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Silencing of P2X7R by RNA interference in the hippocampus
can attenuate morphological and behavioral impact
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Abstract Cell signalingmediated by P2X7 receptors (P2X7R)
has been suggested to be involved in epileptogenesis, via mod-
ulation of intracellular calcium levels, excitotoxicity, activation
of inflammatory cascades, and cell death, among other mecha-
nisms. These processes have been described to be involved in
pilocarpine-induced status epilepticus (SE) and contribute to
hyperexcitability, resulting in spontaneous and recurrent sei-
zures. Here, we aimed to investigate the role of P2X7R in
epileptogenesis in vivo using RNA interference (RNAi) to in-
hibit the expression of this receptor. Small interfering RNA
(siRNA) targeting P2X7R mRNAwas injected into the lateral
ventricles (icv) 6 h after SE. Four groups were studied: Saline-
Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R
was quantified by western blotting and neuronal death assessed
by Fluoro-Jade B histochemistry. The hippocampal volume
(edema) was determined 48 h following RNAi. Behavioral

parameters as latency to the appearance of spontaneous sei-
zures and the number of seizures were determined until 60 days
after the SE onset. The Saline-siRNA and Pilo-siRNA groups
showed a 43 and 37% reduction, respectively, in P2X7R pro-
tein levels compared to respective vehicle groups.
Neuroprotection was observed in CA1 and CA3 of the Pilo-
siRNA group compared to Pilo-Vehicle. P2X7R silencing in
pilocarpine group reversed the increase in the edema detected
in the hilus, suprapyramidal dentate gyrus, CA1, and CA3;
reducedmortality rate following SE; increased the time to onset
of spontaneous seizure; and reduced the number of seizures,
when compared to the Pilo-Vehicle group. Therefore, our data
highlights the potential of P2X7R as a therapeutic target for the
adjunct treatment of epilepsy.
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Introduction

Epilepsy is a group of neurological diseases with a common
phenotypic manifestation, epileptic seizures. Temporal lobe
epilepsy (TLE) is the most common form of epileptic condi-
tions in adult humans [1]. Hippocampal sclerosis, gliosis, syn-
aptic reorganization, and granular cell dispersion are the main
pathophysiological hallmarks in mesial temporal lobe epilep-
sy (MTLE) [2, 3]. The epilepsy model induced by intraperi-
toneal injection with pilocarpine reproduces the main patho-
physiological findings related to human MTLE, including the
appearance of drug-resistant seizures [4, 5]. The pilocarpine
model of epilepsy has been widely used in research and is of
major value to identify the molecular and cellular basis and
players involved in epileptogenesis [4, 5].

* Maria José da Silva Fernandes
fernandesepm@gmail.com

1 Departamento de Neurologia e Neurocirurgia, Disciplina de
Neurociência, Universidade Federal de São Paulo, Rua Pedro de
Toledo 669, 2° andar, São Paulo, SP CEP 04039-032, Brazil

2 Centro de Neurociências e Biologia Celular, Universidade de
Coimbra, Coimbra, Portugal

3 Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia,
Spain

4 Ikerbasque Basque Foundation for Science, Bilbao, Bizkaia, Spain
5 Departamento de Genética Médica, Faculdade de Medicina da

Unicamp, Campinas, SP, Brazil
6 Instituto de Saúde de Nova Friburgo, Universidade Federal

Fluminense, Nova Friburgo, RJ, Brazil
7 Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of

Medicine, University of Coimbra, Coimbra, Portugal

Purinergic Signalling (2017) 13:467–478
DOI 10.1007/s11302-017-9573-4

mailto:fernandesepm@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11302-017-9573-4&domain=pdf


The neuroinflammatory condition triggered by seizures has
been considered an important player in hyperexcitability, a
modulator of seizure threshold, and has been involved in
key processes leading to cell death cascades [6]. New therapy
approaches of TLE have been focused on brain inflammation,
highlighting the interest of purinergic P2X7 receptors
(P2X7R) as potent mediator of neuroinflammation in the ep-
ileptic brain [7–18]. P2X7R are trimeric non-selective ligand-
gated ion channels activated by ATP, permeable to mono- and
divalent cations (permeability: Ca2+ > Na+ > K+), resulting in
the rapid depolarization of the membrane [19, 20]. P2X7R
activation under pathological condition, i.e., under high level
of ATP, occurring during seizures, can induce high level of
intracellular calcium concentration, intensifying glutamate
and GABA release, promoting pro-inflammatory cytokines
release and cell death by apoptosis or necrosis [7, 9, 18,
21–23].

