 
the air volume change is calculated using the density change, or HU difference. In a lung voxel 
in a CT image, the fraction of air is calculated as:

		
(3)
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Let Fexh be the fraction of air in a voxel in the exhale CT volume, and Fin the fraction of air 
in the corresponding voxel in the inhale CT volume, then the volume change in the voxel is: 

		  (4)
	

By substituting Eq. (3) into Eq. (4), we get:

		  (5)

	

Simplifying further, we get to the final equation that relates volume change to density change 
in the corresponding voxel:

	
		  (6)
	

E. 	 Dice similarity coefficient (DSC) and Bland-Altman plots
DSC index is a measure of the degree of overlap between two areas or volumes.(51,52) When com-
paring a reference volume A to another reference volume B, the Dice similarity coefficient is: 

		  (7)
	

The values of DSC index range between 1.0 and 0.0. A DSC index of 1.0 indicates a complete 
overlap of the two methods examined, whereas a DSC index of 0.0 indicates no overlap between 
the methods examined, and intermediate values describe proportional amount of overlap. 

Dice similarity coefficient analysis was performed on the ventilation images. The region 
of lower 20% ventilation threshold in one image was compared to the lower 20% ventilation 
in the second image. The overlap or the similarity between the two volumes was calculated 
using the DSC index. Additionally, the volumes describing the regions with an upper 20% 
ventilation threshold were compared using the DSC index. The volume with lower 20% ven-
tilation includes all the voxels that have ventilation values below 20% threshold in the entire 
lung image. Similarly, the volume with upper 20% ventilation includes all the voxels that have 
values above 80% in the entire lung image.  

Figure 1 is an illustration of images thresholded for calculating the DSC index. The figure 
shows the upper 20% ventilation; the lower 20% thresholding was done in a similar manner. 
Figures 1(a) and (b) show ventilation calculated with ΔV and Jacobian algorithms, respectively, 
OF was used for DIR. Figure 1(c) shows the thresholded regions of Fig. 1(a), and Fig. 1(d) 
shows the thresholded regions of Fig. 1(b).  

Additionally, Bland-Altman plot analysis was performed on the ventilation images.(53) The 
Bland-Altman method creates scatter plots. The differences between two measurements are plot-
ted on the y-axis, and the average of the two measurements is plotted on the x-axis. Generally, 
if the average of the differences between the two methods is close to zero, this indicates that 
the two methods produce similar results. The 95% confidence limits are shown as two dotted 
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lines. The closer these limits of agreement are to zero, or to the average of the differences, the 
more similar the two measurements are. 

F. 	 Ventilation dependence on the DIR and ventilation algorithm
We compared ventilation images calculated with the three DIR methods by calculating the DSC 
index between images that were calculated with the same ventilation algorithm but different 
DIR method. The process was repeated for images calculated with the second, and then the 
third ventilation algorithm. 

To calculate ventilation dependence on the ventilation algorithm, images calculated with the 
three different VAs but same DIR, were compared to each other via the DSC index, then the 
process was repeated for images calculated with the second and third DIR method. 

4D CT sets from 20 patients, ten lung and ten esophageal cancer patients, treated with external 
beam radiotherapy were selected for the retrospective study. 4D CT image sets were collected 
on a Philips Large Bore Brilliance 16 slice scanner (Philips Oncology Systems, Cleveland 
Ohio). The CT sinogram data were binned into 10 phases based on bellows on the abdomen 
using the method described by Keall et al.(54) The pixel size in the transaxial slice of the 4D 
CT images for 13 patients was 1.17 × 1.17 mm2. The slices for seven patients had a pixel size 
of 0.97 × 0.97 mm2, and the slice thickness was 3 mm.  

 

Fig. 1.  Illustration of the upper 20% thresholded ventilation: (a) and (b) represent the derived ventilation with ΔV and 
Jacobian algorithms (optical flow was used for DIR in this case); (c) and (d) represent the volumes of the upper 20% 
threshold of the ventilation in (a) and (b), respectively.
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III.	 Results 

A. 	 Ventilation dependence on the DIR
Figures 2(a), (b), and (c) show coronal and axial images of the calculated ventilation using the 
ΔV ventilation method with the OF, DM, and DD DIR algorithms. Bright colors in the images 
show high ventilation and dark colors show low-ventilation regions. Some of the high- and 
low-ventilation areas seem to correspond between the different methods; however, the overall 
images are quite different from each other.  

Figures 3(a) and (b) are plots of the DSC index for the lowest and highest 20% ventilation 
for all 20 patients, respectively, for the ΔV, Jacobian, and HU methods calculated using the OF, 
DM, and DD DIR algorithms. Figure 3(a) shows the DSC index in the lower ventilation range 
(0%–20%) for all 20 patients comparing the ΔV, Jacobian, and HU ventilation. The DSC index 

Fig. 2.  Coronal and axial slices of the ΔV ventilation images for a representative patient with OF (a), DM (b), and DD 
(c) deformation.

