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Abstract: It is reported that long noncoding RNAs (lncRNAs) were expressed aberrantly in cartilage of osteoarthri-
tis (OA). Current evidence indicates that lncRNAs not only serve as positive or negative regulators of OA, but also 
crosstalk with multiple potential targets to impact on the critical events in OA process. This review summarized 
the lncRNAs identified in OA to date, discussed their influence on the survival of chondrocytes and synoviocytes, 
arthritis-associated factors, and angiogenesis, and indicated the potential in diagnosis, therapy, and prognosis.
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Introduction

Articular cartilage homeostasis is tightly orch- 
estrated and maintained in a balance between 
anabolic and catabolic processes by the activi-
ty of the chondrocytes. When joints are subject-
ed to altered loading caused by malalignment 
or trauma [1], catabolism often predominates 
and causes joint abnormalities, including syno-
vitis, cartilage degradation, subchondral bone 
sclerosis, and osteophyte formation, which can 
be defined as osteoarthritis (OA) collectively 
[2]. In 1990, OA was estimated as the eighth 
leading non-fatal burden of life all over the 
world, whereas in 2000 it became the sixth [3, 
4]. The pathogenesis of OA is complex and 
involves interplay of multiple factors such as 
genetic predisposition, altered mechanical 
loading, and the imbalance between anabolic 
and catabolic factors. It is thought that the 
imbalance plays a major role in cartilage degra-
dation in OA [5].

Given that articular cartilage is normally avas-
cular and has little intrinsic regenerative capac-
ity, OA is a challenging disease to treat. There 
have been no effective therapies discovered to 
ameliorate or stop OA progression. Recent 

studies have shed light on the connection 
between noncoding RNAs (ncRNAs) and OA 
development [6]. The ncRNAs can be broadly 
divided into small ncRNAs and long ncRNAs 
(lncRNAs) [7]. It is known that lncRNAs, which 
are mRNA-like and more than 200 nucleotides 
in length, are transcribed in mammalian geno- 
mes pervasively [8]. In the past decade, the 
lncRNAs emerge as novel regulators of numer-
ous biological processes where they serve as 
guides, signals, decoys, and scaffolds [9, 10], 
and have effects on a broad spectrum of devel-
opment and diseases [11-17]. 

LncRNAs have been reported to play critical 
roles in the development of bone and cartilage 
tissue [18, 19]. It aroused interest in aberrant 
expression of lncRNAs in OA cartilage which 
might influence the balance between anabolic 
and catabolic phase of joint cartilage. It is sug-
gested that lncRNAs could be applied for diag-
nosis and prognosis, and could serve as a per-
sonalized therapeutic biomarker to impede, 
stop, and even reverse OA progression [20-22]. 
In the current review, we mainly summarized 
and emphasized the roles of lncRNAs in the OA 
progression, and harnessed them for the treat-
ment of OA.

http://www.ajtr.org
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LncRNAs regulate the fate of cells

Table 1 summarized several lncRNAs that 
played demonstrated roles in the fate of chon-
drocytes and synoviocytes. These representa-
tive lncRNAs were selected to illustrate the 
diverse targets and mechanisms of lncRNAs in 
the regulation of chondrocytes and synovio-
cytes survival (Table 1, Figure 1).

Chondrocytes

Recently, many studies reported both apoptotic 
and non-apoptotic cell death in OA chondro-
cytes [23]. It is demonstrated that chondrocyte 
death is responsible for the severity of cartilage 
degradation [24-27], suggesting that apoptosis 
could be of diagnostic valve and be a potent 
option for the new therapeutic target. 

It is known that Growth Arrest-Specific 5 (GAS5) 
is expressed in various tissues with multiple 
splice isoforms differentially and widely [28], 
and the inhibition of GAS5 will suppress cell 
apoptosis [29]. Several studies revealed that 
the expression level of GAS5 was significantly 
upregulated in OA chondrocytes, and RNA FISH 
analysis showed that GAS5 was positioned at 
nucleus and cytoplasm in OA chondrocytes but 
merely at nucleus in healthy chondrocytes [30]. 