P2X7R have been considered an important therapeutic tar-
get in many injuries and neurological disorders, including
neuropathic pain [24, 25], spinal cord injury [26], ischemia
[27, 28], intracerebral hemorrhage, traumatic brain injury
[29], and neurodegenerative diseases such as Alzheimer’s dis-
ease [30], Huntington’s disease [31], Parkinson’s disease,
amyotrophic lateral sclerosis, multiple sclerosis, and depres-
sion [18], and also in epilepsy [19, 32, 33].

P2X7R levels are increased in the hippocampus of animal
models of experimental model of epilepsy and in human pa-
tients with TLE [12, 34–37]. There are many studies aimed at
elucidating the role of P2X7R in epilepsy using agonists and
antagonists. The activation of P2X7R with Bz-ATP (P2X7R
agonist) causes microglial activation, enhances TNF-α immu-
noreactivity, reduces astrocytes, and intensifies seizures ex-
pression [19, 38–40]. Conversely, P2X7R blockage promotes
anticonvulsant effects and reduces electroencephalographic
and behavioral seizures, IL-1β production, microglial activa-
tion, recruitment and infiltration of neutrophils into the
frontoparietal cortex, and damage resulting from seizure [14,
15, 33, 38, 41–44]. Surprisingly, P2X7R antagonists have
been described to exacerbate seizures and enhance cell death
in the hippocampal CA3 subfield in the pilocarpine and
intraamygdala kainic acid models, but do not change behav-
ioral pattern in the intraperitoneal kainic acid and picrotoxin
models of epilepsy [39, 41, 45]. Data obtained from P2X7R
knockout mice (Pfizer) [46] are controversial as the severity of
their seizures is reduced when compared to wild-type mice
[33], but they show increased susceptibility to seizures in-
duced by pilocarpine [45].

The disparities observed in epilepsy studies targeting the
pharmacology of P2X7R can be attributed to several factors,
including pharmacokinetics and pharmacodynamics of drugs,
and the different animals models and experimental conditions
used. RNA interference (RNAi) is a method that reduces the
expression of the receptor of interest, allowing studying the

direct impact in behavioral or morphological parameters be-
sides excluding pharmacological effects [47].

Despite the evidence of a positive association between
P2X7R activation, excitability, and excitotoxicity related to
epilepsy, the role of purinergic signaling needs to be further
clarified. In this study, we used in vivo RNAi intracerebral
infusion to reduce the expression of P2X7R in pilocarpine-
induced epileptic rat brain, in order to investigate the involve-
ment of this receptor in brain alterations resulting from sei-
zures, i.e., hippocampal damage, edema, and spontaneous and
recurrent seizure expression.

Methods

Animals

Adult 2-month-old male Wistar rats weighting 200–250 g
were used in this study. The animals were maintained under
standard housing conditions, with free access to water and
food, with light/dark cycle of 12 h (light from 7 a.m. to 19
p.m.), and with environment temperature kept constant be-
tween 21 ± 1 °C.

All experimental procedures were performed under the super-
vision and with the approval of our internal Ethics Committee
(Federal University of São Paulo, CEP N. 0961/10). Animal
protocols were conducted in accordance with national and inter-
national legislation (Guidelines of the Brazilian College of
Animal Experimentation, COBEA; NIH Guide for Care and
Use of Laboratory Animals), and the experiments followed the
principles outlined in the Basel Declaration [48].

Bilateral cannulas implantation

For intracerebroventricular (icv) administration of small inter-
fering RNA (siRNA) or vehicle, rats were anesthetized with
ketamine (90 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.) and
fixed to a stereotaxic apparatus. Cannulas (12 mm in length
and 0.55 mm in diameter) were stereotaxically implanted into
the lateral ventricles (from bregma: anteroposterior,
−0.08 mm; mediolateral, ±0.14 mm; dorsoventral, −0.3 mm)
and fixed to the skull with dental cement [49]. After 15 days,
the rats were injected i.p. with pilocarpine or with saline.

