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The purpose of this study is to investigate the potential benefits of conformal 
radiotherapy (CRT) combined with a sequential volumetric-modulated arc therapy 
(VMAT) boost in the treatment of upper thoracic esophageal cancer. Ten patients 
with upper thoracic esophageal cancer previously treated with CRT plus a sequen-
tial VMAT boost plan were replanned with CRT plus an off-cord CRT boost plan 
and a full course of VMAT plan. Dosimetric parameters were compared. Results 
indicated that CRT plus off-cord CRT boost was inferior in planning target volume 
(PTV) coverage, as indicated by the volume covered by 93% (p = 0.05) and 95% 
(p = 0.02) of the prescription dose. The full course VMAT plan was superior in 
conformal index (CI) and conformation number (CN), and produced the highest 
protection for the spinal cord. CRT plus a VMAT boost demonstrated significant 
advantages in decreasing the volume of the lung irradiated by a dose of 10 Gy 
(V10, p = 0.007), 13 Gy (V13, p = 0.003), and 20 Gy (V20, p = 0.001). The full 
course VMAT plan demonstrated the lowest volume of lung receiving a dose of 
30 Gy. CRT plus a VMAT boost for upper thoracic esophageal cancer can improve 
the target coverage and reduce the volume of lung irradiated by an intermediate 
dose. This combination may be a promising treatment technique for patients with 
upper thoracic esophageal cancer.
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I.	 Introduction

Conformal radiotherapy (CRT) is still the treatment of choice for esophageal cancer, with 
parallel opposed, antero-posterior and postero-anterior (APPA) fields for the first phase and a 
second phase with off-cord lateral or oblique parallel opposed beams.(1) In order to constrain 
the dose to spinal cord strictly within its tolerant limit, conformal plans may unavoidably 
compromise target coverage due to its unfavorable geometry close to spinal cord. As such, 
intensity-modulated radiation therapy (IMRT) has been reported to provide superior target 
coverage while reducing doses to organs at risk (OAR) of cervical esophageal cancer.(2) A full 
course of IMRT usually has not been recommended for thoracic cancer because of the widely 
distributed low dose levels surrounding the planning target volume (PTV).(3,4) A hybrid tech-
nique that combines conformal fields with IMRT fields on a daily fraction basis for lung and 
esophageal cancer patients has been suggested to reduce the volume of the lung irradiated by 
relatively low dose levels.(5)
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With the continued development in radiotherapy delivery techniques, volumetric-modulated 
arc therapy (VMAT) has begun to replace conventional IMRT in the treatment of several 
cancers. Several studies have demonstrated that VMAT is able to produce dosimetric plans 
equivalent to those of IMRT.(6-8) At the same time, VMAT is also able to reduce the number of 
monitor units and the required delivery time in comparison to IMRT.(6-8) Comparative studies 
on VMAT and IMRT in the treatment of esophageal cancer also indicate that VMAT is able to 
achieve comparable target coverage and OAR sparing with reduced monitor units and delivery 
time.(9,10) However, a full course VMAT plan for the treatment of esophageal cancer patients 
would exhibit the same problem as a full course IMRT plan. The purpose of this study is to 
investigate the potential benefit of applying the VMAT technique in the second boost phase 
instead of using off-cord conformal beams in the treatment of upper thoracic esophageal cancer 
patients following the first APPA phase.

 
II.	 Materials and Methods

A. 	 Patients
Ten patients with upper thoracic esophageal cancer, who were previously treated in our depart-
ment with APPA CRT beams for the first phase and followed with a single-arc VMAT boost, 
were enrolled in this study. Each patient was replanned retrospectively via the Pinnacle treat-
ment planning system (Philips, clinical version 9.2; Fitchburg, WI). Patient staging information 
according to the AJCC staging system (AJCC, 2002) and other relevant characteristics are 
summarized in Table 1.

