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Abstract

BACKGROUND—In regularized iterative reconstruction algorithms, the selection of 

regularization parameter depends on the noise level of cone beam projection data.

OBJECTIVE—Our aim is to propose an algorithm to estimate the noise level of cone beam 

projection data.

METHODS—We first derived the data correlation of cone beam projection data in the Fourier 

domain, based on which, the signal and the noise were decoupled. Then the noise was extracted 

and averaged for estimation. An adaptive regularization parameter selection strategy was 

introduced based on the estimated noise level. Simulation and real data studies were conducted for 

performance validation.

RESULTS—There exists an approximately zero-energy double-wedge area in the 3D Fourier 

domain of cone beam projection data. As for the noise level estimation results, the averaged 

relative errors of the proposed algorithm in the analytical/MC/spotlight-mode simulation 

experiments were 0.8%, 0.14% and 0.24%, respectively, and outperformed the homogeneous area 

based as well as the transformation based algorithms. Real studies indicated that the estimated 

noise levels were inversely proportional to the exposure levels, i.e., the slopes in the log-log plot 

were −1.0197 and −1.049 with respect to the short-scan and half-fan modes. The introduced 

regularization parameter selection strategy could deliver promising reconstructed image qualities.

CONCLUSIONS—Based on the data correlation of cone beam projection data in Fourier 

domain, the proposed algorithm could estimate the noise level of cone beam projection data 

accurately and robustly. The estimated noise level could be used to adaptively select the 

regularization parameter.
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1 Introduction

X-ray cone beam computed tomography (CBCT) has been applied in various scenarios, such 

as patient setup in radiation therapy[1] and maxillofacial region visualization in dentistry[2]. 

Despite the successful applications, image noise still remains a major issue in low-dose 

CBCT. A great effort has been devoted to image noise reduction(e.g., [3, 4, 5, 6, 7]). 

Specifically, regularized iterative reconstruction algorithms could produce superior image 

qualities with noisy projection data, and hence have become more and more popular(e.g., [5, 

6, 7, 8, 9]).

Despite the superiority of the regularized iterative algorithms, the effectiveness of a 

regularized method strongly depends on the selection of a suitable regularization 

parameter[10, 11]. And Many literature demonstrated that the selection of the regularization 

parameter λ is highly correlated with the noise level ε of the noisy projection data p defined 

as

(1)

where p0 is the noise-free projection data. For example, the discrepancy principle determines 

a concrete value of λ by enforcing the realized residual to be compatible with a given noise 

level ε [11]. By introducing a model function to solve the Morozov equation, the Morozov 

discrepancy principle states that a good λ is supposed to be the value that could make the 

error due to the regularization is equal to the noise level ε [12]. Kazufumi Ito et al. proposed 

a novel rule to determine the regularization parameter based on the balancing principle[13], 

where a constant factor related with the noise level ε should be pre-determined. Despite the 

theoretical developments of the regularization parameter selection strategies, it seems that 

few of them are applied in practice. One of the reasons may be that these methods require 

the knowledge of the noise level ε, which is usually unavailable in practice. Thus, to solve 

this problem, in this work, we will propose an algorithm to estimate the noise level ε of cone 

beam projection data, so as to facilitate the regularized iterative reconstruction algorithms.

According to our best knowledge, most of the existing noise level estimation algorithms are 

designed for the natural scene images, and thus here we would provide a brief review on 

them. Generally speaking, they could be classified into four categories, i.e., homogeneous 

areas based, filter based, transformation based and patch based. Assuming that the noise of 

any pixel is independently identically distributed (i.i.d.), the homogeneous areas based 

algorithms try to pre-classify some homogeneous areas in the image, based on which, the 

constant component is subtracted and then the rest could be employed to calculate the noise 

level[14, 15]. By calculating the difference between the original noisy image and the 

associated low-pass filtered image, and then removing the residual edges with an edge 

detection algorithm, the filter based algorithms estimate the noise level directly from the 

above processed results[16, 17]. The transformation based algorithms first separate the 

signal and the noise via transformation such as wavelet transform or discrete cosine 

transform, and then estimate the noise level in some specified band, such as the high 
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frequency domain[18, 19]. In the patch based algorithms which also suppose that the noise 

of any pixel is i.i.d., the image would be decomposed into a large amount of patches, from 

which, those patches with small variance will be selected for the noise level estimation[20].

As stated above, the homogeneous areas based and the patch based algorithms require that 

the noise should be i.i.d., which however does not hold in the context of cone beam 

projection data, where the noise components after log transform are supposed to follow 

Gaussian distribution with ray-dependent variance[21, 22]. The filter based algorithms may 

cause a biased noise level estimation if there still exist image contents in the difference 

result. As for the transformation based algorithms, significant over-estimates of the noise 

level may be achieved concerning the potential image structures in the high frequency 

domain. Therefore, so far it still remains a challenge to accurately estimate the noise level ε 
of the cone beam projection data.

In this work, we will propose a new algorithm to estimate the noise level of cone beam 

projection data and demonstrate its practical utility on adaptive regularization parameter 

selection. Specifically, by investigating the data correlation of cone beam projection data in 

the 3D Fourier domain, we could theoretically decouple the signal and the noise. As a result, 

the pure noise components could be extracted to enable the estimation of the noise level ε. 