Pilocarpine model protocol

Animals were pretreated with methylscopolamine nitrate
(1 mg/kg, subcutaneous (sc), Sigma) to minimize peripheral
cholinergic effects of pilocarpine (diarrhea, piloerection,
orofacial automatisms associated with salivation, wink, yawn-
ing, and vibrissae contractions) [50]. Thirty minutes after pre-
treatment, they received a systemic injection of pilocarpine
hydrochloride (370 mg/kg, i.p., Merck, USA) for SE
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induction. Five hours after the SE onset, rats were treated with
diazepam (1 mg/kg, sc, Santisa) and sodium pentobarbital
(30 mg/kg, i.p., Cristália) to minimize behavioral seizures
and reduce mortality rate. Six hours after the SE onset, rats
received siRNA.

P2X7R siRNA:RVG-9DR preparation and administration
in vivo

The siRNA targeting P2X7R (antisense, 5 ′ [Phos]
CUUUAACGUCGGCUUGGGCUC [dT] [dT]-3′, and sense,
5′ [Phos] GCCCAAGCCGACGUUAAAGUA [dT] [dT]-3′)
was planned on the basis of Thomas Tuschl protocol [51], and
it was synthesized by Sigma Company.

Lyophilized single-stranded RNA oligonucleotides were
re-suspended at 100 μM in sterile RNase free water (0.1%,
v/v, DEPC in pure water), denatured, aligned (heated at 95 °C
for 5 min), and annealed through slow decrease of T °C,
obtaining double-stranded siRNA at 50 μM.

Before use, P2X7R siRNAwas complexed with RVG-9DR
(a peptide sequence derived from rabies virus glycoprotein
with nine arginine residues in the carboxy terminal) in a
1:10 M ratio (siRNA:RVG-9DR) to transfect the siRNA, pro-
tocol developed by Kumar and colleagues in 2007 [52].

Six hours after the onset of SE, 2 μl containing 0.5 μg of
siRNA:RVG-9DR were administered bilaterally icv at a flow
rate of 1 μl/min, totaling 1 μg of siRNA per animal. Control
rats received the same volume of vehicle instead of siRNA.
The dose of siRNAwas chosen based on a previous study in
rats showing maximal effect in reducing the expression of
P2X7R (60%) in the hippocampus, without any sign of neu-
rotoxicity (hind-limb paralysis, vocalization, food intake, or
neuroanatomical damage).

Western blotting

Western blot analysis was used for quantifying P2X7R in rat
hippocampi. Following the 48-h period of siRNA or vehicle
delivery, rats were decapitated and their hippocampi quickly
dissected on an iced plate, washed with cold saline to remove
blood, weighted, and stored at −80 °C.

Tissues were homogenized in lysis buffer containing
50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.1% SDS, 1%
Triton X-100, 0.02% sodium azide, and 1% protease inhibitor
cocktail (Sigma-Aldrich). Protein content was determined by
the Bradford method [53].

Samples (40 μg) were mixed with Laemmli buffer contain-
ing 0.125 M Tris (pH 6.8), 20% glycerol, 10% beta-
mercaptoethanol, 4% SDS, and 0.002% bromophenol blue,
and heated at 95 °C for 5 min. Protein was loaded on a 10%
SDS-PAGE gel and separated by electrophoresis using a Bio-
Rad system with molecular weight standards (Rainbow-GE)
at 50 V for 20 min and 90 V for 1 h. Proteins were transferred