MiR-21 is one kind of well-known onco-microR-
NAs. It has been shown experimentally that 
miR-21 targeted numerous genes involved in 
tumor growth and metastasis, for example, 
inhibiting tumor suppressors, such as PTEN 
and PDCD4 in gastric cancer [31], Tipe2 in 
immune diseases [32], and methionine adeno-
syltransferase in hepatoma cells [33]. It is dem-
onstrated that miR-21 was suppressed in OA 
patients and the modulation of miR-21 influ-
enced apoptosis and autophagy of OA chondro-
cytes [30]. 

It is observed that miR-21 was upregulated and 
GAS5 was downregulated in breast tumor tis-

sues, indicating a negative correlation between 
GAS5 and miR-21 in several breast cancer cell 
lines [34]. Song et al observed a reciprocal re- 
pression of GAS5 and miR-21 during OA patho-
genesis. The upregulation of GAS5 decreased 
the level of miR-21 expression significantly and 
regulated cartilage degradation [30]. It is sup-
posed that GAS5 regulated cell survival by act-
ing as the sponge of miR-21 and thereby con-
tributed to the pathogenesis of OA. However, 
the possible inter-regulatory network between 
miR-21 and GAS5 has not been well studied.

Previous studies have shown that lncRNA UFC1 
regulated cell survival positively and was expr-
essed aberrantly in colorectal cancer and liver 
cancer [35, 36]. Recently, functional studies 
demonstrated UFC1 functioned as the promo-
tor of proliferation and the inhibitor of apopto-
sis of chondrocytes, and it is reported that the 
expression of UFC1 was downregulated in OA 
cartilage [37]. It is known that UFC1 could inter-
act with miR-34a in OA chondrocytes. MiR-34a 
could stimulate apoptosis of OA chondrocytes, 
while silencing miR-34a could reduce chondro-
cytes apoptosis effectively [38]. This observa-
tion suggests that the interplay between UFC1 
and miR-34a could regulate the survival of 
chondrocytes, and restoring the expression of 
UFC1 has the potential to relieve or stop carti-
lage degradation.

It is shown that Homeobox gene C8 (Hoxc8) 
knock-down chondrocytes appeared to be with 
prolonged duration and delayed exit from M- 
phase [39], which implicated that Hoxc8 could 
control cell cycles to affect the proliferation of 
chondrocytes and cartilage development at 
this critical time point. LncRNA uc.343 was 
reported to reside upstream of Hoxc8 and cis-
regulate Hoxc8. LncRNA uc.343 was upregu-
lated in OA cartilage and was correlated with 
Hoxc8 positively in SW1353 cells treated with 
IL-1β [22]. These results provide evidence that 

Table 1. Selected lncRNAs identified to date in the regulation of the chondrocytes and synoviocytes 
survival
LncRNA Proposed mechanism of action Reference
GAS5 Suppress miR-21 expression to inhibit the autophagic response and stimulate apoptosis [30]
PCGEM1 Sponge for miR-770 to regulate synoviocytes proliferation, apoptosis, and autophagy [40]
UFC1 Interact with miR-34a to promote chondrocytes proliferation and inhibit apoptosis [37]
uc.343 Cis-regulate HOXC8 to impact chondrocytes cycle [22]
Abbreviations: GAS5, Growth arrest-specific 5; PCGEM1, prostate cancer gene expression marker 1.
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Figure 1. Schematic mode of lncRNAs and signaling pathways involved in the OA process. LncRNA stimulated or inhibited diverse targets to impact on the balance 
between the biosynthetic phase and the degradative phase of joint cartilage.
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uc.343 might target Hoxc8 to regulate chondro-
cytes cycle progression. 