Fig. 3.  Dice similarity coefficient (DSC): comparisons (a) between OF, DM, and DD deformation with ΔV, Jacobian, and 
HU ventilation for the lowest 20% ventilation, and (b) for the highest 20% ventilation.
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for 20% of low-ventilation volume for ΔV was 0.33 ± 0.03 between OF and DM, 0.44 ± 0.05 
between OF and DD, and 0.51 ± 0.04 between DM and DD. The similarity comparisons for 
Jacobian were 0.32 ± 0.03, 0.44 ± 0.05, and 0.51 ± 0.04, respectively, and for HU they were 
0.53 ± 0.03, 0.56 ± 0.03, and 0.76 ± 0.04, respectively. The DSC index for the upper ventilation 
(80%–100%) is plotted in Fig. 3(b) and showed trends similar to the lower ventilation. 

B. 	 Ventilation dependence on the ventilation algorithm
Figures 4(a), (b), and (c) show coronal and axial images of the calculated ventilation using the 
ΔV, Jacobian, and HU ventilation methods with the OF DIR algorithm. By visual observation 
of Fig. 4, we can see that there is a higher degree of overlap between the ΔV and the Jacobian 
ventilation images. 

The DSC index for using OF as DIR, as shown in Fig. 5, was 0.86 ± 0.01 between ΔV 
and Jacobian, 0.28 ± 0.04 between ΔV and HU, and 0.28 ± 0.04 between Jacobian and HU, 
respectively. The DSC index for using DM as DIR was 0.88 ± 0.01 between ΔV and Jacobian, 
0.34 ± 0.04 between ΔV and HU, and 0.35 ± 0.04 between Jacobian and HU, respectively, and 
for DD it was 0.88 ± 0.01, 0.36 ± 0.04, and 0.37 ± 0.04, respectively. The DSC index values 
for the highest 20% ventilation were similar to the ones for the lowest 20% ventilation. 

In addition to the DSC index, Bland-Altman plots were utilized to study the ventilation 
maps. Figure 6(a) shows the Bland-Altman plot for a representative patient. This case compared 
the ΔV and Jacobian ventilation with DM as the DIR. The mean of the differences was zero 
and the range of 95% confidence limits was -0.03 to +0.03. Figure 6(b) is a scatter plot of the 
Jacobian and ΔV ventilations with DM as DIR; correlation coefficient for this case was 0.96. 
Table 1 shows the 95% confidence limits resulting from the Bland-Altman plots, along with 
the correlation coefficient (CC) between the algorithms.  

Table 2 shows a summary of the 95% confidence interval derived from the Bland-Altman 
plot, as well as the correlation coefficient between the ventilation images. Similar to the DSC 
index, it shows that the ΔV and Jacobian have the highest correlation between them.  

 

Fig. 4.  ΔV (a), Jacobian (b), and HU (c) ventilation images for a representative patient with OF deformation.
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Fig. 5.  DSC index (a) for OF, DM, and DD deformation for the lowest 20% ventilation for comparison between ventila-
tion algorithms; DSC index (b) for OF, DM, and DD deformation for the highest 20% ventilation for comparison between 
ventilation algorithms. 

Fig. 6.  Voxel-to-voxel comparison of two ventilation images from a representative patient calculated using the Jacobian 
and ΔV ventilation algorithm and DM as DIR: (a) Bland-Altman plot comparing the Jacobian and ΔV ventilation, and  
(b) scatter plot comparing the two methods.
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IV.	 DISCUSSION

In agreement with Castillo et al.,(48) our results show that the ΔV and the Jacobian ventilation 
calculation methods are very similar. Both qualitative and quantitative inspections show that 
these two have a high degree of similarity when using the same DIR method. DSC index between 
the ΔV and Jacobian is near 0.9, indicating nearly 90% overlap between the ventilation images 
calculated with the two methods. The difference between the two methods is their mathemati-
cal implementation. While the Jacobian estimates ventilation by calculating the first derivative 
of the deformation field, the ΔV estimates ventilation by direct geometrical calculation of the 
volume change. Bland-Altman plots also confirm the results of the DSC index when comparing 
the ventilation methods. According to these plots, the ΔV and Jacobian provide nearly identical 
ventilation results with a correlation coefficient of 0.96 when using DM as DIR, with a mean 
of differences at zero, and the confidence interval at ± 0.03. 

When compared to the HU method, ΔV and Jacobian are very different. DSC index shows 
only about 30% similarity between these methods, and the HU method (see Fig. 5). The HU 
method is a density-based ventilation calculation method. The DSC index, shown in Fig. 3, 
suggests that the HU method is less dependent on the DIR used. It depends more on the CT 
image quality due to the inherent noise of HUs in normal CT imaging. The fluctuations of the 
HUs in a CT lead to noisy ventilation images. The standard deviation of HU in a CT image of 
a water phantom similar to the change in HU between inspiration and expiration.(26)  

If most of the lung is similar in density (i.e., a mixture of blood vessels and alveoli), then the 
effects of any misregistrations will be small because of the similar densities. However, if there 
is a misregistration between lung and much denser tissue, such as chest wall or large artery, 
then the change in HU is quite significant. The HU algorithm screens for these voxels with 
very large change in HUs and then excludes these voxels in the ventilation image. To overcome 
the variation in HUs in low-density tissue, Castillo et al.(48) smoothed the DIR using a cube of 
5 × 5 × 5 voxels, then also smoothed the ventilation image using a box filter 9 × 9 × 3 voxels. 
In contrast, in our study no additional smoothing was applied to the DIR, only the ventilation 
images were smoothed with a 3 × 3 × 3 mm3 box filter. 