to a polyvinylidene fluoride membrane (PVDF, Amersham
Pharmacia Biotech—Hybond P) at 110 V for 90 min (Mini-
Protean, Bio-Rad). Membranes were washed with 0.1M Tris–
Tween 20, blocked with 0.1 M Tris containing 5% skimmed
milk, and then incubated with the primary antibody rabbit
anti-P2X7 receptor (1:1000, RPA-004—Alomone Labs) at
4 °C overnight. After rinsing, the membranes were incubated
with the corresponding secondary antibody (goat anti-rabbit
IgG, Calbiochem) at a dilution of 1:2000 in 0.1 M Tris con-
taining 2% fetal bovine serum for 2 h at room temperature.
After washing them twice with 0.1 M Tris, membranes were
ready for the blocking stage to re-probingwith the monoclonal
anti-β-actin immunoglobulin (1:2000, A3854—Sigma-
Aldrich) used as internal control of the reaction. After rinsing,
bands were detected by chemiluminescence using West Pico
Super Signal® kit (Thermo Scientific), revealed in photo doc-
umentation system (Uvitec, Cambridge) and band intensity
was quantified using the UvitecBand software analysis. The
P2X7R protein level was reported as normalizedβ-actin load-
ing control.

Perfusion

Following the 48-h period after the siRNA or vehicle infusion,
rats were anesthetized with 90 mg/kg of ketamine and
10 mg/kg of xylazine (i.p.), and subjected to transcardiac per-
fusion with buffered paraformaldehyde (PFA) to fix the brain.
Using a peristaltic pump adjusted to a flow rate of 10 mL/min,
saline was perfused during 1 min followed by 250 ml of 4%
PFA. The brain tissue was post-fixed in the same solution
overnight at 4 °C, and then cryoprotected in 30% sucrose in
phosphate buffer during 3 days at 4 °C. The brains were frozen
quickly in dry ice and cut into coronal slices with a cryostat
(Leica). Slices were used for Fluoro-Jade B staining (40 μm)
and for hippocampal volume analysis (50 μm).

Fluoro-Jade B protocol

To study neuronal degeneration, we used the anionic dye
Fluoro-Jade B (FJ-B). Brain sections containing areas of in-
terest were fixed on gelatin-coated slides and dried at room
temperature. Then, the slides were immersed in absolute eth-
anol (5 min), 70% ethanol (2 min), and distilled water (2 min)
and protected from light, in 0.06% potassium permanganate
(15 min), under gentle shaking: distilled water (2 min), 0.01%
FJ-B solution plus 0.1% acetic acid (30 min), and distilled
water (three times for 2 min). Slides were dried at 50 °C,
during 10 min, in a hot plate, dehydrated in absolute ethanol
(2 min), cleared in xylene (2 min) and mounted with BVecta
Mount^ (Vector), and coverslipped, based on Schmued and
Hopkins, 2000 protocol [54].
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Volumetric study of hippocampal formation

Volumetric study was performed in slices obtained from a
segment of hippocampal formation (−1.72 to −3.84, from
bregma) from rats of both groups, 48 h after infusion of
siRNA or vehicle [55]. The studied subregions were: hilus,
suprapyramidal dentate gyrus, infrapyramidal dentate gyrus,
CA1, and CA3.

Brain slices (50 μm) obtained with 300-μm interval were
selected and incubated free floating with Hoechst 33,342
(1:10,000, Life Technologies) in PBS containing 0.2%
Triton for 3 h under shaking and protected from light. The
sections were washed, fixed on gelatin-coated slides, mounted
with Fluormont (Abcam), and coverslipped. Images were cap-
tured in an epifluorescence microscope (Axioskop 2 plus,
Zeiss), with 5× lens using Axiovision software (Zeiss). The
image processing and measurements of the regions of interest
weremade in ImageJ and Fiji-ImageJ (NIH), respectively. The
volume of selected brain regions was estimated using
Table Curve 2D v5.01 software.

Behavioral analysis

Two days after SE induction, rats were kept in individual
acrylic boxes, and video monitored 24 h, for 60 days. The
behavioral parameters analyzed were latency to the appear-
ance of the first spontaneous seizure, the number of seizures,
and the severity of seizures. The severity of seizures was de-
termined based on behavioral changes according to the scale
of Racine: (1) mouth and facial movements, (2) head nodding,
(3) forelimb clonus, (4) rearing, and (5) rearing and falling
[56].

Statistical analysis

Statistical analysis of the first spontaneous seizure latency and
the number of seizures were performed by Bt^ test (unpaired).
In the absence of normality, data were standardized by Z score
and in the absence of homogeneity (Levene’s test) were
corrected by the Welch test. The protein quantification, hip-
pocampal volume, and severity of seizures were analyzed by
two-way ANOVA, followed by Bonferroni post-test. The re-
sults with values p < 0.05 were considered significant.