Finally, an adaptive noise level driven regularization parameter selection strategy is 

introduced to demonstrate its practical utility. In the following section, we will first derive 

the data correlation of cone beam projection data in the 3D Fourier domain, and detail the 

proposed noise level estimation algorithm. Then we will introduce our parameter selection 

strategy based on the estimated noise level. In Section 3, experimental results will be 

presented to validate the efficacy of the proposed algorithm under different geometry 

configurations, including ideal geometry, spotlight-mode, short-scan mode and half-fan 

mode. Finally, we will discuss and conclude the whole paper in Sections 4 and 5, 

respectively.

2 Methods and Materials

2.1 Data correlation of CT sinogram in 2D Fourier domain

CT sinogram exhibits a unique property in its 2D Fourier domain, namely, there exists an 

approximately zero-energy double-wedge area. Its theoretical formalism has been introduced 

in an earlier paper[23]. Here, we will briefly present this data correlation for completeness. 

Equal-spaced fan beam geometry with a circle orbit will be used as an example.

Let us consider an object composed of a delta function point, which located at distance r 
from the origin and at angle ϕ with respect to the x-axis. It could be denoted by δ(r, ϕ) in the 

polar coordinate system. Then, the Radon transform of δ(r, ϕ) can be expressed as

(2)

where

Bai et al. Page 3

J Xray Sci Technol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

here, u represents the local coordinate on the line detector array, β, L and D denote the view 

angle, the source-axis-distance and the axis-detector-distance, respectively.

By taking 2D Fourier transform to p0(u, β), one has

(4)

where q, k are the angular frequency variables associated with u and β, respectively. Jk(·) is a 

Bessel function of the first kind of order k. Note that the approximation made in Eq. (4) was 

achieved intuitively and validated empirically as stated in the reference[23].

It is noted that a Bessel function rapidly decreases to zero as the argument becomes less than 

the order. As a result, P (q, k) ≈ 0 for those angular frequencies such that

(5)

This indicates that there exists an approximately zero-energy double-wedge area in the 2D 

Fourier domain whose boundaries are defined by Eq. (5).

2.2 Data correlation of cone beam projections in 3D Fourier domain

Motivated by the data correlation of CT sinogram in 2D Fourier domain, we will explore 

whether a similar zero-energy double-wedge area exists in the 3D Fourier domain of cone 

beam projection data.

Suppose there exists an object composed of a delta function point δ(r, θ, ϕ), where r is the 

distance from the origin, θ and ϕ correspond to the polar angle and the azimuthal angle, 

respectively. After cone beam transform, the resultant cone beam projections p0(u, v, β) can 

be expressed as

where
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Again, β, L and D correspond to the view angle, the source-axis-distance and the axis-

detector-distance, respectively. (u, v) are the 2D coordinates in the detector plane.

Taking 3D Fourier transform to the cone beam projections p0(u, v, β) yields

(6)

where q, ξ, k are the angular frequency variables associated with u, v, β, respectively. Here 

we have changed the dummy variable β to −β′ + ϕ + π/2.

It is noted that for a typical CBCT geometry setting, , i.e., 

. Here, we would like to take typical CBCT geometry used in 

radiation therapy, such as the on board imager (OBI) integrated in a Varian’s LINAC (Varian 

Medical System, Palo Alto, CA) as the example for numerical validation. Generally 

speaking, suppose a typical patient has a radius r ≈ 15cm, the source-axis-distance L ≈ 
100cm. In the case that θ = 0 and β = 0, the approximation error between 1 and 

 is about 2.25%, which suggests the reasonableness of the above 

approximation.

Now replace the dummy variable β′ with β for simplicity, and then plug the above 

approximation into the second term in the exponential function in Eq. (6), one has

(7)

where z = ξ (L + D)δ2 sin θ cos θ and . Comparing Eq. (7) with Eq. (4), one could find 

that Eq. (7) also could be approximated with a Bessel function of the first kind if without 

eiz cos β inside the integration in Eq. (7), and thus resulting in a similar zero-energy double-

wedge area in the 3D Fourier domain.
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Now we would like to focus on exploring the impact of eiz cosβ on the approximation of the 

Bessel function. One can expand eiz cosβ on the basis of the Bessel functions of the first kind 

as

(8)

Here, we have utilized the property J−n(x) = (−1)nJn(x). It is shown that the first term J0(z) is 

independent on the integral variable β, and hence could be taken out from the integration in 

Eq. (7). The second term correlates with cos(nβ) whose period is . As n increases, the 

period would decrease and the corresponding frequency of cos(nβ) would increase. 

Therefore, it is expected that the second term in Eq. (8) would approximate zero when 

performing summation, considering that the second term contains many high frequency 

components of β. If this assumption holds, it is reasonable to approximate eiz cos β with 

J0(z). However, it is found experimentally that the term eiz cos β contributes additional effects 

except J0(z), which means that the second term in Eq. (8) could not be approximated with 

zero simply. For now, it is not a trivial task to quantitatively and mathematically demonstrate 

how to take eiz cos β out from the integration in Eq. (7). Fortunately, according to our 

experiments, we find that the term eiz cos β does not affect the Bessel function 

approximation. On the other hand, in order to estimate the noise level of cone beam 

projection data, we just need to decouple the signal and the noise. Therefore, an exact 

mathematical expression may be not necessary. Considering this purpose, in this work, we 

will temporally regard the impact of eiz cos β inside the integration in Eq. (7) as an unknown 

function g. According to Eq. (4) and our derivation, we could approximate the Fourier 

transform of the cone beam projection data as follows

(9)

Based on the fact that Bessel function tends to zero rapidly when the argument becomes less 

than the order, Eq. (9) reveals that there also exists an approximately zero-energy double-

wedge area in the 3D Fourier domain of cone beam projection data. In other words, P (q, ξ, 
k) ≈ 0 for all the frequency components (q, ξ, k) satisfying

(10)
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Equation (10) is for an object composed of a delta function. A real object could be 

considered as a linear combination of multiple delta functions, so does the Fourier domain of 

the real object. As indicated by the arrow in Fig. 1(b), the approximately zero-energy 

double-wedge area could be clearly observed from the 3D Fourier domain of the cone beam 

projection data of a real object.

