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Abstract

Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to 

ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In 

plants, mechanosensitive channels have been implicated in the perception of important mechanical 

stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established 

families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation 

and root mechanosensing—and it is likely that many other channels and functions await discovery. 

Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the 

conserved and the unique ways in which mechanosensitive channels function in plants.

Introduction

The ability to sense intrinsic or extrinsic mechanical cues is as basal to the tree of life as the 

ownership of a cell membrane [1]. Several aspects of growth and development in land plants 

involve mechanical signals, including touch, osmotic stress, vibration, and gravity responses, 

the perception of pathogen invasion, and proprioception. One well-established component of 

the mechanosensory apparatus of cells in every kingdom of life is the mechanosensitive 

(also called stretch-activated) (MS) ion channel [2–4]). These multimeric pore-forming 

proteins convert mechanical force into ion flux. In some cases, the flow of ions through an 

open MS ion channel is sufficient for the desired response to mechanical stimulation. For 

example, the canonical bacterial MS ion channel MscS acts as an osmotic safety valve to 

protect the cell from hypo-osmotic stress; passage of ions out of the cell through channel 

directly accomplishes the primary function of the channel [5]. In other cases, 

mechanosensitive ion flux generates bioelectric signals that in turn trigger organismal 

sensory perception. For example, the MS ion channel NOMPC mediates touch perception in 

Drosophila larvae [6]. The line between the two examples above may not be so clear, as a 

recent report demonstrated entry of the second messenger Ca2+ into the bacterial cell 

through MscS during hypoosmotic shock [7]. In this article, we summarize recent exciting 

developments in the field of plant MS channels, speculate on their evolution, describe a few 

areas of limited knowledge, and propose potential solutions to technical challenges.
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The Tip of the Iceberg: Known Families of Plant Mechanosensitive 

Channels

The first MS channel activities in plant membranes were characterized by patch clamp 

electrophysiology [8,9] shortly after they were discovered in animal cells (see [10] for a 

historical perspective). Dozens of MS channel activities in the plasma and vacuolar 

membranes of a wide variety of cell types and species have been described over the past 30 

years (summarized in [11]), suggesting that they are used broadly in plants to respond to 

diverse signals. Despite this apparent ubiquity, the underlying genes/proteins and 

physiological function of only a handful of MS ion channel activities have been elucidated. 

So far, three MS channel families have so far been characterized as membrane stretch-

activated in plant systems; as described in further detail below, these channels exhibit 

diverse, yet overlapping localization, structure, channel properties and proposed function. As 

a result, the activity of channels with different ionic affinities in the same or in different 

compartments is likely to result in crosstalk and have complex effects on ion flux into and 

out of the cytoplasm and apoplast (Figure 1). These three families are unlikely to provide all 

observed MS channel activities in plants, and a major challenge for the field will be the 

development of functional (rather that homology-based) screens capable of identifying 

additional MS channels. Intriguing candidates have been identified [12–14] but have not yet 

been shown to respond directly to membrane tension.

MscS-Like (MSL) Channels

Escherichia coli MscS is one of the best-understood MS ion channels in any system. It is an 

essentially non-selective ion channel, gated directly by membrane tension, with a large 

conductance of 1.2 nS. The classic function of EcMscS is to serve as an osmotic safety 

valve, protecting cells from rupture during extreme hypo-osmotic downshock. MscS-Like 

channels, or MSLs, are found throughout bacteria, archaea, some fungi, algae, and plants 

[15]. MSL gene families have been described and characterized to various degrees in 

Arabidopsis, papaya, rice, and common bean [16–19]. There are 10 MSL proteins in 

Arabidopsis, most of which are predicted to localize to the plasma membrane. Unexpectedly, 

MSL1, MSL2, and MSL3 were found to localize to the inner membrane of plastids and 

mitochondria (Figure 1, [20–23]).