Results

P2X7 protein level

According to our western blotting analysis, the Saline-siRNA
and Pilo-siRNA experimental groups showed a 43 and 37%
reduction, respectively, in P2X7R protein levels in the hippo-
campus compared to their respective control vehicle groups

(siRNA versus Vehicle, F (1, 16) = 57.71, p < 0.0001;
Bonferroni: Saline-Vehicle, p = 0.0002; Pilo-Vehicle,
p = 0.0008). No significant differences were observed in the
levels of P2X7R when comparing the Pilo and Saline groups
(F (1, 16) = 0.03151, p = 0.8613) (Fig. 1).

Neurodegeneration

Pilo-siRNA animals showed fewer FJ-B positive cells in CA1
and CA3 pyramidal cell layers as compared with the same
regions in Pilo-Vehicle treated rats, suggesting that P2X7R
knockdown caused neuroprotection in these areas, especially
in CA3 (Fig. 2). Interestingly, no significant differences were
observed in the number of FJ-B stained cells in the amygdala,
entorhinal cortex, and piriform cortex of the Pilo-siRNA
group compared to Pilo-Vehicle treated rats, indicating no
neuroprotection by siRNA in these regions (data not shown).

Hippocampal volumetry

Hippocampal formation of the Pilo-Vehicle group showed an
increased volume compared to the Saline-Vehicle group
(Bonferroni: p = 0.0249, 32%). The P2X7R siRNA did not
change the total hippocampal formation volume (F (1,
8) = 0.9792, p = 0.3514) (Fig. 3a). However, when the volume
of each region was analyzed, a significant difference was
observed.

The volume of CA3 and CA1 regions was higher in the
Pilo-Vehicle and Pilo-siRNA groups compared to their Saline
groups (CA3 Bonferroni: Saline-Vehicle, p < 0.0001, 91%;
Saline-siRNA, p = 0.0040, 19%; CA1 Bonferroni: Saline-
Vehicle, p < 0.0001, 110%; Saline-siRNA, p = 0.0035,
26%). A lower volume in these regions was observed in the

Fig. 1 Effect of siRNA in decreasing P2X7R levels, as measured by
western blotting. Percentages of P2X7R protein level of Saline-Vehicle,
Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA groups. Bars represent the
mean ± standard deviation for each group (N = 5/group). Data normalized
to β-actin. *** p < 0.001
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Fig. 2 Pilocarpine-induced neuronal death in the rat hippocampus, an
effect partially protected by P2X7R knockdown. FJ-B staining in CA1
and CA3 of rats injected with pilocarpine after intracerebroventricular

P2X7R siRNA (Pilo-siRNA) or vehicle (Pilo-Vehicle) administration.
Scale bars 100 and 20 μm
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Pilo-siRNA group compared to the Pilo-Vehicle group
(Bonferroni: p < 0.0001, CA3 −26%, CA1 −34%). The vol-
ume of CA3 was higher in the Saline-siRNA group compared
to the Saline-Vehicle group (Bonferroni: p = 0.0331, 19%)
(Fig. 3b, c).

The volume of suprapyramidal region of dentate gyrus of
the Pilo-Vehicle group was higher when compared to the
Saline-Vehicle group (Bonferroni: p = 0.0009, 62%) and
was lower in the Pilo-siRNA group compared to the Pilo-
Vehicle group (Bonferroni: p = 0.0308, −22%) (Fig. 3d).
Nevertheless, no change was observed in infrapyramidal den-
tate gyrus comparing to all groups (F (1, 8) = 0.1792,
p = 0.6832) (Fig. 3e). The volume of the hilus was lower in
the Pilo-siRNA group compared to the Saline-siRNA group
(Bonferroni: p = 0.0306, −24%) and to the Pilo-Vehicle group
(Bonferroni: p = 0.0225, −26%) (Fig. 3f).