Note that when θ = 0, the cone beam projections will be reduced to the 2D CT sinogram. By 

setting θ = 0 in Eq. (7), one gets

(11)

which is exactly the equal-spaced fan beam case, as presented in Eq. (4).

Moreover, when L tends to infinity, the cone beam geometry will approach the 3D parallel 

projection geometry. In this case, Eq. (7) becomes

(12)

2.3 Characterization of noise in the Fourier domain

In this section, we will present the characteristics of the Fourier transformed noise, which 

would be used for the development of the proposed noise level estimation algorithm. For 

simplicity, let us assume that the noise are acquired at pixels with discrete coordinates. We 

denote the noise associated with the projection data p0(u, v, β) by n(u, v, β), which follows 

zero-mean Gaussian distribution with ray-dependent variance σ2(u, v, β) that has been 

validated experimentally previously[21]. Using the discrete Fourier transform, the noise in 

the Fourier domain can be expressed as

where N(q, ξ, k) is a zero-mean complex Gaussian random variable. Further assuming that 

the noise do not have correlations with each other, i.e., E[n(u, v, β)n(u′, v′, β′)] = σ2(u, v, 
β)δ(u−u′, v−v′, β − β′), where E[·] represents the expectation of a random variable, it 

follows that
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(13)

where  denotes the complex conjugate of N(q, ξ, k). Equation (13) indicates that 

the Fourier transformed noise is uniformly distributed in terms of that for any point of the 

Fourier transformed noise, the expectation of the square of the amplitude is the same, and 

equals to ΣuΣvΣβ σ2(u, v, β). This could be clearly observed from the noise components in 

Fig. 1(c).

2.4 Data correlation based noise level estimation

Equation (9) indicates that there exists an approximately zero-energy double-wedge area in 

the 3D Fourier domain of cone beam projections. Equation (13) suggests that the 

transformed noise is uniformly distributed. As a result, if we perform discrete Fourier 

transform on the noisy projection data, the signal and the noise would be well-decoupled in 

the above double-wedge area which could be used to estimate the noise level, as indicated by 

Fig. 1.

Let us denote the noisy cone beam projection by p(u, v, β), and the noise-free counterpart by 

p0(u, v, β), respectively. Consequently, p(u, v, β) = p0(u, v, β) + n(u, v, β), where n(u, v, β) is 

the associated noise. According to Eq. (13), one has

(14)

Equation (14) suggests that the noise level can be approximated with the expectation of the 

square of the amplitude of the Fourier transformed noise in any point. Moreover, because the 

Fourier transformed noise is uniformly distributed according to Eq. (13), the above 

expectation , or the noise level ε, could be faithfully estimated with an 

ensemble averaging by extracting the Fourier transformed noise reside in the double-wedge 

area, as indicated by the arrows in Fig. 1.

The algorithm flowchart is illustrated in Fig. 2. In details, as indicated by Eq. (10), the 

theoretical boundaries of the double-wedge area are independent on variable ξ, which 

suggests that the boundaries of any q − k plane could be straightforwardly generalized to any 

other planes. Therefore, we first perform 3D Fourier transform on the cone beam projection 

data, and calculate the maximum intensity projection (MIP) of the 3D Fourier domain along 
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ξ direction, whose edge could be generated with the Canny method[24, 25]. Then one could 

locate the boundaries of the zero-energy double-wedge area with a Hough transform based 

line detector[26]. The above detected boundaries could be extended to the 3D domain by 

stacking it along the ξ direction, and hence construct the 3D double-wedge boundaries. 

Finally, the noise level ε could be estimated by performing an ensemble averaging with the 

Fourier transformed noise inside the above detected area.

Here it is worth mentioning that only the data inconsistencies resulting from the stochastic 

noise are considered in the estimated noise level ε, while other data inconsistencies 

including the scatter and the beam hardening effects are considered as part of the noise-free 

projection data p0(u, v, β).

2.5 Noise level driven regularization parameter selection

To demonstrate the practical utility of our estimated noise level ε, we propose a new 

adaptive regularization parameter selection strategy which is driven by the estimated noise 

level ε. We will first formulate the iterative reconstruction framework, and then describe our 

adaptive selection strategy.

Generally speaking, regularized iterative reconstruction is equivalent to maximize the 

following posterior:

(15)

where p and μ denote the projection data and the reconstructed image, respectively.

In this work, we adopt the Gaussian model for the noise of the projection data[21], i.e., the 

noise of each ray is independent and follows a zero-mean Gaussian distribution with ray-

dependent variance , i denotes the ith ray (For simplicity, here we use i to index the ray 

instead of u, v, β). Suppose A denotes the system matrix, then we have

(16)

Regarding the prior information P (μ), it represents some kind of prior distribution of μ 
depending on the selection of the regularizer. Inspired by the development of the 

compressive sensing[27], sparsity-promotion based regularizers have become popular, such 

as total variation (TV) minimization based regularizer[5]. In this work, we will also take TV 

as an example. In fact, TV based regularizer supposes that each point in the gradient map 

 follows a Laplacian distribution with variance α, i.e.,
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(17)

Substituting Eqs. (16) and (17) into Eq. (15), performing negative log transform and 

ignoring the constants, the loss function could be formulated as:

(18)

As presented in Section 2.4, noise level . Therefore, we could normalize  as 

. With the normalized variance, the modified loss function could be written as:

(19)

Here, the classical regularization parameter . Note that α denotes the variance of the 

prior Laplacian distribution. Basically, regardless of the patient size or the scanned site, the 

values of the attenuation map μ and the spatial structures are relatively stable, therefore, it is 

reasonable to assume that the prior Laplacian distribution P (μ) of the associated gradient 

map is also stable. In other words, α could be approximately regarded as a constant value. 