Synoviocytes

Hyperplasia of synoviocytes is a hallmark of OA 
and the fibroblast-like synoviocytes can secrete 
proinflammatory cytokines to degrade cartilage 
[40]. It is well-known that prostate cancer gene 
expression marker 1 (PCGEM1) was overex-
pressed in prostate cancer. Overexpression of 
PCGEM1 decreased doxorubicin-induced expr- 
ession of p53 and p21Waf1/Cip1, and suppre- 
ssed apoptosis in LNCaP cells [41]. LncRNA 
PCGEM1 was also overexpressed in OA synovi-
ocytes. Overexpression of PCGEM1 boosted 
proliferation of synoviocytes, activated beclin-1, 
and depressed PARP and caspase-9 [40]. MiR-
770 is reported to suppress synoviocytes prolif-
eration and stimulate synoviocytes apoptosis 
significantly, and the level of miR-770 decreased 
in OA synoviocytes. It is demonstrated that 
PCGEM1 suppressed miR-770 by direct binding 
in synoviocytes, and led to the hyperplasia of 
synoviocytes [40].

LncRNAs regulate arthritis-associated factors

Table 2 summarized several lncRNAs that tar-
geted the arthritis-associated factors. These 
representative lncRNAs were selected to illus-
trate the diverse signaling pathways and mech-
anisms of lncRNAs in the regulation of arthritis-
associated factors (Table 2, Figure 1).

MMPs

Matrix metalloproteinases (MMPs) are well-
known factors responsible for cartilage degra-

dation. Hox transcript antisense intergenic RNA 
(HOTAIR) was upregulated in knee OA cartilage 
as well as the synovial fluid of temporomandib-
ular joint (TMJ) OA cartilage, according to micro-
array analysis [6]. IL-1β treatment of TMJ condy-
lar cartilage enhanced the expression of MMP-
1, MMP-3, and MMP-9 dramatically, whereas 
the effects were reversed by HOTAIR knock-
down [42], indicating that HOTAIR functioned as 
a regulator of MMPs.

HoxA distal transcript antisense RNA (HOTTIP), 
locating in 5’ end of the HoxA cluster, encodes 
the lncRNA which could suppress HoxA-13 [43]. 
In OA chondrocytes, HOTTIP was upregulated 
significantly, while HoxA-13 was downregulat-
ed. In addition, it is reported that HoxA-13  
could regulate integrin-α1 positively [7]. Over- 
expression of integrin-α1 subunit could promo- 
te chondrogenesis, whereas integrin-α1 knock-
down could increase MMP-2 synthesis and con-
tribute to cartilage degradation at younger mice 
[44]. Therefore, HOTTIP may serve as the pro-
motor of cartilage degradation via inhibiting the 
HoxA-13/integrin-α1 signaling pathway. It is 
shown that miR-204 suppressed HOTTIP expre- 
ssion in hepatocellular carcinoma [45], and it 
arouses the interest whether miR-204 targets 
HOTTIP and negatively regulates HOTTIP in car-
tilage, which remains further studied.

It is reported that miR-21 interacted with MMPs 
by indirect targeting. In laryngeal squamous 
cell carcinoma, miR-21 was relevant to cell 
migration and tumorigenicity via regulation of 
MMP-2 expression [46]. The expression levels 
of miR-21 in cerebral ischemia and renal fibro-
sis were associated with the regulation of 
MMP-9 [47, 48]. RECK and TIMP3, the major 

Table 2. Selected lncRNAs identified to date in the regulation of arthritis-associated factors
LncRNA Proposed mechanism of action Reference
HOTAIR Upregulate MMPs expression [6]
HOTTIP Inhibit HoxA13/integrin-α1 signaling pathway to promote cartilage degradation [7]
GAS5 Suppress miR-21 expression to upregulate MMPs expression [30]
IncRNA-CIR Upregulate MMP-13 expression [21]
HSP90AA4P Regulate SPP1/OPN pathway [22]
PACER Positively regulate COX-2 production [60]

Encode miR-675-3p and miR-675-5p;
H19 Negatively regulated by miR-675-5p; 

Modulate Col2a1 expression
[20, 63]