Behavioral data

Mortality rate in the Pilo-siRNA group following SEwas 63%
lower than that in the Pilo-Vehicle group (38%). The latency
period to the appearance of the first spontaneous seizure fol-
lowing pilocarpine administration was significantly increased
in the Pilo-siRNA group when compared to the Pilo-Vehicle
(t5,238 = 4.027, p = 0.0009) (Fig. 4a). The number of sponta-
neous seizures (Racine’s scale 3–5) was significantly lower in
Pilo-siRNA group than that in the Pilo-Vehicle (t7,884 = 6.233,
p = 0.0002) (Fig. 4b). Seizure severity was classified accord-
ing to Racine’s scale 3–5. Seizure severity was decreased in
the Pilo-siRNA group when compared to the Pilo-Vehicle
(Pilo-siRNA versus Pilo-Vehicle, F (1, 36) = 59.3322,
p < 0.0001; Bonferroni: stage 3, p < 0.0001; stage 4,
p < 0.0001; stage 5, p = 0.0089), but no difference was

Fig. 3 Changes in hippocampal
volume induced by pilocarpine
and P2X7R siRNA. a
Hippocampal formation, b CA3,
c CA1, d dentate gyrus
suprapyramidal, e dentate gyrus
infrapyramidal, and f hilus of
Saline-Vehicle, Saline-siRNA,
Pilo-Vehicle, and Pilo-siRNA
groups. Bars represent the mean ±
standard deviation for each group
(N = 3/group). Interactions: a*
p < 0.05; b, c**** p < 0.0001; d,
f** p < 0.01. * p < 0.05, **
p < 0.01, *** p < 0.001, and ****
p < 0.0001
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observed between the stages (stages 3 versus 4 versus 5, F (2,
36) = 0.5134, p = 0.6028) (Fig. 4c).

Discussion

This study shows that the application of siRNA against
P2X7R, 6 h after the onset of status epilepticus (SE), is able
to reduce by 40% the expression of P2X7R in the rat

hippocampus at 48 h later. This effect resulted in hippocampal
neuroprotection, increase in the latency for the appearance of
the first spontaneous seizures, and decrease in the mortality
rate post SE, frequency and severity of the seizures, and pro-
tection from hippocampal volume changes, due to SE-induced
edema. These data reinforce the participation of P2X7R in
mechanisms underlying the increase in hyperexcitability, ede-
ma, and cell death triggered by pilocarpine-induced SE.

Previous studies performed in our group showed an in-
crease in P2X7R expression in the hippocampus of rats sub-
mitted to pilocarpine model of SE, during acute and chronic
phases of the model [12, 37]. The differential expression of
P2X7R during acute (12 h) or chronic phases (90 days), indi-
cate different roles in the progression of the epileptogenic
process. During the acute phase, P2X7R were mainly located
in glial cells, modulating the inflammatory process and hyper-
excitability, while in chronic phase, they were mainly located
in synaptic terminals modulating neurotransmitter release as
glutamate and GABA [12]. Besides, a decreased level of
P2X4R expression in CA1, CA2, CA3, hilus, and dentate
gyrus during chronic phase of Pilo model was also observed,
reflecting neuronal loss and functional alteration of reminis-
cent neurons following brain insult (SE) as a compensatory
response to ineffective GABAergic neurotransmission [12].
Normal level of P2X7R was detected during the latent period
(7 days following SE) located mainly in nerve terminals in
CA3 and the dentate gyrus [12].

The pilot study performed to determine a time curve of
P2X7R knockdown showed reduced expression of P2X7R
96 h following siRNA application, but the peak of the block-
ade was 48 h. Based on this study, the time of 48 h was chosen
for the analysis following siRNA application. Considering
that P2X7R increases significantly in glial cells at 12 and
24 h after SE [12], we can suppose that the knockdown in-
duced by siRNAwas sufficient to block microglial and astro-
cytic activation resulting in less release of cytokines in the
hippocampus which consequently contributed to the neuro-
protection as well as the late benefits observed in the Pilo-
siRNA group.