Therefore, we could assume that λ ∝ ε. As a result, for a new projection data set, the 

corresponding regularization parameter could be selected as:

(20)

where the noise level ε of this projection data set could be estimated with the proposed 

algorithm, λ0 and ε0 is a pair of reference values which could be pre-determined based on 

any given projection data set and put in the scan protocol. And ε0 could be estimated with 

the proposed algorithm, λ0 could be obtained by trial-and-error.

2.6 Validation studies

2.6.1 Simulation and comparison studies—We first conduct three simulation 

experiments to validate the performance of the proposed noise level estimation algorithm 

under different configurations. Moreover, for comparison, the homogeneous area based 

algorithm and the transformation based algorithm described in Section 1 are also employed 

to estimate the noise level. In details, for the homogeneous area based algorithm, multiple 

areas at different locations are employed to individually estimate the noise level. The 
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purpose we choose multiple different areas is to demonstrate that 1) the location of the 

selected area for the noise level estimation is crucial even it is flat, and 2) the intrinsic 

textures existing in the projection data would heavily impair the performance of the 

homogeneous area based algorithm. As for the transformation based algorithm, the cone 

beam projections would be firstly Fourier transformed, and then the high-frequency 

components in the 3D Fourier domain are extracted for an ensemble averaging to estimate 

the noise level. It is noted that one of the main drawbacks of the transformation based 

algorithm is that the selection of the high-frequency components is case-by-case dependent 

so as to exclude the image content as much as possible. For fair comparison, in this work, 

for the transformation based algorithm, same amount of sample points in the Fourier domain 

as our algorithm are employed. And these sample points are evenly distributed in the eight 

corners of the 3D Fourier domain so that all the frequencies in the three directions are high 

simultaneously.

For the first two simulation cases, the digital phantom we use is a patient planning CT image 

containing the head-neck region. The phantom has a dimension of 512 × 512 × 80 and a 

voxel size of 0.057 × 0.057 × 0.25cm3. Based on this phantom, cone beam projections are 

generated. The simulation parameters are listed in Table 1. A circle orbit is utilized to collect 

the cone beam projections in all the involved cases.

In the first simulation case, the graphic processing units (GPU) based Sid-don’s ray-tracing 

algorithm[28, 29] is utilized to generate the noise-free cone beam projections, which here 

and in the following refers to the analytical simulation. Poisson noise is then superimposed 

into the above simulated noise-free projections based on the Poisson noise model of the 

transmission data. We have also varied the noise powers in 20 runs of this experiment by 

tuning a parameter governing the number of the photons per ray. The photon number per ray 

for the first run is 1 × 104, and in the following runs, the photon number would be increased 

by 1.25 times compared to the last run.

In the second simulation case, to further quantitatively test our algorithm under more 

realistic situations, e.g., the presence of scatter and beam hardening effects, we have also 

conducted Monte Carolo (MC) simulations using our GPU based MC package - 

gMCDRR[29]. As such, a broad source spectrum with a 100 kVp tube potential is used. In 

this experiment, our GPU based MC package is firstly used to generate the primary signal 

(with beam hardening effects) and the scatter signal. And then the noise components are 

simulated by superimposing the Poisson noise with 20 different noise levels. The settings for 

the Poisson noise are the same as the above analytical simulations.

Note that the scan geometry is ideal for the above two studies, and hence the data 

information about the scanned object are sufficient. In the third simulation case, we will 

further explore the performance of the proposed algorithm when there is no sufficient 

information available about the object, such as the spotlight-mode in radiation therapy. For 

validation, the planning CT image of a patient suffering from prostate cancer is employed to 

analytically generate the cone beam projection data. The phantom has a dimension of 512 × 
512 × 164 and a voxel size of 0.1 × 0.1 × 0.3cm3, the physical volume size is about 20cm in 

anterior-posterior (AP) direction and about 30cm in left-right (LR) direction. Same geometry 
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configurations as the above analytical study are utilized in this case. To simulate the low-

dose protocols, 15 different levels of Poisson noise are added into the above generated cone 

beam projections. For the irradiation of the pelvis section which has a larger lateral size, the 

initial photon number is 4×104, and for the rest runs, the photon number will be increased by 

1.25 times compared to the last run. As the scanner is centered on the prostate region, as 

would be depicted in Fig. 4(a), the data information outside the circle are missing. This 

poses challenges on the proposed noise level estimation algorithm.

In all the above three simulation cases, both the proposed algorithm and the transformation 

based algorithm are employed to estimate the noise level. Since the ground truth noise levels 

are known in the simulation cases, we use the relative errors between the estimated noise 

levels and the ground truthes to quantify the estimation accuracies.

2.6.2 Real data studies—Moreover, we also conduct two real data studies to validate the 

proposed algorithm. In these two real cases, there exist projection data truncations in either β 
direction or u direction corresponding to the short-scan mode or the half-fan mode, 

respectively. The cone beam projections are acquired under different combinations of tube 

currents and exposure times. It is noted that both real data sets are acquired with the OBI 

integrated on a Varian LINAC (Varian Medical System, Palo Alto, CA), and no anti-scatter 

grid is used during the data acquisitions.

