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The study was to explore the feasibility of improving cone-beam CT (CBCT) num-
ber (corresponding to the Hounsfield units in computed tomography) consistency 
using a scatter-correction algorithm, with the aim of using CBCT images for treat-
ment planning with density correction. A scatter-correction algorithm was applied 
to a Varian OBI CBCT and an Elekta XVI CBCT, and was evaluated for improving 
CBCT number consistency. CBCT numbers of phantom materials were compared 
between images with and without bolus, which introduced additional scatter, and 
with and without scatter-correction processing. It was observed that CBCT numbers 
were different in the images with and without bolus in both CBCT studies, and the 
differences were reduced remarkably after scatter-correction processing. Results 
showed that CBCT number consistency was significantly improved by use of the 
scatter-correction algorithm. 
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I. InTroduCTIon

In radiation therapy, cone-beam computed tomography (CBCT) has been used to verify patient 
positioning and target localization before treatment. Studies applying CBCT images for treat-
ment planning have been reported,(1-8) which were aimed to perform replanning using cone-
beam images when changes in the patient anatomy are detected before a treatment. Real-time 
replanning will allow modification of the initial treatment plan to accommodate the variations 
while the patient is on the treatment couch. To perform density-corrected treatment planning, 
CBCT number (corresponding to the Hounsfield units (HU) in computed tomography CT) to 
electron density (ED) conversion needs to be applied. Scatter is a major issue in CBCT, which 
affects image quality and CBCT number. It has been reported that scatter caused decreased 
image quality and incorrect HU (i.e., CBCT number) in CBCT.(3) It was found that unlike con-
ventional computed tomography, where CT-to-ED conversion was consistent, CBCT number-
to-ED conversion in CBCT changed under different volume scanning.(9) Several methods 
have been studied for using CBCT images for treatment planning, which include: correlating 
CBCT number and CT number of regions of interest to create CBCT-density conversion;(6,10) 
employing scatter-correction methods to improve CBCT number accuracy;(11-13) and using 
image registration of CT and CBCT to map CT number to CBCT.(7,14) 

The study here was to evaluate a scatter-correction method(15,16) for improving CBCT number 
consistency. There have been many scatter-correction methods developed to improve CBCT 
image quality.(17) The scatter-correction method used in this study was developed recently for 
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CBCT, and an experimental study on a Siemens MV CBCT has demonstrated improvement of 
the accuracy of linear attenuation coefficients by use of the scatter-correction method.(16) In this 
study, we applied the scatter-correction method to kV CBCT and examined its performance on a 
Varian Trilogy OBI CBCT and an Elekta XVI CBCT for improving CBCT number consistency, 
with the ultimate goal of using CBCT images for treatment planning with density correction.

 
II. MATErIALS And METHodS

Experiments were conducted at two institutions on a Varian OBI CBCT (Varian Medical 
Systems, Palo Alto, CA) and an Elekta XVI CBCT (Elekta, Stockholm, Sweden), respectively. 
The study was aimed to test the scatter-correction algorithm on two imaging systems and was 
not aimed to compare the experiments between the systems. Each institution used available 
phantoms in the study. 

A.  Phantom and image acquisition
In the study of Varian OBI CBCT, a Catphan phantom (The Phantom Laboratory Inc., Salem, 
NY) was scanned with and without a 3 cm bolus with a pelvis protocol (125 kVp, 80 mA with 
a full bowtie filter and full range scan). The 3 cm bolus was made of a few pieces of 1 cm thick 
bolus, which was used to introduce additional scatter and to test the robustness of the scatter 
correction algorithm on variant phantom or patient body. The CBCT numbers of phantom inserts 
on the images with and without the scatter correction were checked.

In the study of Elekta XVI CBCT, a Gammex tissue characterization phantom (Gammex 
467; Gammex Inc., Middleton, WI) was used to examine CBCT number consistency, which was 
scanned with and without a bolus. The phantom, which is popularly used in clinics for creating 
CT-ED conversion for treatment planning, has 16 insert materials with different densities varying 
from low density (e.g., lung density) to high density (e.g., cortical bone density). CBCT numbers 
of the insert materials were measured on the CBCT images. Further, an anthropomorphic pelvis 
RANDO phantom (The Phantom Laboratory) was used to validate the scatter correction by 
evaluating dose calculation on the CBCT images of the phantom. A clinical prostate protocol 
was used in these CBCT scans (120 KVp, 40 mA, with a full range scan). Bowtie filters were 
not used in the scans unless it is particularly mentioned.