Gross tumor volume (GTV), clinical target volume (CTV), PTV, and nodes were contoured 
by a physician according to the RTOG 0436 protocol.(11) The GTV included the gross tumor 
and involved nodes as defined by diagnostic CT, oesophagogastroscopy, endoscopic ultrasound, 
and PET scan. The CTV was delineated with 3–5 cm superior–inferior margins and 1 cm lat-
eral and anterior–posterior margins with respect to the GTV. The PTV was delineated with a 
0.5 cm margin from the CTV. For the sake of data consistence, the PTVs of this enrolled cohort 
patients were the same for both the initial and boost plans. The spinal cord, lung, and heart 
were contoured as OARs on each image.

B. 	 Planning schemes
Three planning schemes were generated for each patient. Scheme 1 is CRT initial plus off-cord 
CRT boost, scheme 2 is CRT initial plus a sequential VMAT boost, and scheme 3 is a full course 
of VMAT plan — that is, one VMAT plan for the whole treatment course. The prescription 
dose of CRT initial plan was 2 Gy × 18 fractions for a total dose of 36 Gy with APPA beams, 
followed by 2 Gy × 12 fractions for a total dose of 24 Gy with off-cord conformal beams. The 

Table 1. Patient staging and characteristics.

	Patient	 Staging	 GTV (cm3)	 CTV (cm3)	 PTV (cm3)

	 1	 T3N1M1	 25.3	 195.3	 303.0
	 2	 T3N0M1	 15.7	 85.7	 146.4
	 3	 T3N1M1	 15.4	 155.5	 230.3
	 4	 T2N1M0	 17.3	 175.3	 219.6
	 5	 T3N1M1	 19.4	 97.4	 167.0
	 6	 T2N0M0	 16.0	 96.0	 149.0
	 7	 T4N1M1	 35.8	 358.8	 477.9
	 8	 T2N1M1	 12.1	 109.1	 203.2
	 9	 T4N1M1	 34.3	 342.3	 513.2
	 10	 T3N1M1	 37.8	 257.8	 363.7
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prescription dose of CRT plus a sequential boost VMAT was 2 Gy × 18 fractions for a total 
dose of 36 Gy with initial CRT APPA beams, followed by a single-arc VMAT boost plan with 
a prescription of 2 Gy × 12 fractions. The prescription dose for the full course VMAT plan was 
60 Gy over 30 fractions (2 Gy × 30 fractions). For VMAT plan optimization, constraint leaf 
motion of 0.46 cm/deg and final arc space degree of 4 were employed. A start angle of 181° and 
a stop angle of 180° were applied for one-arc plans using clockwise (CW) rotation direction. 
The maximum constraint dose for the spinal cord was 400 cGy for the sequential VMAT boost 
plan, and 4500 cGy for the full course VMAT plan. The optimization objectives were set for 
the PTV, spinal cord, and lung for the VMAT plans. For upper thoracic esophageal cancer, only 
a very small part of heart was involved in the treatment field; the constraint on heart had little 
effect on the plan quality, so we did not include the heart in the inverse optimization.

All plans were optimized to reach clinically acceptable levels. For instance, the maximum 
dose for the spinal cord was less than 45 Gy, whereas the volume of the lung irradiated by a 
dose of 20 Gy (V20) and 30 Gy (V30) was less than 30% and 20%, respectively. For PTV 
coverage, 95% of PTV should be covered by 95% of the prescription dose, unless the spinal 
cord limit was violated.

C. 	 Plan evaluation and comparison
The following plan quality indices were calculated from the dose-volume histogram (DVH) 
data for evaluation and comparison.

Target coverage (TC) of PTV was calculated to describe the percent volume of PTV covered 
by the prescription dose:

		  (1)
	

TC
VT,Pi

VT

=
     

  
where VT,Pi is the target volume that was covered by the prescription isodose, which was set at 
95% in this study. VT is the volume of the target.                   