Electrophysiological analyses of MSL9 and MSL10 in plant cells [22], MSL10 and MSL8 

expressed heterologously in Xenopus oocytes [23,24], and MSL1 expressed heterologously 

in giant E. coli spheroplasts [21] all revealed channel characteristics that are similar (though 

not identical) to EcMscS. MSLs are anion-preferring (e.g. 2 to 6 anions pass for every 

cation) MS ion channels with conductances ranging from ~0.1 to 1 nS, depending on buffer 

conditions. Several lines of evidence support the model that, like EcMscS, AtMSLs function 

to relieve osmotic stress. This was first demonstrated with MSL2 and MSL3, two plastid-

localized channels that directly maintain plastid osmoregulation. Plastids in msl2 msl3 
mutants exhibit altered size, shape and fission [20,25,26]. The loss of MSL2/3 also leads to 

stress responses associated with drought and the development of callus tissue at the apex of 

the plant [27,28]. While the pleiotropic phenotypes associated with this mutant have 

illustrated the importance of plastid osmoregulation during normal plant growth and 
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development, any mechanistic insights await the electrophysiological analysis of MSL2 and 

MSL3—a challenging prospect for plastid-localized proteins. Adding to the complexity is a 

recent report demonstrating that mitochondria-localized MSL1 is required to ameliorate the 

oxidative burden imposed upon mitochondria during abiotic stress [21]. The potential role of 

membrane tension, redox state, and transmembrane voltage in regulating MSL1 channel 

activity in vivo remains to be determined. For plasma membrane-localized MSLs, recent 

reports both support their role as osmotic safety valves and suggest more complex function, 

as discussed below.

Two-Pore Domain K+ (TPK) Channels

TREK1, TREK2, and TRAAK are MS channels from the TPK family that are expressed in 

the mammalian nervous system and are proposed to modulate mechanical, heat and cold-

associated pain perception [29]. AtTPK1 is a voltage-independent K+ channel required for 

normal guard cell closure kinetics [30], and, along with homologs from rice and barley, has 

been demonstrated to be mechanosensitive [31]. Whether the mechanosensitive activity of 

AtTPK1 is important for its function in guard cells, and how it is integrated with other 

regulatory signals such as low pH, Ca2+ and binding to 14-3-3 proteins is not yet understood 

[30].

Mid1-Complementing Activity (MCA) Channels

The Mid1-Complementing Activity (MCA) proteins were identified based on their ability to 

rescue the mating-induced lethality of the yeast mid1 mutant [32]. MCA proteins are plant-

specific and show no homology to the yeast Mid1 channel. In fact, MCA proteins have only 

1 transmembrane (TM) domain [33], placing them outside the norm for ion channel 

subunits. Cryo-EM imaging followed by single particle reconstruction of a MCA2 tetramer 

did not reveal a pore [34]. However, heterologously expressed MCA1 and 2 produce 

increased current in response to osmotic swelling in whole cells and to membrane stretch in 

excised patches [35], providing evidence that they directly form a MS ion channel. MCA 
expression is correlated with enhanced Ca2+ influx in response to hypoosmotic shock and 

mechanical stimulus in several plant species [32,36,37]. Arabidopsis MCAs are required for 

normal rates of root penetration into hard agar and for proper response to cellulose 

biosynthesis inhibition, implying a role in the maintenance/response to extracellular 

mechanical stress [32,38]. MCAs may be involved in the perception of developmentally 

imposed mechanical signals, as a maize MCA homolog was recently identified in a screen 

for leaf patterning mutants [39].

Getting our Sea Legs: Recent Advances in Understanding Plasma 

Membrane Localized MSL Channels

MSL8 Fully Meets the Criteria for a Mechanoreceptor

A recent analysis of MSL8, a MS ion channel expressed exclusively in mature pollen grains 

and tubes, advanced our understanding of the function of plasma membrane-localized MSL 

channels and underscores the essential role of osmoregulation during fertilization. The 

correct level of MSL8 activity appears critical for pollen to survive hydration and 
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germination and for full male fertility. Disruption of MSL8 results in high rates of bursting 

during pollen hydration and germination, but the overall rate of in vitro germination is 

higher than the wild type. On the other hand, overexpressing MSL8 inhibits pollen 

germination and no bursting is observed [23]. These opposing effects can be attributed to the 

inability to relieve excess turgor during hydration (in msl8 mutants) or to maintain necessary 

turgor during germination, and tube growth (in lines that overexpress MSL8) (Figure 2). 