B.  Scatter correction
An algorithm based on the scatter-correction method(15,16) was developed to process CBCT 
projection images. In the scatter-correction algorithm, the first order scatter fluence, S1, was 
expressed as a function of the primary photon fluence, P, and the higher order scatter fluence, 
Sh, was approximated to be either a constant, b, or proportional to the first order scatter flu-
ence, aS1, where a and b are parameters. Namely, a CBCT projection, I, was approximately 
expressed by I = P + S1(P) + b or I = P + (1 + a)S1(P). The form of S1(P) was derived based on 
the Klein-Nishina formula.(15) An iterative approach P0 = I, Pk+1  = Pk  + c ( I - Pk - S1 - Sh ), 
k = 1, 2, ... , was used to estimate primary and scatter fluences from the projections. Here c is 
another parameter and was taken as unity in the iteration. More details about the iteration can 
be found in the published study.(15) The iteration converged rapidly, only three iterations were 
sufficient to reach a stable projection P. 

For the Varian OBI system, antiscatter grids are employed before the photons arrive at 
the detector. During CBCT reconstruction, no further scatter correction was performed. Our 
scatter-correction algorithm adopted Sh = aS1 to do the scatter correction. The functions of 
bowtie filter and antiscatter grid were modeled in the algorithm. To determine the value of a, 
BEAMnrc Monte Carlo simulation software(18) was used to generate the primary projection 
and whole (primary plus scatter) projection of a cylindrical water phantom. The value was then 
obtained by using our scatter-correction algorithm when the difference was minimal between 
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the estimated primary fluence from the whole projection and the true primary projection. The 
Elekta XVI system uses a scatter-correction scheme called “uniform scatter correction”. We 
found that it was better to further reduce scatter by applying our scatter correction, letting  
Sh = b, where b was optimally determined for each projection by searching the value b so that 
I - Pk - S1 - Sh was minimized. 

C.  Evaluation of CBCT number consistency 
Because Varian OBI system does not allow feeding back the processed projections into the 
acquisition-reconstruction loop, an in-house algorithm based on algebraic reconstruction 
technique (ART)(19) was used to perform the reconstruction. To evaluate the effect of scatter-
correction processing, the CBCT numbers of the inserts reconstructed from the scatter-corrected 
projections were compared with those from the original projections. 

In the study of Elekta XVI CBCT, the processed projection images were imported into the 
CBCT systems and volumetric images were reconstructed. CBCT numbers of the materials of 
the Gammex phantom were measured on the XVI and were compared with those of the images 
without scatter correction. A test based on the Gammex phantom was conducted to evaluate 
density-corrected dose calculations using the CBCT-to-ED conversions generated from the 
images with and without scatter correction, respectively. Two CBCT-to-ED conversion files 
were generated from the nonbolused images (one set of images was processed with scatter-
correction and the other one was not). The CBCT-to-ED conversion generated from processed 
nonbolused images was applied to the processed bolused images, and the conversion gener-
ated from nonprocessed nonbolused images was applied to the nonprocessed bolused images. 
Single field treatment plans were generated in a CMS XiO treatment planning system (CMS 
Inc., St. Louis, MO), where an anterior beam of 6 MV with field size of 2 × 10 cm2 was applied 
to the Gammex phantom. The dose calculations were compared with a plan using CT images 
and clinical CT-to-ED conversion. The latter was used as the standard. 

An experiment using the anthropomorphic pelvis RANDO phantom was conducted to further 
evaluate the scatter correction in the XVI CBCT. Four-field pelvis treatment plans were gener-
ated using the CBCT images and CT images of the RANDO phantom, respectively. The size 
of each treatment field was 9 × 9 cm2. Same beam arrangement and monitor units were applied 
to the CBCT plans which were based on the original CBCT images and the scatter-correction 
processed images, respectively, and the CT plan. The CBCT-to-ED conversion generated from 
scatter-correction processed images of the Gammex phantom was applied to the processed 
RANDO phantom images, and the conversion generated from nonprocessed images was applied 
to the nonprocessed RANDO phantom images. Clinical CT-ED conversion was used in the CT 
plan dose calculation. The point doses and dose-volume histograms (DVHs) were compared 
to check the effect of scatter correction on dose calculation. 

 
III. rESuLTS & dISCuSSIon 

Figure 1 demonstrates the effect of scatter correction on image quality on the Varian CBCT 
images. Figures 1(a) and 1(b) are images reconstructed from the original projections, without 
bolus and with bolus, respectively. Figures 1(c) and 1(d) are images reconstructed from scatter 
corrected projections. Image contrast-to-noise ratio (CNR)(20) was improved with the scatter 
correction; the CNRs were 0.6–3.8 in the original images and 1.3–4.0 in the scatter corrected 
images, with average increase of 0.8. 