A homogeneity index similar to that defined in the ICRU 62 Report was adapted for PTV 
to study the dose distribution homogeneity across the PTV:(12) 
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The conformity index (CI)(13) and conformation number (CN)(14) were also calculated  
for PTV:
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where VPi is the volume that was covered by the prescription isodose. The maximum value of 
CI is 1, corresponding to a perfect coverage of PTV. CN is the complementary information 
designed to compensate for defects in the TC and CI. The first term of Eq. (4) stands for the 
coverage of the target volume. The second term refers to the volume of healthy tissue receiving 
a dose equal to or greater than the prescribed dose. CN can take values between 0 and 1. 
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Radiobiological ranking indices, TCP and NTCP, were also calculated using the Niemierko 
and Goiten model.(15) Based on the equivalent uniform dose (EUD), the tumor control prob-
ability (TCP) can be calculated by:  

		  (5)
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TCD50

EUD

=
4
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+

where TCD50 is the tumor dose required to produce 50% of TCP, and γ50 is the slope of the dose 
response at 50% of TCP. These tumor-specific parameters were cited from a study by Okunieff 
et al.(16) The EUD is defined as the absorbed dose that, if homogeneously delivered to a tumor, 
would cause the same expected number of clonogens to survive as the actual nonhomogeneous 
absorbed dose distribution would. Clonogen survival is a stochastic magnitude governed by 
Poisson statistics, while EUD is obtained as an expected value:

	 EUD viD
a=

1
a( )ΣN

1 i
	              (6)

where N is the number of voxels in the structure of interest, Di is the dose in the ith voxel vi, 
and a is the tumor’s normal tissue-specific parameters that describe the dose-volume effect. 
TCP of PTV was calculated for the purpose of plan evaluation.

In the case of normal tissue, the normal tissue complication probability (NTCP) is deter-
mined as: 

		  (7) 
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where TD50 is the dose at which the probability of complication becomes 50% in five years, 
and γ50 is the slope of the sigmoidal dose response curve of normal tissue at 50% complica-
tion probability. These tissue-specific parameters were based on the Niemierko and Goiten  
model.(15) NTCP of the spinal cord, heart, and lungs were calculated for plan evaluation.

The mean dose (Dmean) and maximum dose (Dmax) for OARs were calculated and 
compared. The volume of hearts irradiated by a dose of 25, 30, and 50 Gy (V25, V30, and 
V50, respectively) was calculated and compared. The volume of lung irradiated by a dose 
of 5, 10, 13, 20, and 30 Gy (V5, V10, V13, V20, and V30, respectively) was also calculated  
and compared.

D. 	 Statistical analysis
The different planning schemes were analyzed using the one-way ANOVA method. When an 
overall significant difference was observed, the post hoc Turkey’s test was used to determine 
which pairwise comparisons differed. All statistical analyses were conducted with SPSS 17.0 
software. Differences were considered statistically significant when p < 0.05.
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III.	 Results 

None of the ten patients in this study suffered from pulmonary complications three months 
after their treatment course.

Figure 1 shows the typical DVH data for one of the patients. In this case, CRT plus a VMAT 
boost and full course VMAT plan provided a better target coverage than CRT plan did. CRT 
plus a VMAT boost had the lowest value in terms of lung V20. Figure 2 shows the typical dose 
distribution of one patient. CRT plus a VMAT boost plan showed the lowest volume of healthy 
tissue irradiation by the 30% isodose line in the axial and coronal planes. The 95% isodose 
line did not cover the PTV in the CRT plans due to the tolerant dose limitation of spinal cord, 
which is in a close proximity to the PTV. 

Fig. 1.  Typical dose-volume histogram comparison among CRT plus a VMAT boost (dashed), CRT plus lateral beams (medium 
solid), and a full course of VMAT (thick solid). Red = PTV; yellow = spinal cord; blue = lung; and pink = heart.