Lesions that disrupt the ion conducting properties of MSL8 also disrupt its ability to 

accomplish these functions in pollen [40], providing further evidence that it serves directly 

as an osmotic mechanosensor in pollen membranes. MSL8 is thus the first plant protein to 

fill the stated criteria for a mechanoreceptor [2].

Links Between MSLs and Stress Responses

The role or roles of MSLs at the plasma membrane in cells other than pollen grains has 

remained stubbornly opaque. Both MSL and MCA gene expression responds to vibration 

[41] and nodulation [42], but the physiological relevance of these observations have yet to be 

demonstrated. While a mutant harboring lesions in 5 MSL genes (msl4 msl5 msl6 msl9 
msl10) ablated the primary MS channel activity in Arabidopsis root protoplasts, the 

quintuple mutant does not produce an observable mutant phenotype in response to a wide 

range of mechanical, touch or osmotic stimuli [22]. However, overexpression of MSL10 

results in dwarfing, ROS accumulation, and ectopic lesions, and all of these effects are 

negatively regulated by phosphorylation of the N-terminus [43]. Dwarfing and ectopic 

lesions are also observed in response to a single EMS-induced point mutation in the C-

terminus of MSL10 [44], suggesting that these overexpression phenotypes reflect some 

aspect of the normal gene function. In addition, a recent study implicated MSL4 in 

pathogen-triggered immunity [45], and MSL6 phosphorylation was observed in response to 

oligogalacturonide treatment [46]. We propose that plasma membrane-localized MSLs serve 

as sensors of cellular mechanical homeostasis, or “mechanostasis”. This idea is supported by 

a recent meta-analysis of Arabidopsis microarray datasets wherein MSL10 expression levels 

were altered in a wide range of mutant backgrounds [47].

An intriguing aspect to the MSL10 study was the discovery that the soluble N-terminus of 

MSL10 is on its own able to trigger cell death in an overexpression system, indicating that 

the protein harbors at least one function independent of the production of a channel pore 

[43]. Determining if this non-conducting function is regulated by membrane tension is an 

important next step. If so, MSLs (and possibly other MS channels or MS channel homologs 

[39]) may have evolved to couple changes in membrane tension to a wide range of signaling 

outputs beyond ion flux.

Beyond the Horizon: Innovations in MS Channel Studies

Plant MS Channel Structure and Gating Dynamics

Structural information about bacterial and animal MS channels derived from a multiplicity 

of approaches has led to a rapid uptick in our understanding of the structural and biophysical 

basis of mechanosensitivity. A number of recent reports utilizing crystallography, EPR 

spectroscopy, PELDOR, and/or molecular dynamics add exciting and provocative new detail 
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to the force-from-lipid concept/principle [1], see Box 1, and suggest that lipid acyl chains 

filling voids or pockets in the channel surface could “drag” MS channels open under 

increased membrane tension [48,49] or even block the permeation pathway [50](but see 

[51]). While these new ideas are sparking a great deal of discussion in the field, MS 

channels from plants have yet to contribute to the conversation. The cryo-EM structure of 

MCA2 provides only low resolution information (26 Å) [34], and nothing is yet known 

about the structure or even oligomeric state of any MSL channel.

Solving the structure of plant MSLs would do more than contribute to our view of MS 

channel gating dynamics. Arabidopsis MSL family members differ substantively from 

EcMscS (and from each other) not only in terms of the number of TM helices, but in the 

presence of soluble domains at the N- and C-termini and in inter-TM loops [11,52]. We have 

previously proposed that this diversity in structure within the MscS family implies that MSL 

channels in plants may have functions and regulatory mechanisms that are specific to 

multicellular eukaryotes [53]. A three-dimensional structure of these channels would reveal 

the spatial relationship between the regions thought to serve as tension sensors, the channel 

pore, and soluble domains. This would help us determine how membrane tension is 

transmitted from the channel-membrane interface to the channel pore—and potentially to 

other domains within the protein (see non-conducting functions, above).