Figure 2 demonstrates the effect of scatter correction on CBCT number consistency. 
Figure 2(a) shows image pixel intensity (proportional to CBCT number) of the inserts of Catphan 
phantom, vs. material physical density, for bolused, nonbolused, scatter-corrected, and noncor-
rected cases, respectively. Figure 2(b) shows pixel intensity differences of the inserts in the 
corresponding nonbolused and bolused images, for scatter corrected and noncorrected cases. 
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It is shown from Figs. 2(a) and 2(b) that the application of the scatter correction significantly 
improved the consistency of pixel intensity (i.e., the consistency of CBCT number). Without 
scatter correction, the added bolus caused 34% and 16% changes of pixel intensities of the 
air and Teflon, respectively. While with scatter correction, the changes were within 7% for all 
inserts. The consistency is desired in CBCT-based dose calculation and can greatly increase 
the dose calculation accuracy after performing transformation from CBCT numbers to the CT 
numbers of the inserts.(6)

Fig. 1. Results of Varian OBI CBCT. Images of a Catphan phantom (a) without bolus, without scatter-correction process-
ing; (b) with a 3 cm bolus, without scatter-correction processing; (c) without bolus, with scatter-correction processing;  
(d) with a 3 cm bolus, with scatter-correction processing.

Fig. 2. Results of Varian OBI CBCT: (a) image pixel intensity vs. material physical density; (b) relative difference of 
image pixel intensity vs. material physical density. 
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Figure 3 shows the CBCT-to-ED curves obtained on the Elekta XVI CBCT. The sym-
bols represent the data points and the curves represent the trends of the variation of CBCT 
numbers with electron densities. The solid and dashed lines represent nonprocessed data and 
correction-processed data, respectively. The curves for bolused case and nonbolused case, 
which are supposed to be the same (i.e., should overlay on each other), are quite different. The 
CBCT number inconsistency was caused by the effect of increased scatter-primary ratio due 
to the bolus on CBCT image acquisition. More significant differences between bolused and 
nonbolused cases were observed in the results without the scatter-correction processing. With 
scatter correction, the differences were greatly reduced. Our scatter correction improved the 
CBCT number consistency in the XVI system. However, compared to the performance of our 
scatter-correction algorithm in the OBI system, the resulted CBCT number consistency in XVI 
was not as good as that in OBI. This probably was due to the independent scatter correction 
done by XVI. The extra scatter correction may also explain the streaking artifacts in the XVI 
reconstructed images.

Table 1 lists the CBCT numbers of each material of the Gammex phantom in bolused and 
nonbolused cases, with and without scatter-correction processing, respectively. Without scatter 
correction, the mean difference between bolused and nonbolused cases among all the materials 
was 128 (minimum: 40; maximum: 485; standard deviation: 118). With scatter correction, the 
mean difference was reduced to 80 (minimum: 4; maximum: 349; standard deviation: 99). 

Further, the CBCT numbers obtained from the Elekta CBCT images with scatter-correction 
processing were compared with those obtained from the images acquired with a bowtie filter. 
With a bowtie filter, the differences of CBCT numbers between nonbolused and bolused condi-
tions were reduced because the bowtie filter hardens the kV beam and thus decreases the scatter-
primary ratio of photon fluences at the detector. Table 2 lists the summary of the CBCT number 
differences of the Gammex phantom inserts between images with and without a 1 cm bolus, 
for the original images (no scatter-correction processing, no bowtie filter), scatter-correction 
processed image (no bowtie filter), and the images acquired with a bowtie filter. The differences 
of the CBCT numbers between bolused and nonbolused conditions in the scatter-correction 
processed images were smaller than those in the images acquired with a bowtie filter. 

Figure 4 shows comparison of dose calculations among the single field treatment plans using 
scatter-corrected and noncorrected CBCT images of the Gammex phantom acquired from the 
Elekta XVI CBCT, and those from a CT. Compared to the CBCT plan using images without 
scatter correction, the CBCT plan using images with scatter correction shows that the dose 
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Fig. 3. Results of Elekta XVI CBCT: relative electron density vs. measured CBCT numbers. The symbols represent the 
data points and the lines represent the trendlines (the solid lines and dashed lines are for the data without and with scatter-
correction processing, respectively). A 1 cm bolus was used in the bolused case.
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distribution was closer to that in the CT plan (the standard). The dose difference at the marked 
isocenter was 7.1% between the CT plan and the CBCT plan using images without correction. 
The difference was reduced to 0.8% after the images were scatter corrected.