The first set consists of 13 groups of cone beam projections based on the Catphan® 600 

phantom (The Phantom Laboratory, Inc., Salem, NY) in a full-fan and short-scan mode, i.e., 

the projections are collected in a 200° arc. The tube potential is 100 kVp. Table 2 

summarizes the geometry information.

The second set consists of 6 groups of cone beam projections based on the pelvis section of 

an anthropomorphic physical phantom scanned in a half-fan mode with a 16cm detector shift 

in the lateral direction. The tube potential is 125 kVp. The physical dimensions of the pelvis 

section are approximately 25cm(AP) × 40cm(LR). The geometry information for this case is 

the same as that in the previous full-fan case, except that the number of the projections over 

a 2π angular range is 678, as indicated by the number in the brackets of Table 2.

For the real data experiments, since the ground truth noise levels are unknown, we cannot 

directly evaluate the accuracy of our estimation. However, it is well-accepted that the noise 

level should be inversely proportional to the mAs level in the scan. Therefore, we test 

whether our calculated noise levels with the proposed algorithm satisfy this condition under 

different geometry configurations, which serves as a validation of our algorithm to a certain 

extent.

2.6.3 Adaptive regularization parameter selection—Five real cone beam projection 

data sets are employed to validate the introduced noise level driven regularization parameter 

selection strategy, as presented in Section 2.5. They are the 1st, 4th, 8th group of data sets of 

the Catphan ® 600 phantom (Table 3), the 1st group of data set of the anthropo-pathic 

physical phantom (Table 4), and a real data set based on a patient suffering from head-neck 

(HN) cancer. The acquisition geometry of the HN patient data set is the same as the Catphan 
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® 600 phantom, while the exposure setting is 20mA×20ms. To demonstrate the performance 

of the regularized iterative reconstruction algorithm, extra Poisson noise with a level 1×104 

photon incidents per ray are added into the HN patient data sets. The reconstructed volumes 

for all the Catphantom® 600 phantom and the HN patient have a dimension of 512 × 512 × 
320 with a voxel size 0.053cm3, while they are 512 × 512 × 256 and 0.13cm3 for the 

anthropopathic physical phantom.

In this work, the 1st group of data set of the Catphan® 600 phantom are employed as the 

reference case. The reference noise level ε0 is estimated to be 9.932 × 104 with the proposed 

noise level estimation algorithm, as will be demonstrated in Table 3. The reference 

parameter λ0 is selected to be 100 by trial-and-error for best visualization. For the rest four 

data sets, we first estimate the corresponding noise level ε using our algorithm, and then 

substituting into Eq. (20) to calculate λ. The calculated λ is then fed into Eq. 19 for 

minimization so as to reconstruct the final image. For all the cases, the normalized variance 

. Besides, we also perform FDK reconstruction[30] for all the involved data sets 

for benchmark.

3 Results

3.1 Simulation experiments under ideal geometries

Figure 3 show the results of the analytical and the MC simulation studies. An approximately 

zero-energy double-wedge area can be seen in the noise-free cases, while this area is filled 

with the noise in the noisy cases. This observation validates that the transformed signal and 

the transformed noise are well-decoupled in the double-wedge area. Besides, it is shown that 

the boundaries are faithfully detected with the Hough transform based line detector, in terms 

of that the double-wedge area is precisely encompassed by the detected boundaries, as 

indicated by the dot dash lines.

The second row of Fig. 3 plot the comparison curves of the relative errors calculated with 

the proposed algorithm and the transformation based algorithm. Quantitatively, with the 

proposed algorithm, the averaged relative errors across all the noise powers are 0.8% and 

0.14%, corresponding to the analytical and the MC simulations, respectively. In addition, 

one also could observe that comparable results could be achieved for both algorithms when 

the noise power is high, however, as the noise power decreases (larger group index), the 

proposed algorithm could deliver more accurate results compared to the transformation 

based algorithm.

3.2 Simulation experiments under spotlight-mode

Figure 4 demonstrates the performance of the proposed algorithm when no sufficient 

information about the scanned object is available. It is shown that good noise level 

estimation performance still could be achieved, in terms of that the proposed algorithm is 

robust among different noise power settings, and be generally more accurate compared to the 

transformation based algorithm. Quantitatively, with the proposed algorithm, the averaged 

relative error across all the noise powers is 0.24%.
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3.3 Comparison studies against the homogeneous area based algorithm

Figure 5 depicts the comparison results between the proposed algorithm and the 

homogeneous area based algorithm for all the above three experiments. Specifically, for the 

homogeneous area based algorithm, in the head-neck section based analytical and MC 

simulations, seven cuboids of dimension 5 × 5 × 5 centered in the points annotated by the 

numbers in Fig. 5(a) are chosen for the noise level estimation. Note that areas surrounding 

points 1~4 could be regarded as flat, areas surrounding points 5 and 6 are relatively rugged, 

while the area surrounding point 7 belongs to the air-attenuated region. In the prostate 

section based spotlight-mode simulation, five cuboids with same dimensions are chosen, as 

shown in Fig. 5(d). In this case, areas surrounding points 3/4, 2/5 and 1 could be regarded as 

flat, relatively rugged and the air-attenuated regions, respectively. It is worth mentioning that 

the log scaled relative errors are used in Figs. 5(b), (c) and (e) due to the large disparities of 

the relative errors of the estimated noise levels associated with different areas, as the 

consequence of the non-uniform noise variance of cone beam projection data. It is shown 

that the relative errors of the homogeneous area based algorithm are systematically much 

higher than those with the proposed algorithm, and hence validates the superiority of the 

proposed algorithm. Besides, it is also observed that the curves corresponding to the air-

attenuated regions keep constant, i.e., the relative errors of the estimated noise level based on 

the air-attenuated region are approximately 100%. The reason is that almost all of the noise 

in the air-attenuated region comes from the quantum noise associated with the blank-scan 

signal and the scatter signal, resulting a high signal-noise-ratio (SNR). Therefore, the 

estimated noise level based on the air-attenuated region would be very small, even to be zero 

which would result in a 100% relative error compared to the real noise level.