Fig. 2.  Dose distributions for CRT, CRT plus VMAT, and full course of VMAT plans in the axial, sagittal, and  
coronal planes.
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Average target coverage of the different treatment schemes is summarized in Table 2. The 
mean dose and EUD values were similar for all the treatment schemes. CRT was inferior in TC, 
as indicated by the volume covered by 93% (p = 0.05) and 95% (p = 0.02) of the prescription 
dose. The full course VMAT plan was superior in terms of CI (p = 0.01) and CN (p = 0.01). 
The OAR sparing comparison is summarized in Table 3. The full course VMAT plan achieved 
the highest protection for the spinal cord. CRT showed the lowest low dose volume (V5) for 
the lung, although this result was not statistically significant (p = 0.11). CRT plus a VMAT 
boost plan demonstrated great advantages in decreasing the volume of the lung irradiated by a 
dose of 10 Gy (V10, p = 0.007), 13 Gy (V13, p = 0.003), and 20 Gy (V20, p = 0.001). The full 
course VMAT had the lowest volume of the lung irradiated by a dose of 30 Gy. There was no 
statistical significance observed regarding the protection of the heart among the three treatment 
schemes. No significant difference was observed regarding the dose to the volume of healthy 
tissue outside of PTV.

 

Table 2.  Target coverage comparison. 

	 PTV	 CRT	 SD	 CRT+VMAT	 SD	 VMAT	 SD	 p

	Dmax (cGy)	 6432.2	 259.0	 6345.4	 68.6	 6256.8	 154.2	 0.11
	Dmean (cGy)	 5956.6	 138.7	 5971.0	 32.9	 5950.4	 58.7	 0.87
	 EUD (cGy)	 5912.8	 149.0	 5958.5	 35.0	 5930.4	 86.3	 0.55
	 TCP	 0.96	 0.02	 0.97	 0.003	 0.97	 0.006	 0.31
	 PTV_93a	 95.3	 7.3	 99.9	 0.1	 99.2	 1.3	 0.05
	 PTV_95a	 89.3	 14.2	 99.6	 0.4	 97.7	 2.1	 0.02
	 CI	 0.5	 0.2	 0.6	 0.1	 0.7	 0.1	 0.005
	 CN	 0.5	 0.2	 0.6	 0.1	 0.7	 0.09	 0.005
	 HI	 0.998	 0.007	 0.999	 0.003	 0.999	 0.001	 0.40

a	PTV_93 and PTV_95 are the percentage of the volumes of PTV covered by 93% and 95% of the prescription dose, 
respectively.

SD = standard deviation.

Table 3.  OAR sparing comparison.

		  CRT	 SD	 CRT+VMAT	 SD	 VMAT	 SD	 p

	 Cord							     
	 Dmax (cGy)	 4293.4 	 157.6 	 4151.4 	 93.7 	 3832.5 	 272.5 	 <0.001
	Dmean (cGy)	 3002.1 	 459.6 	 2960.0 	 29.1 	 2396.2 	 881.8 	 0.07
	 EUD (cGy)	 3832.2 	 98.6 	 3791.9 	 77.1 	 3270.1 	 288.6 	 <0.001
	NTCP (× 10-4)	 86.5 	 20.8 	 78.3 	 13.1 	 26.4 	 16.2 	 <0.001
	 Lung							     
	Dmean (cGy)	 1336.7 	 344.0 	 1234.1 	 300.0 	 1319.1 	 259.2 	 0.73
	 NTCP	 0.03	 0.1 	 0.01	 0.04	 0.01	 0.01	 0.56
	 V5	 52.8 	 13.7 	 62.9 	 19.4 	 70.3 	 20.4 	 0.11
	 V10	 40.7 	 11.8 	 36.6 	 10.1 	 55.6 	 16.3 	 0.007
	 V13	 37.1 	 11.2 	 27.7 	 6.9 	 44.4 	 10.9 	 0.003
	 V20	 30.7 	 9.4 	 18.8 	 5.2 	 21.9 	 2.4 	 0.001
	 V30	 13.3 	 4.7 	 13.6 	 4.1 	 8.8 	 2.0 	 0.014
	 Heart							     
	Dmean (cGy)	 1800.4 	 1370.6 	 1897.3 	 1431.3 	 1322.8 	 1036.5 	 0.57
	 EUD (cGy)	 2845.4 	 1055.4 	 2956.5 	 1162.4 	 2127.6 	 1150.4 	 0.22
	 NTCP	 0.06	 0.1 	 0.07	 0.1	 0.004	 0.007	 0.26
	 V25	 37.1 	 31.4 	 36.1 	 29.5 	 21.7 	 22.4 	 0.4
	 V30	 33.6 	 29.5 	 34.2 	 28.8 	 15.5 	 15.6 	 0.2
	 V50	 7.8 	 9.4 	 9.9 	 10.3 	 4.3 	 4.3 	 0.34
	 Body							     
	 V5	 49.3 	 12.7 	 58.3 	 15.3 	 65.2 	 18.7 	 0.09
	 V10	 41.6 	 11.0 	 38.9 	 10.6 	 47.1 	 16.0 	 0.36
	 V15	 37.6 	 10.3 	 30.3 	 8.0 	 31.4 	 11.5 	 0.24
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IV.	D ISCUSSION