Several studies have shown that P2X7R activation in neu-
rons is associated with increased intracellular calcium (Ca2+)
and with the facilitation of glutamate release, promoting
excitotoxicity and cell death [7, 12–14, 19, 23]. In microglia,
P2X7R activation is associated with the inflammatory re-
sponse in the central nervous system through cytokines pro-
duction and release, especially interleukin-1β (IL-1β),
interleukin-18 (IL-18), tumor necrosis factor (TNF-α), signal-
ing through nuclear factor kappa B (NF-kB), nitric oxide syn-
thase (NOS) activation, free radical production, and
proapoptotic transcription factor formation [6, 7, 9, 10, 14,
15, 17–19, 21, 57]. The P2X7R activation in astrocytes has
been related to inflammatory response and facilitation of glu-
tamate release [7, 9, 12, 13, 15, 18, 19, 21, 23, 57, 58].

Fig. 4 a Latency period to the appearance of the first spontaneous seizure
of Pilo-Vehicle and Pilo-siRNA groups. b Number of spontaneous
seizures during 60 days following pilocarpine administration in Pilo-
Vehicle and Pilo-siRNA groups. Box plot represents the median, first
and third quartiles, and maximum and minimum values of each group.
c Percentage of spontaneous seizure stages 3–5 during 60 days in Pilo-
Vehicle and Pilo-siRNA groups. Bars represent the mean ± standard
deviation for each group (Pilo-Vehicle—N = 8 and Pilo-siRNA—
N = 6). *p < 0.05, ***p < 0.001, and ****p < 0.0001
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Neuronal death in pilocarpine model occurs by different
mechanisms [59]. The increase in intracellular Ca2+ resulting
from cholinergic activation triggers a cascade of reactions in-
volving proteases, lipases, and nucleases activations, and gen-
eration of free radicals as intermediate products, which in turn
can potentiate the release of glutamate and inflammatory me-
diators [50, 59, 60].

Studies have shown that the P2X7R antagonists Brilliant
Blue G (BBG) and A-438079 are neuroprotective against
damage caused by kainic acid, by reducing neuronal death
and microgliosis in the hippocampus and neocortex [41, 42].
These data corroborate other studies that also showed reduc-
tion in astrocytes loss in the molecular layer of the dentate
gyrus and frontoparietal cortex following P2X7R antagonists
oxidized ATP (OxATP) and BBG in pilocarpine model [40].
In contrast, some authors showed increased cell death in CA3
layer by using P2X7R antagonists OxATP, A-438079, and
A-740003 following pilocarpine [39], and that inhibition of
microglial activation by the P2X7R antagonists may not be
sufficient to protect neurons of the excitotoxicity caused by
SE [43]. We have shown that pilocarpine-induced SE caused
an increase in FJ-B positive cells in accordance with previous
studies [61, 62] and that the reduction in the expression of
P2X7R by siRNA was neuroprotective, mainly in CA1 and
CA3 hippocampal layers.

There are many reports in the literature showing that SE
can cause brain edema that can by itself, contribute to the
epileptogenic process [63–65], although the mechanisms un-
derlying this process are unknown. Edema resulting from sei-
zures in human or experimental model can be of two types,
cytotoxic edema and vasogenic edema [63–69]. In the cyto-
toxic edema, the glutamate hyperstimulation causes intracel-
lular Ca2+ increase and promotes cytotoxicity in neurons and
glial cells [64, 70]. Conversely, in the vasogenic edema, the
cellular signaling triggered by SE can induce pro-
inflammatory cytokines release and increases the production
of kinins [71–78]. The kinins along with the cytokines may
affect the junction of blood vessel epithelial cells and reduce
the integrity of the tight junctions in endothelial cells walls,
leading to a dysfunction of the blood brain barrier and conse-
quently increasing the vascular permeability and accumula-
tion of extracellular fluid [63, 70, 79, 80]. There are a number
of studies showing robust evidence that IL-1β released fol-
lowing seizures may be pro-convulsant in experimental
models of epilepsy [6, 14, 15, 76, 81]. According to our re-
sults, P2X7R can modulate the mechanisms involved in ede-
ma since the reduction in the expression of these receptors by
siRNA prevented the edema in hippocampal subareas as hilus,
dentate gyrus suprapyramidal, CA1, and CA3 of rats
underwent to pilocarpine-induced SE. Although the mecha-
nisms are not elucidated, the edema processes have been as-
sociated with cell death, particularly neuronal death, and hip-
pocampal atrophy [82, 83]. A positive relationship between

cerebral edema and the occurrence of spontaneous recurrent
seizures has been shown in kainic acid model, strengthening
the association of edema to epileptogenesis [65]. Knowing
that the P2X7R are involved in the inflammatory activation
following seizures, reduction in their expression by siRNA
may have caused decrease in the release of inflammatory me-
diators preventing edema and cell death, and decreasing sei-
zure expression.