3.4 Real data experiments under short-scan/half-fan modes

Figure 6 demonstrates the results of the Catphan® 600 phantom case. For the 13 groups of 

noisy cone beam projections, the estimated noise levels as well as the tube currents and the 

exposure times are tabulated in Table 3. Figure 6(b) plots the estimated noise levels and the 

mAs in a log-log scale. As the noise level should be inversely proportional to the mAs level, 

a straight line with a slope of −1 is expected in this plot. A linear fit indeed yields a slop of 

−1.0197, suggesting the efficacy of our noise level estimation algorithm.

Figure 7 demonstrates the noise level estimation results for the real data based on the 

anthropopathic physical phantom. It shows similarly promising results as those in Fig. 6, 

e.g., a linear equation with a slope of −1.0409 is obtained. More details about the tube 

currents, the exposure times as well as the estimated noise levels are summarized in Table 4.

3.5 Adaptive regularization parameter selection

Figure 8 demonstrates the reconstructed images of the Catphan® 600 phantom. It is shown 

that as the dose level decreases, the FDK reconstructed images become noisier and noisier. 

In contrast, by using our adaptively selected regularization parameters, the regularized 

reconstructed images always exhibit high qualities in all dose levels. This result validates the 

practical utility of our estimated noise level. In details, for the 20mA×20ms and 

40mA×20ms cases, as listed in Table 3, the estimated noise levels are 4.376 × 104 and 2.088 
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× 104, respectively. According to our selection strategy in Eq. (20), λ is calculated to be 

44.060 and 21.023, respectively.

It is noted that Fig. 8 validates the effectiveness of the introduced parameter selection 

strategy based on the same phantom. It is meaningful to investigate its effectiveness among 

different cases. Figure 9 illustrates the reconstructed images of the HN patient and the 

anthropopathic physical phantom cases. For the HN patient case, using our proposed 

algorithm, the estimated noise level ε = 2.598×105, the parameter λ is calculated to be 

261.598. For the anthropopathic physical phantom case, ε = 9.071 × 105, and λ = 913.310. 

Again, despite the large differences between the reference case and these two cases, the 

introduced parameter selection strategy still works well in terms of delivering promising 

image qualities with a balanced tradeoff between noise and resolution.

Moreover, among all the studied cases, the minimum and the maximum λ are 21.023 and 

913.310, respectively, having ~50 times difference, suggesting the robustness of our strategy.

4 Discussions

In this work, we have demonstrated that there exists an approximately zero-energy double-

wedge area in the 3D Fourier domain of cone beam projection data collected with a flat 

planar detector. By exploiting almost the same derivations as Section 2.2, similar data 

correlations are expected for the projection data from multiple detector computed 

tomography (MDCT) in the diagnostic imaging field. Moreover, as the data involved in this 

study are the line integrals, it also could be generalized to other imaging modalities, such as 

positron emission tomography (PET) and magnetic resonance imaging (MRI).

A potential application of our work is to facilitate the selection of the regularization 

parameter in a regularized iterative reconstruction scheme. In this work, we introduced a 

noise level driven adaptive regularization parameter s-election strategy, as demonstrated in 

Section 2.5. Its performance has been validated under different dose levels and data cases, as 

presented in Section 3.5. This indicated that our selection strategy, i.e., Eq. (20), also could 

be applied in other patient cases. Although the TV minimization based regularizer was 

employed in this work, it is believed that same selection strategy as Eq. (20) could be also 

generalized to other regularizers such as the dictionary learning based sparse 

representation[7]. It is noted that this strategy is not intended to determine a final optimal λ 
which is always task-specific and also depends on the radiologists’ preference. Instead, our 

purpose is to demonstrate the practical utility of the estimated noise level with the proposed 

algorithm. A real clinic-accepted selection strategy still requires a further investigation 

which is our ongoing research.

In this work, we have conducted comparison studies between the proposed algorithm and the 

transformation based algorithm. And it turns out that the proposed algorithm could produce 

more accurate and robust noise level estimation results over the transformation based 

algorithm. It is worth mentioning that for the transformation based algorithm, a wise choice 

about the truncated high frequency is very important to enable an accurate noise level 

estimation, which is also case-by-case dependent. Moreover, the performance of the 
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transformation based algorithm also depends on the image content and the noise power of 

the projection data. In other words, if the projection data contains substantial high frequency 

components, or the noise power is relatively low compared to the signal power, the 

performance of the transformation based algorithm would be hampered. For example, as 

observed from the simulation studies in Section 3, when the noise power was relatively low, 

the transformation based algorithm always performed worse compared to the proposed 

algorithm. In contrast, the accuracy and robustness of the proposed noise level estimation 

algorithm is theoretically ensured by our derived data correlation of cone beam projection 

data in Section 2.2. According to our derivation, there exists an approximately zero-energy 

double-wedge area in the 3D Fourier domain of the cone beam projection data. In other 

words, in this double-wedge area, the signal and the noise are well-decoupled regardless of 

the image content, the noise power, the scan geometry and etc. Moreover, the boundaries of 

the double-wedge area could be automatically detected by a Hough transform based line 

detector, which makes the proposed algorithm more practical. The experimental results also 

demonstrated that the proposed algorithm could consistently provide accurate and robust 

noise level estimations among different noise powers.