IMRT has shown to be superior to CRT in target coverage and normal tissue sparing in the treat-
ment of esophageal cancer.(2) Studies have also indicated that VMAT is essentially equivalent to 
IMRT in the treatment of the esophagus from a dosimetric perspective.(10,17) In the present study, 
a single-arc VMAT boost plan following APPA conformal beams for upper thoracic esophageal 
cancer was demonstrated to be superior to the CRT in terms of better target coverage and the 
full course VMAT plan in terms of decreasing the lung volume irradiated by a low dose.

The cervical and upper esophageal areas lie in close proximity to the spinal cord. Drastic 
change in anatomical contours and diameters are often seen in upper thoracic esophageal cancer 
patients. The CTV of upper thoracic esophageal cancer usually includes the supraclavicular 
nodes at risk, and a part of the spinal cord may be projected inside the treatment field if lateral 
opposed beams or other off-cord conformal beams are applied during the boost phase. Because 
of this geometric difficulty, the dose coverage of the PTV usually had to be sacrificed in order to 
spare the spinal cord within its tolerant dose (45 Gy). This target coverage sacrifice is observed 
in our study. Using VMAT boost instead of off-cord conformal beams, the mean percent average 
target coverage of PTV (PTV_95) increased from 89.3 ± 14.2 to 99.6 ± 0.4 (p = 0.02). There 
was no significant difference (p = 0.87) in PTV_95 between CRT plus a sequential VMAT boost 
and the full course VMAT plan. The PTV_93 of CRT plus VMAT and full course of VMAT 
were also higher than that of CRT, but without statistical significance (p = 0.05). However, full 
course of VMAT plans demonstrated a higher CI (p = 0.01) and CN (p = 0.01) than did the other 
two treatment schemes, which is consistent with results of previous studies.(2,9) No significant 
difference was observed for HI (p = 0.4).

The spinal cord is one important organ with strict dose limitation. CRT plus a sequential 
VMAT boost plan achieved a relatively lower spinal cord NTCP (78.3 ± 13.1) than did CRT 
plans (86.5 ± 20.8), but no statistically significant differences were observed (p = 0.54). A clear 
spinal cord sparing advantage was found in full course of VMAT plans over CRT plans and 
CRT plus a sequential VMAT boost. The average maximum dose and EUD of the full course 
VMAT plans were about 461 cGy and 552 cGy less than those CRT plans, respectively (p < 
0.001). The NTCP of the full course VMAT plans was nearly three times less than (p < 0.001) 
those of CRT and CRT plus a sequential VMAT boost. However, the maximum spinal cord 
doses in all three treatment schemes were within the tolerance level.