Previous studies have shown that P2X7R antagonists trig-
ger anticonvulsant effect, reducing electrographic and behav-
ioral seizures, microglia activation, decrease IL-1β production
and prevent cell damage resulting from seizures [14, 15, 33,
38, 41, 42]. Studies using P2X7R (Pfizer) [46] knockout mice
also show reduction in the severity of seizures compared to
wild-type mice [33].

Despite the evidence that P2X7R blockade by antagonists
triggers protective mechanisms following seizures, in appar-
ent contradiction, recent studies by us in collaboration with
other group demonstrate a neuroprotective effect of P2X7R
antagonists BBG and AZ10606120 resulting in increased ex-
pression of spontaneous seizures in rat underwent to
pilocarpine-induced SE [84, 85]. According to the authors,
the blockade of P2X7R by the negative allosteric modulator
AZ10606120 may have caused hilar neuroprotection and fa-
vored the survival, ectopic migration, and differentiation of
neuronal progenitor cells (NPCs) expressing P2Y1 and
P2X7 receptors, which in turn integrate abnormal circuits in
the hippocampus, contributing with excitability [85]. Similar
hypothesis that neurogenesis contributes to worsen seizures
was presented previously [86]. P2X7R have been shown to
modulate mechanisms involved with apoptosis/necrosis and
neuronal differentiation of NPCs [87–90], while P2Y1 recep-
tors modulate proliferation and migration of NPCs [91–93].
Klaft et al. [94] also found that P2X7R antagonists had a
minor antiepileptic effect in medial entorhinal cortex on rats
subjected to pilocarpine-induced epilepsy.

The heterogeneity between pharmacological studies using
antagonists may occur due to a number of factors including
specificity, dose, and variability of the pharmacological agents
tested; the use of different experimental models of epilepsy;
route of administration; and temporal window in which stud-
ies are made. However, our pharmacological data using the
P2X7 antagonist AZ10606120 are in opposite with the present
data using siRNA to knockdown P2X7R in pilocarpine mod-
el. The results are intriguing and require further studies to
elucidate molecular mechanisms involved with P2X7R block-
ade in epileptic process. We also do not have data about the
participation of other P2 receptors in the changes obtained
with the P2X7R knockdown, being a subject to be studied in
the future.

As stated in this work, there are many studies showing
beneficial effect of P2X7R blockade on epilepsy, either by
pharmacological antagonists or by genetic manipulation
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(transgenic, knockout, or RNAi) and attenuation of inflamma-
tory cascades are among the mechanisms involved. However,
there are few studies elucidating the differences between
mechanisms triggered by one or other methodological condi-
tion and it is very important to increase the knowledge of the
role of this receptor in epilepsy.

The main finding of this study was that knockdown of
P2X7R by the administration of siRNA 6 h after SE onset
reduced the mortality rate, resulted in little or no hippocampal
edema, increased the latency to the onset of the first sponta-
neous seizure, and reduced the number and severity of spon-
taneous seizures in a later period. In addition, knockdown of
P2X7R by siRNA induced important neuroprotection in the
hippocampus of rats underwent to the pilocarpine model of
SE. Further studies are required to elucidate the mechanisms
associated with the knockdown of P2X7R during SE induced
by pilocarpine resulting in attenuation of changes triggered by
seizures.

Conclusion

Collectively, our data shows that the P2X7R may have an
important role in the pathophysiology of pilocarpine-induced
epilepsy, since the inhibition of the expression of these recep-
tors in vivo, improved edema, and had neuroprotective. These
data may have clinical relevance and highlight the therapeutic
potential of adjunct treatment of epilepsy with P2X7R expres-
sion modulators.
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