It must be pointed out that, in this work, the derived data correlation in the Fourier domain 

of cone beam projection data is based on the complete data sets, meaning that the theoretical 

integral intervals both for u and v should be from −∞ to +∞, and for β should be from −π 
to π in Eq. (6). However, the practical integral interval for v could be relaxed to the lower 

and upper limits of the physical detector panel without impacts on our conclusion. This 

relaxed integration condition is ensured by the property of the delta function, i.e., the 

integration of f(x)δ(x − x0) from a to b is f(x0) as long as x0 ∈ (a, b). Firstly, as shown in Eq. 

(6), product of two delta functions is involved in the mathematical expression of the 

projection of some certain point, whose coordinate on the detector domain is (u0(β), v0(β)), 

i.e., p0(u, v, β) = δ(u − u0(β))δ(v − v0(β)). Secondly, projection of any point in the volume of 

interest would fall into the physical detector panel, in other words, it is valid that v0(β) ∈ 
(vlower, vupper) ⊂ (−∞, +∞), where vlower and vupper denote the lower and upper limits of 

the physical detector panel. Combined with the above property of the delta function, these 

two facts confirm that the integration of v in (−∞, +∞) is exactly equal to that in (vlower, 
vupper), and hence, validates the relaxed integration condition. Undoubtedly, the relaxed 

integration conditions for u, v, β could be readily sat-isfied in most scenarios of MDCT. By 

contrast, in some CBCT applications such as the radiation therapy clinic, the short-scan 

mode (truncation in β direction) and the half-fan mode (truncation in u direction) are 

popular, and thus would violate the conditions. However, from our real data experiments in 

Section 3.4 that involves real data collected from both the short-scan and the half-fan modes, 

it was shown that the proposed algorithm still worked well without any additional data 

processing. Moreover, it is experimentally validated that even without sufficient information 

available about the object under scanned, the proposed algorithm still could estimate the 

noise level accurately, as shown in Section 3.2. More mathematical characterization is 

required for a better understanding about these results in the future.
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5 Conclusions

There exists an approximately zero-energy double-wedge area in the 3D Fourier domain of 

cone beam projection data. The boundaries of the double-wedge area could be automatically 

detected with the Hough transform based line detector. The Fourier transformed noise is 

uniformly distributed, in terms of that for any point of the Fourier transformed noise, the 

expectation of the square of the amplitude is the same. Therefore, theoretically speaking, the 

signal and the noise are well-decoupled in the double-wedge area of the 3D Fourier domain. 

Based on the derived data correlation of cone beam projection data, guidelines regarding the 

estimation of the noise level of cone beam projection data are presented. Experimental 

results demonstrated that the proposed algorithm could estimate the noise level accurately 

and robustly. Additionally, to demonstrate the practical utility of our estimated noise level, a 

noise level driven adaptive regularization parameter selection strategy was introduced. 

Experiments demonstrated that across different dose levels and data cases, our strategy could 

always work well by delivering promising reconstructions with a balanced tradeoff between 

noise and resolution.
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Figure 1. 
Fourier domains of cone beam projection data. The first and the second rows correspond to 

the head-neck and the prostate sections’ cone beam projection data, respectively. Column (a) 

is the cone beam projection data, columns (b) and (c) are the noise-free and noisy versions 

of the 3D Fourier domain, respectively. q, ξ, k are the angular frequency variables associated 

with u, v, β, respectively. The arrows indicate the approximately zero-energy double-wedge 

area.
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Figure 2. 
Workflow of the proposed noise level estimation algorithm.
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Figure 3. 
The first and the second columns correspond to the results of the analytical and the Monte 

Carlo simulations, respectively. In the first row of each column, left and right sub-figures are 

the maximum intensity projections along ξ direction of the 3D Fourier domain, 

corresponding to the noise-free and the noisy cone beam projections, respectively. In the first 

row, the dot dash lines are the detected boundaries with the line detector algorithm. The 

second row shows the comparisons of the relative errors between the proposed algorithm 

(circle marked solid line) and the transformation based algorithm (triangle marked dot dash 

line).
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Figure 4. 
(a) geometry illustration of the spotlight-mode, where no sufficient information about the 

object under scanned is available. The volume-of-interest inside the dash circle is centered 

on the prostate region. (b) simulation results. The first row is the maximum intensity 

projections along ξ direction of the 3D Fourier domain of the noisy cone beam projection 

data, where the dot dash lines are the detected boundaries with the line detector algorithm. 