Abbreviations: HOTAIR, HOX transcript antisense RNA; MMPs, Matrix metalloproteinase; HOTTIP, HoxA distal transcript  
antisense RNA; IncRNA-CIR, Cartilage Injury Related lncRNA; SPP1, Secreted phosphoprotein 1; OPN, osteopontin; PACER,  
p50-associated cyclooxygenase 2-extragenic RNA; COX-2, Cyclooxygenase 2.
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inhibitors of MMPs, have been known as tar-
gets of miR-21 in glioma cells [49]. The down-
regulation of miR-21 increased the expression 
level of MMP-13 significantly in OA chondro-
cytes [30]. The overexpression of GAS5 in 
chondrocytes in vitro led to the increment of 
MMPs, and GAS5 acted as a negative regulator 
of miR-21, indicating that GAS might serve as a 
sponge of miR-21 to regulate cartilage degra-
dation. However, the specific inter-regulatory 
network between miR-21 and GAS5 remains to 
be further elucidated.

Cartilage Injury Related lncRNA (IncRNA-CIR), a 
vimentin pseudogene, was upregulated in OA 
cartilage and could induce degradation of car- 
tilage extracellular matrix in vitro. It is reported 
that knockdown of IncRNA-CIR increased expr- 
ession of cartilage associated genes (collagens 
I/II and aggrecan), while its overexpression 
caused the increment of MMP-13. TNF-α and 
IL-1, two critical mediators of OA, could stimu-
late the expression of lncRNA-CIR [21]. Overall, 
lncRNA-CIR plays a key role in the pathogenesis 
of OA, but the precise molecular mechanisms 
need to be deciphered.

OPN

Secreted phosphoprotein 1 (SPP1) deficient 
mice were apt to developing OA [50]. SPP1 
encoded osteopontin (OPN). OPN is a well-char-
acterized regulator of cartilage mineralization 
[51]. It is found that OPN was distributed at 
pericelluar sites in cartilage [52], while OPN 
was upregulated in osteoarthritic cartilage [53] 
and promoted pathologic mineralization [54]. 
SPP1 resided at upstream of HSP90AA4P and 
served as the cis-regulated target of HSP90- 
AA4P. It is reported that HSP90AA4P was down-
regulated in OA cartilage [22]. These evidences 
lead to speculation that HSP90AA4P might 
function as a protector of cartilage by SPP1/
OPN pathway.

COX-2

Cyclooxygenase 2 (COX-2) plays a crucial role in 
regulating the arachidonic acid pathway and 
prostaglandin E2 production [55], which is pre-
sumed to stimulate inflammation and pain in 
OA cartilage [56, 57]. The expression of COX-2 
was significantly lower in late OA than that in 
early OA [58], indicating it may play different 
roles in different stages of OA. It is shown that 

inhibitors of COX-2 delayed the resolution of 
inflammation [59]. LncRNA p50-associated 
COX-2 extragenic RNA (PACER) is positioned 
adjacent to COX-2 and is reported to positively 
regulate COX-2 production [60]. It has been 
shown that PACER was induced in OA chondro-
cytes by various proinflammatory cytokines 
[61], indicating that PACER was a key regulator 
in the inflammatory response of joint cartilage. 
However, lncRNA expression of chondrocytes 
responding to proinflammatory stimuli was 
rapid and transient. In knee and hip OA carti-
lage, PACER was reported to be downregulated 
[61], suggesting a pathologic reduction in the 
ability of the cartilage tissue to resolve aber-
rant inflammation.

Col II

The IncRNA H19 expressed abundantly in em- 
bryonic tissue of endodermal and mesodermal 
origin and diverse tumors [62, 63]. H19 gener-
ated miR-675-5p and miR-675-3p, whereas 
miR-675-5p suppressed the expression of H19 
[64], which made a self-regulatory feedback. It 
is shown that inhibition of H19 downregulated 
COL2a1, and overexpression of H19 upregulat-
ed COL2a1, while overexpression of miR-675 
could rescue COL2a1 in H19-depleted chon-
drocytes [65], indicating H19 regulated COL2a1 
which was mediated by miR-675. However, less 
is known about the direct target of miR-675 for 
repressing COL2a1.