The three DIR algorithms used in this study produced similar results when tested for accuracy 
using landmarks. The fact that the ventilation maps are different suggests that the dependence 
of ventilation calculation on DIR algorithms is fundamentally due to the discrepancies between 

Table 1.  Bland-Altman statistics for comparisons between OF, DM, and DD deformation with ΔV, Jacobian, and 
HU ventilation.

	Vent.	 ΔV	 Jacobian	 HU

	DIR	 OF 	 OF	 DM	 OF	 OF	 DM	 OF	 OF	 DM
		  DM	 DD	 DD	 DM	 DD	 DD	 DM	 DD	 DD
	95%	 ±0.33	 ±0.28	 ±0.16	 ±0.33	 ±0.28	 ±0.16	 ±0.46	 ±0.32	 ±0.26
CC	 0.21	 0.52	 0.50	 0.20	 0.52	 0.50	 0.26	 0.32	 0.66

Table 2.  Bland-Altman statistics for comparisons between ventilation algorithms showing the 95% confidence limits 
and the correlation coefficient between the methods.

	DIR 	 OF	 DM	 DD

	DIR	 ΔV & J	 ΔV & HU	 J & HU	 ΔV & J	 ΔV & HU	 J & HU	 ΔV & J	 ΔV & HU	 J & HU
	95% 	 ±0.12	 ±0.45	 ±0.43	 ±0.03	 ±0.49	 ±0.49	 ±0.05	 ±0.26	 ±0.26
CC	 0.93	 0.11	 0.13	 0.96	 0.13	 0.13	 0.96	 0.31	 0.30



160    Latifi et al.: Ventilation dependence on DIR	 160

Journal of Applied Clinical Medical Physics, Vol. 14, No. 4, 2013

the vector fields generated by different DIR algorithms. Figure 3 suggest that there is a higher 
similarity between DM and DD than between OF and DM, or OF and DD. This may be due 
to the different vector fields that are produced from these methods. The similarity between 
DM and DD may be a result of both methods using similar filters to smooth their deformation 
fields and the fact that both of them are diffeomorphic, whereas this does not apply to the OF 
algorithm. The difference between these three DIR algorithms and their vector fields will be 
further investigated in a future study. Furthermore, the sliding motion near lung boundary could 
lead to additional artifacts in the DIR, which would lead to false ventilation results. This issue 
was not taken into account in this study and will be considered for future projects. 

The need for smoothing for the ΔV and Jacobian methods comes from these misregistrations 
of the end expiration and inspiration image sets. The source of the misregistration issues comes 
directly from the 4D CT itself. Currently there are two commercially available techniques for 
4D CT imaging. The first uses a cine acquisition (GE Medical Systems, San Francisco, CA), 
which rapidly bins axial images based on a breathing trace. This method produces slab artifacts 
that are clearly visualized on sagittal and coronal reconstructions with the width of each slab 
corresponding to the transaxial collimation used in the 4D CT acquisition. The second acquisi-
tion technique bins the sinogram data, then reconstructs each phase on these binned sinogram 
data (Philips, Philips Healthcare, Andover, MA; and Siemens, Siemens Medical Solutions, 
Malvern, PA).  The artifacts are generally less pronounced in this imaging technique, though 
both methods produce significant artifacts when patients breathe irregularly. Due to limitations 
of CT scanners and the ability of a patient to breathe reproducibly, most 4D image sets present 
with imaging artifacts that are unique to 4D acquisitions.(55)  

In general, a higher DSC value means a better similarity between the images. But we cannot 
determine what value of DSC is acceptable from this study. In the study by Castillo et al.,(48) 
ventilation calculated from 4D CT was compared to that measured with SPECT for the HU and 
volume change ventilation algorithms. The Castillo study results showed that the calculated 
ventilation had a good agreement with that measured using SPECT; however, in that study 
only one DIR algorithm was used. In the future, to establish a better understanding of the DSC 
values obtained from our study, the ventilation calculated from 4D CT using these ventilation 
methods and various DIR algorithms needs to be compared to ventilation from SPECT, which 
is widely considered gold standard in ventilation imaging. 

 
V.	 Conclusions

DSC index analysis suggests that ventilation calculated from 4D CT depends on the DIR algo-
rithm employed. We believe that artifacts in 4D CT images are the reason why HU shows a 
smaller dependence on the choice of DIR. When comparing ventilation algorithms with each 
other, we found that similarities between ΔV and Jacobian are higher than between ΔV and 
HU and between Jacobian and HU. This shows that ΔV and Jacobian are similar, while HU 
is a different ventilation calculation method (inferring volume changes from changes in HUs) 
and is more sensitive to noise in HUs.   
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