Closing the Gap between Channel Behavior in the Patch Pipette and in the Intact Plant Cell

While patch clamp electrophysiology has proven a powerful way to identify and characterize 

MS ion channels, in plants takes place in the absence of a cell wall, sometimes in an isolated 

membrane patch, in tightly regulated and non-physiological ionic conditions, and in the case 

of heterologous expression, not in the native lipid environment. Thus, the next great 

challenge for the field will be developing approaches that allow the analysis of MS ion 

channel action in their native context. Controlled activation of MS channels from inside a 

plant cell might be possible through the application of focused ultrasound, as was recently 

demonstrated for animal TPKs expressed in oocytes [54]. Integration of localized 

extracellular ion flux measurements with genetically encoded ion or voltage biosensors may 

allow the study of MS channel function in some cellular contexts, such as pollen tubes [55]. 

To date, the genetically encoded sensors for transmembrane voltage used extensively in 

animal systems to monitor ion channel activity in vivo [56] do not yet function well in plants 

[57].

Conclusion

Membrane tension is a force intrinsic to all cells, and every branch of life expresses ion 

channels that serve specifically to sense and respond to it. In plants, MS ion channels are 

widely distributed across multiple species, cell types, and intracellular compartments. In 

Arabidopsis, MS ion channels are required for roots to penetrate hard agar and mediate 

osmoregulation of pollen and plastids during normal growth and development. Future work 

should reveal the physiological function of channels we know, add more channel genes and 

proteins to our short list, and develop the methodologies that will allow in vivo analysis of 

ion channel function, regulation, and mechanism.
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Highlights

• Mechanosensitive ion channels are capable of transducing force into ion flux

• Three families of plant MS channels are described to date; many more likely 

exist

• MS channels were repurposed during evolution to perform novel functions in 

plants

• They play roles in root mechanosensing and osmoregulation

• Mechanistic insight will require novel structural studies and in vivo analyses
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Box 1: The force-from-lipid principle

According to the force-from-lipid principle, anisotropic forces inherent to the lipid 

bilayer impinge on the conformation of membrane-embedded proteins. Ion channels 

classified as mechanosensitive allow the passage of ions when forces directly transmitted 

from the lipid bilayer are transduced into conformational rearrangements of the protein. 

This concept is proposed to underlie the mechanosensitivity of channels from multiple 

kingdoms and evolutionarily unrelated families. It follows from this principle that all 

channels are to some degree mechanosensitive; enhanced sensitivity, dynamic range, and 

spatio-temporal control are accomplished through structural arrangement and/or by 

tethering to cytoskeletal elements or extracellular matrix.
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Figure 1. Subcellular Localization and Ionic Preference for Known Plant Mechanosensitive Ion 
Channels
The subcellular localization of MS ion channel proteins so far identified in land plants is 

indicated [20–23,32,58]. The outer membrane of the chloroplast is permeable to ions [59], 

and Voltage-dependent Anion Channels (VDACs) are thought to mediate flux across the 

outer mitochondrial membrane [60]. MSL, MscS-Like; TPK, Two-pore K+; MCA, Mid1-

Complementing Activity. Note that only general ion permeability preferences are indicated; 

these channels are likely to be permeable to additional species.
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Figure 2. Proposed Role of MSL8 in Controlling Turgor During Pollen Hydration, Germination, 
and Tube Growth
Wild-type pollen grains successfully survive hydration in distilled water, germinate 

effectively in germination media, produce intact pollen tubes, and are optimally fertile. 

Pollen grains from msl8-4 null mutants, or null mutants expressing the MSL8F720L allele, 

display reduced viability upon hydration in distilled water, and we propose that this is due to 

an inability to relieve turgor pressure by releasing ions upon hypoosmotic shock. Excess 

turgor after hydration leads both to germination at a rate higher than the wild type, but also 

to frequent bursting, and an overall loss of fertility. When MSL8 is overexpressed from the 

pollen-specific, strong LAT52 promoter, pollen grains survive hydration but are unable to 

maintain the threshold turgor pressure required for pollen germination or tube elongation. 

Green arrows, optimal turgor; red arrows, excessive turgor; blue arrows, insufficient turgor.
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