Pulmonary complications were another one of the major concerns associated with esopha-
geal cancer radiotherapy. Several heterogeneous dosimetric parameters have been proposed 
to correlate with the incidence and severity of pneumonitis.(18-21) In this study, we compared 
these dosimetric parameters among these three planning schemes accordingly. There was no 
significant difference observed regarding the mean lung dose and NTCP among the three 
treatment schemes. The mean dose of the lung was considered to be the most useful predictor 
of radiation pneumonitis in thoracic tumor radiation in a study by Kwa et al.(18) On average, 
CRT plus off-cord conformal beams showed the lowest V5, but this difference was not sta-
tistically significant (p = 0.11). V5 was also considered a strong indicator of pneumonitis in 
one postoperative chemoradiation study.(19) CRT plus a sequential VMAT boost demonstrated 
clear advantages in V10 (p = 0.007) and V13 (p = 0.003) compared with CRT plus off-cord 
conformal beams and full course of VMAT plans. V10 and V13 were also suggested to be 
strong indicators for pulmonary pneumonitis in a retrospective study.(20) CRT plus a sequential 
VMAT boost also showed the lowest value (p = 0.001) in lung V20, which was also found to be 
strongly correlated with the severity of pneumonitis.(20) Full course of VMAT plans presented 
a smallest value in V30, which also correlated to radiation pneumonitis in a study by Graham 
et al.(21) Although there is no single dosimetric parameter that is agreed to be the best predictor 
of radiation pneumonitis following radiotherapy, it is believed that lower volumes of the lung 
receiving intermediate and low-dose exposures are associated with better prognosis.(5) CRT 
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plus a sequential VMAT boost demonstrated clear advantage in most of the lung dosimetric 
parameters in this study.

The lung sparing advantage associated with CRT plus a sequential VMAT boost is similar to 
the hybrid IMRT technique used in the study by Mayo et al.,(5) in which static conformal beams 
were concurrently combined with IMRT beams in the treatment of lung and esophageal cancer 
patients and were compared with CRT and IMRT. This result indicates that hybrid VMAT with 
APPA conformal beams concurrently combined with a single-arc VMAT beam may be a poten-
tial technique in the treatment of esophageal cancer patients. However, this hybrid technique 
applying arc beam and conformal beams together in one fraction could increase the complexity 
of the planning process and beam delivery. Thus, applying VMAT only as the second boost 
phase is much more applicable and acceptable.

Full course of IMRT plans have been demonstrated to produce more conformal high-dose 
distributions to the PTV at the cost of low doses to more normal lung tissue.(22) Our study with 
full course of VMAT plans presented similar results. The full course VMAT plan achieved 
better target coverage and greater conformal dose distribution, as indicated by CI and CN, but 
a greater lung volume irradiated by the intermediate dose. Applying VMAT as only the second 
boost phase can reduce the volume of lung radiation compared to both CRT plus off-cord con-
formal beams and the full course VMAT plan. At the same time, this method also improved 
the target coverage compared to CRT.

One potential problem with the full course VMAT plan is the increased volume of healthy 
tissue receiving low-dose radiation outside the PTV. In this study, conformal radiotherapy 
achieved the lowest V5 in healthy tissue, although with no statistical significance (p = 0.09). 
There was also no statistical significance for healthy tissue in V10 and V15. This result differs 
a little from that of the study of Vivekanandan et al.(9) They compared RapidArc (RA), CRT, 
and IMRT for ten esophageal cancer patients and found that V10 and integral dose to healthy 
tissue were similar for all the techniques; however, the RA plans resulted in a reduced low-
level dose bath (15–20 Gy) in the range of 14%–16%, compared to the IMRT plans. The whole 
course VMAT plans demonstrated lower values on the heart parameters compared to CRT and 
CRT plus VMAT, but no significant differences (all p > 0.05) were observed regarding these 
parameters. This could also due to that heart was not involved in the inverse optimization.

 
V.	 Conclusions

Using APPA conformal beams plus a sequential VMAT boost for upper thoracic esophageal 
cancer can improve the target coverage compared to using CRT plus an off-cord conformal 
beams boost, while concurrently reducing the volume of the lung irradiated by the intermedi-
ate dose. CRT combined with a sequential VMAT boost plan may be a promising treatment 
technique for upper thoracic esophageal cancer patients.
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