The second row shows the comparison curves of the relative errors calculated with the 

proposed algorithm (circle marked solid line) and the transformation based algorithm 

(triangle marked dot dash line).
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Figure 5. 
Comparison results between the proposed algorithm and the homogeneous area based 

algorithm. The first and the second rows correspond to the head-neck case and the prostate 

case, respectively. Sub-figures (a) and (d) are projection images in a certain view, where 

seven and five selected areas are annotated by the numbers, sub-figures (b), (c) and (d) are 

the log scaled relative errors of the estimated noise levels with both the homogeneous area 

based algorithm and the proposed algorithm, corresponding to the cases of analytical, MC 

and the spotlight-mode simulation experiments, respectively.
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Figure 6. 
Result of the Catphan® 600 phantom case. (a) shows the maximum intensity projection 

along ξ direction of the 3D Fourier domain of the real cone beam projection data scanned at 

10mA × 20ms exposure setting. The dot dash lines are the detected boundaries with the line 

detector algorithm. (b) log-log plot of the real exposure levels versus the estimated noise 

levels. The solid line shows the linear fit whose equation is presented in the upper-right 

corner.
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Figure 7. 
The results for the pelvis section of the anthropopathic phantom case. The arrangements of 

the sub-figures are the same as those in Fig. 6.
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Figure 8. 
Reconstructed images of the Catphan® 600 phantom. Images in the left and right columns 

correspond to the reconstructions with the FDK and the regularized iterative reconstruction 

algorithms, respectively. The first row is the reference case, the reference ε0 and λ0 are 

displayed in the right column. For the other two cases, the estimated ε and the selected λ are 

displayed in the corresponding regularized reconstructions. Display window: [0.1 0.3]cm−1.
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Figure 9. 
Reconstructed images of the HN patient case (row 1) and the an-thropopathic physical 

phantom (row 2). Images in the left and right columns correspond to the reconstructions 

with the FDK and the regularized iterative reconstruction algorithms, respectively. The 

estimated ε and the selected λ are displayed in the corresponding regularized 

reconstructions. The display windows for the first and the second rows are [0 0.4]cm−1 and 

[0.1 0.3]cm−1, respectively.
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Table 1

Cone beam geometry parameters for both the analytical and the Monte Carlo simulations.

Source-axis-distance L 100cm

Axis-detector-distance D 50cm

Detector size 0.0776 × 0.0776cm2

Detector dimension 512 × 384

Number of projections over 2π 660

Phantom dimension 512 × 512 × 80

Voxel size 0.057 × 0.057 × 0.25cm3
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Table 2

Cone beam geometry parameters for the real data.

Source-axis-distance L 100cm

Axis-detector-distance D 50cm

Detector size 0.0776 × 0.0776cm2

Detector dimension 512 × 384

Number of projections over 200° (360°) 364(678)

J Xray Sci Technol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bai et al. Page 30

Ta
b

le
 3

E
xp

os
ur

e 
se

tti
ng

s 
an

d 
th

e 
co

rr
es

po
nd

in
g 

es
tim

at
ed

 n
oi

se
 le

ve
ls

 f
or

 th
e 

re
al

 d
at

a 
sc

an
ne

d 
w

ith
 th

e 
C

at
ph

an
®

 6
00

 p
ha

nt
om

 in
 th

e 
fu

ll 
fa

n 
m

od
e 

w
ith

 a
 2

00
° 

ar
c 

sh
or

t-
sc

an
.

G
ro

up
 I

nd
ex

1
2

3
4

5
6

7
8

9
10

11
12

13

Pu
ls

e 
L

en
gt

h 
(m

s)
20

20
20

20
20

20
20

20
20

20
20

20
20

T
ub

e 
C

ur
re

nt
 (

m
A

)
10

13
15

20
22

26
30

40
45

54
60

80
12

0

E
st

im
at

ed
 N

oi
se

 L
ev

el
 (

×1
04 )

9.
93

2
7.

05
4

6.
03

1
4.

37
6

3.
93

8
3.

27
9

2.
81

0
2.

08
8

1.
84

8
1.

53
4

1.
38

4
1.

02
9

0.
86

1

J Xray Sci Technol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bai et al. Page 31

Ta
b

le
 4

E
xp

os
ur

e 
se

tti
ng

s 
an

d 
th

e 
co

rr
es

po
nd

in
g 

es
tim

at
ed

 n
oi

se
 le

ve
ls

 f
or

 th
e 

re
al

 d
at

a 
sc

an
ne

d 
w

ith
 th

e 
an

th
ro

po
pa

th
ic

 p
hy

si
ca

l p
ha

nt
om

 in
 th

e 
ha

lf
-f

an
 m

od
e 

w
ith

 a
 3

60
° 

fu
ll 

sc
an

.

G
ro

up
 I

nd
ex

1
2

3
4

5
6

Pu
ls

e 
L

en
gt

h 
(m

s)
10

10
10

20
20

20

T
ub

e 
C

ur
re

nt
 (

m
A

)
10

30
60

45
60

80

E
st

im
at

ed
 N

oi
se

 L
ev

el
 (

×1
05 )

9.
07

1
2.

16
9

1.
12

8
0.

77
3

0.
61

6
0.

50
4

J Xray Sci Technol. Author manuscript; available in PMC 2018 January 01.


	Abstract
	1 Introduction
	2 Methods and Materials
	2.1 Data correlation of CT sinogram in 2D Fourier domain
	2.2 Data correlation of cone beam projections in 3D Fourier domain
	2.3 Characterization of noise in the Fourier domain
	2.4 Data correlation based noise level estimation
	2.5 Noise level driven regularization parameter selection
	2.6 Validation studies
	2.6.1 Simulation and comparison studies
	2.6.2 Real data studies
	2.6.3 Adaptive regularization parameter selection


	3 Results
	3.1 Simulation experiments under ideal geometries
	3.2 Simulation experiments under spotlight-mode
	3.3 Comparison studies against the homogeneous area based algorithm
	3.4 Real data experiments under short-scan/half-fan modes
	3.5 Adaptive regularization parameter selection

	4 Discussions
	5 Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1
	Table 2
	Table 3
	Table 4