The expression of H19 and miR-675 were 
upregulated under anabolic conditions and 
downregulated under catabolic conditions [20, 
65], suggesting that H19 and/or miR-675 might 
be of diagnostic value as metabolic indicators 
of OA. However, H19 and miR-675 were ex- 
pressed higher in cartilage tissue of knee OA 
according to cDNA array analysis [20]. It raises 
a question of whether the upregulation of H19 
and/or miR-675 in OA chondrocytes functions 
as a compensatory effort in extracellular matrix 
synthesis and matrix destruction antagonism 
during OA development. Interestingly, the varia-
tion of miR-675 regulation was more than four-
fold below that of H19, inferring that only a frac-
tion of H19 was degraded to provide miR-675. 

LncRNAs regulate angiogenesis

Cartilage is normally avascular, and the inva-
sion of blood vessels is an essential step in 
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ossifications. OA is a disease closely associat-
ed with angiogenesis. Many studies highlighted 
the importance of angiogenesis in OA as well as 
its contribution to progressive joint damage 
[66]. Vascular endothelial growth factor (VEGF) 
is a crucial mediator of angiogenesis. It has 
been shown that VEGF could regulate hypertro-
phic cartilage remodeling and vascular invasion 
into growth plate cartilage [67], and the vascu-
lature offers a conduit to recruit cells that 
involved in cartilage resorption and bone depo-
sition [68]. Therefore, the inhibition of angio-
genesis presents a novel therapeutic approach 
to reduce inflammation and pain in OA.

Maternally expressed gene 3 (MEG3) is a 
maternally expressed lncRNA and a tumor sup-
pressor gene [69]. It is suggested that MEG3 
may inhibit tumor progression through inhibit-
ing angiogenesis [70]. Recently, a study report-
ed that the expression of IncRNA MEG3 was 
decreased in OA and that its expression levels 
were reversely associated with VEGF levels 
[71]. It has been indicated that MEG3 stimulat-
ed p53-mediated transcriptional activation 
[72, 73]. P53 could reversely regulate VEGFA 
transcription by binding to the transcription fac-
tor Sp1 sites on the VEGFA promoter [74]. These 
results above indicate that MEG3 inhibited 
angiogenesis by means of p53 pathways 
(Figure 1). However, the detailed mechanisms 
by which MEG3 inhibits angiogenesis remain to 
be elucidated.

Summary

LncRNA regulates the OA progression through 
sophisticated and multi-layered influences on 
the balance between the biosynthetic phase 
and the degradative phase (Figure 1). In this 
review, we summarized the roles of lncRNAs 
played in the survival of chondrocytes and  
synoviocytes, arthritis-associated factors, and 

angiogenesis. These evidences points out lnc- 
RNAs as new regulators in OA, which are likely 
to be the diagnostic, therapeutic, and prognos-
tic biomarkers. 

However, enormous challenges need to be 
overcome before the clinical use. Most studies 
presented the differences of expression of 
lncRNAs between OA cartilage and normal car-
tilage [6], and several lncRNAs were tested and 
verified by Polymerase chain reaction (PCR) 
(summarized in Table 3), while there were a tiny 
fraction of evidence confirming the mecha-
nisms. It is highlighted that one lncRNA has 
multiple potential targets, which might coordi-
nate or antagonize each other’s functions. The 
crosstalk between lncRNAs and targets might 
depend on the tissue source and the stage of 
OA process, which increases the difficulties in 
predicting the prognosis and the side effects of 
lncRNA-based therapies. In spite of these diffi-
culties, the development of lncRNA-based diag-
nosis, therapy, and prognosis, after being vali-
dated the efficacy and safety in animals, will be 
seen in next few years, and could be applied to 
OA clinically and other conditions associated 
with chronic inflammation.
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Table 3. Selected lncRNAs upregulated or downregulated in the OA cartilage
Upregulated in OA cartilage Downregulated in OA cartilage
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