Figure 5 shows the results of the RANDO phantom study — comparison of dose distributions 
among the treatment plans using scatter-corrected and noncorrected CBCT images acquired on 
the Elekta XVI CBCT, and CT images. With the same monitor units for each field, compared to 
the CT plan, the CBCT plan using original CBCT images (i.e., without scatter correction) had 
significantly different dose distribution (lower doses), and the dose distribution of the CBCT 
plan using scatter-corrected images was close to that of the CT plan. The dose differences at 
isocenter which was in the target volume, were 11.4% and 0.8% between the CT plan and the 
noncorrected CBCT plan and the scatter-corrected plan, respectively. Figure 6 shows the DVHs 
of the target. The target dose coverage of the CBCT plan using scatter-corrected images was 
similar to that of the CT plan, whereas the DVH of the CBCT plan using noncorrected images 
was much inferior.

The results showed that by using the scatter-correction processing, the CBCT number 
consistency was significantly improved on both Varian OBI CBCT and Elekta XVI CBCT. 
Although the Varian OBI CBCT system has a 10:1 antiscatter grid to reduce scatter, the residual 
scatter still significantly affects CBCT number consistency. In our study of the Catphan phan-
tom with bolus, the maximum scatter-primary ratio was about 60%. It is indicated that scatter 
correction is necessary for CBCT applications, especially for treatment planning that requires 
density correction. 

Table 1. CBCT numbers of various Gammex phantom inserts measured in images with/without 1 cm bolus, and 
before (“Original”) and after (“Processed”) the scatter-correction processing. The images were acquired with an 
Elekta XVI CBCT.

 Original Processed 
 Insert Electron Density Without Bolus With Bolus Without Bolus With Bolus
 Material  to Water CBCT±std CBCT±std CBCT±std CBCT±std

 LN-lung 300 0.289 27±12 134±12 33±19 97±22
 Lung 450 0.403 135±13 190±10 97±18 218±19
 Adipose 0.924 305±16 258±10 397±26 441±21
 Breast 0.956 376±24 275±13 438±31 394±27
 Solid Water 1 0.989 435±22 334±14 509±30 515±26
 Solid Water 2 0.989 438±12 377±13 430±15 426±19
 Solid Water 3 0.989 372±14 264±11 403±25 349±24
 Solid Water 4 0.989 360±12 320±11 432±14 423±24
 Water 1 292±28 247±17 406±26 389±23
 Brain 1.049 413±10 300±7 501±31 480±32
 Liver 1.064 389±18 308±15 497±17 417±19
 Inner Bone 1.096 523±19 421±17 594±25 563±19
 B-200 1.106 440±19 345±18 580±19 534±18
 CB2 (30%) 1.279 516±15 330±14 700±27 588±30
 CB2 (50%) 1.470 749±36 424±13 1078±45 793±43
 Cortical Bone 1.695 996±51 511±19 1269±43 920±29

Table 2. Summary of CBCT number differences of the Gammex phantom inserts between images with and without 
1 cm bolus. Results of the original images, scatter-correction processed images, and images acquired with a bowtie 
filter are listed for comparison. All the images were acquired with an Elekta XVI CBCT.

 CBCT Number Original Scatter-correction Images Acquired With
 Difference Images Processed Images a Bowtie Filter

 Maximum 485 349 357
 Mean 128 80 100
 Minimum 40 4 6
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Since it is software processing, scatter correction using the algorithm will have flexibility 
in the application to improve CBCT number consistency and image quality; scatter correction 
may be optimized under actual scanning conditions. When the scatter correction algorithm 
is applied together with a bowtie filter, scatter can be further reduced and the consistency of 
CBCT number can be improved.

The feasibility study has showed that it is promising to apply the scatter-correction algorithm 
to improve CBCT number consistency for treatment planning. We are improving the algorithm 
and will report patient study in the future.

 

Fig. 4. Comparison of isodose distributions of single beam bolused plans based on the Gammex phantom: (a) CBCT plan 
using images without scatter-correction processing, (b) CBCT plan using images with scatter-correction processing, and 
(c) CT plan. The CBCT images were acquired with an Elekta XVI CBCT.
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Fig. 5. Comparison of isodose distributions of the four-field treatment plans based on the pelvis RANDO phantom:  
(a) CBCT plan using images without scatter-correction processing, (b) CBCT plan using images with scatter-correction 
processing, and (c) CT plan. The CBCT images were acquired with an Elekta XVI CBCT.
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IV. ConCLuSIonS

The preliminary study on the Varian OBI CBCT and Elekta XVI CBCT demonstrated that the 
CBCT number consistency was remarkably improved by using the scatter-correction algorithm. 
We expect to conduct further study on the algorithm for additional improvement on the CBCT 
number consistency for clinical application.
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