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Behavioral impairment in 
SHATI/NAT8L knockout mice 
via dysfunction of myelination 
development
Kazuyuki Sumi1, Kyosuke Uno1, Hiroshi Noike1, Takenori Tomohiro2, Yasumaru Hatanaka2, 
Yoko Furukawa-Hibi3, Toshitaka Nabeshima4,5, Yoshiaki Miyamoto1 & Atsumi Nitta   1

We have identified SHATI/NAT8L in the brain of mice treated with methamphetamine. Recently, it has 
been reported that SHATI is N-acetyltransferase 8-like protein (NAT8L) that produces N-acetylaspatate 
(NAA) from aspartate and acetyl-CoA. We have generated SHATI/NAT8L knockout (Shati −/−) mouse 
which demonstrates behavioral deficits that are not rescued by single NAA supplementation, although 
the reason for which is still not clarified. It is possible that the developmental impairment results 
from deletion of SHATI/NAT8L in the mouse brain, because NAA is involved in myelination through 
lipid synthesis in oligodendrocytes. However, it remains unclear whether SHATI/NAT8L is involved in 
brain development. In this study, we found that the expression of Shati/Nat8l mRNA was increased 
with brain development in mice, while there was a reduction in the myelin basic protein (MBP) level 
in the prefrontal cortex of juvenile, but not adult, Shati−/− mice. Next, we found that deletion of 
SHATI/NAT8L induces several behavioral deficits in mice, and that glyceryltriacetate (GTA) treatment 
ameliorates the behavioral impairments and normalizes the reduced protein level of MBP in juvenile 
Shati−/− mice. These findings suggest that SHATI/NAT8L is involved in myelination in the juvenile 
mouse brain via supplementation of acetate derived from NAA. Thus, reduction of SHATI/NAT8L 
induces developmental neuronal dysfunction.

SHATI has been identified as a novel molecule from the nucleus accumbens (NAc) of mice treated with 
methamphetamine1. It was reported that SHATI is N-acetyltransferase 8-like protein (NAT8L) that produces 
N-acetylaspatate (NAA) from aspartate and acetyl-CoA2,3. Here, we describe SHATI/NAT8L instead of SHATI.

Magnetic resonance spectroscopy of the human brain shows a large amount of NAA signal. Therefore NAA 
is often used as a putative neuronal marker. Moreover, it has been reported that NAA is decreased in psychiatric 
disorders such as schizophrenia, attention deficit hyperactivity disorder, and drug dependence4–6. NAA is used 
for the production of N-acetylaspartylglutamate (NAAG) in neuronal cells in mammals, and NAAG is a highly 
selective endogenous metabotropic glutamate receptor (mGluR) 3 agonist7,8. Previously, we have reported that 
overexpression of SHATI/NAT8L in the NAc of mice attenuates the response to METH through the mGluR3 sig-
naling activated by NAAG9. Furthermore, NAA is metabolized to aspartate and acetate by aspartoacylase (ASPA) 
in oligodendrocytes in the brain. Then acetate is converted to acetyl-CoA and used for lipid synthesis and mye-
lination10. Moreover, it has reported that deletion of ASPA in the mice results in impaired postnatal myelination 
and this mouse is used for the model of Canavan disease, defects in NAA metabolism11. These reports suggest that 
SHATI/NAT8L has multiple roles in the central nervous system via the synthesis of NAA.

Recently, it was reported that SHATI/NAT8L knockout (Shati−/−) mice show decreased NAA content in the 
brain, reduced social interaction and shortened immobility time in the forced swimming test12. Moreover, it was 
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also reported that the decreased level of brain-derived neurotrophic factor (BDNF) mRNA in the prefrontal cor-
tex of Shati−/− mice13. Importantly, single injection of NAA into ventricles could not completely improve behav-
ioral deficits of Shati−/− mice, although the impairment in Shati+/− mice was ameliorated by the same treatment 
with NAA. It is possible that the behavioral deficits caused by complete deletion of SHATI/NAT8L are related to 
the developmental impairment, because NAA is involved in myelination through lipid synthesis in oligoden-
drocytes, although the number of neuronal cell are not changed in Shati−/− mice14,15. In the brain, neuron-glia 
communication plays regulatory roles in the central nervous system functions16. In particular, myelin supports 
neuronal signaling but dysfunction of myelin induces reduced social interaction and other behavioral deficits in 
mice17,18. However, it remains unclear whether SHATI/NAT8L is involved in the development of the brain espe-
cially, in myelination. There are several reports that impaired differentiation of myelination and oligodendrocytes 
in the prefrontal cortex induces depressive social behaviors, and that the prefrontal cortex has been proposed to 
be an important brain region for social interaction in mice18,19.

In the present study, we investigated the change in the expression of Shati/Nat8L mRNA in developing brain, 
and found that deletion of SHATI/NAT8L altered the myelin basic protein (MBP) level in the prefrontal cortex 
of juvenile, but not adult, mice. These findings suggest that SHATI/NAT8L is involved in brain development. 
Next, we demonstrated that deletion of SHATI/NAT8L induces several behavioral deficits such as hyperactivity, 
reduction of social interaction, and induction of impulsiveness. Moreover, glyceryltriacetate (GTA), a supply of 
acetate, treatment during the juvenile period ameliorates hyperactivity, reduced social interaction and impul-
siveness caused by deletion of SHATI/NAT8L. Furthermore, reduced level of MBP in juvenile Shati−/− mice was 
normalized by GTA treatment. These results suggest that SHATI/NAT8L might be involved in myelination in the 
juvenile mice brain via supplementation of acetate derived from NAA, and that the hyperactivity, social deficits 
and impulsiveness in Shati−/− mice are induced by NAA deficit. Taken together with our new findings, NAA and/
or SHATI/NAT8L are required for myelination in the developing brain of mice, and their deficit could induce 
behavioral deficits. These factors could provide new targets for the treatment of psychiatric disorders, such as 
attention deficit hyperactivity disorder.

Results
Expression of Shati/Nat8l mRNA increases with brain development in mice.  We collected the 
whole brain for the measurement of Shati/Nat8l mRNA during brain development, because the brain develop-
ment began from embryonic state and Shati/Nat8l mRNA is expressed in whole brain. To analyze the expres-
sion of Shati/Nat8l, we first quantified Shati/Nat8l mRNA levels in the whole brain on various days at the age 
of embryonic (E) 15.5, postnatal (P) 7, 14, 21, 42 and 56. Shati/Nat8l mRNA is strongly expressed only after 
birth, while Shati/Nat8l mRNA expression level during the embryonic stage and juvenile stage were very 
low (Fig. 1a; E15.5 = 8.72 ± 1.39%, P7 = 100.00 ± 19.67%, P14 = 205.78 ± 28.58%, P21 = 390.11 ± 24.09%, 
P42 = 572.32 ± 40.62% and P56 = 681.96 ± 46.70%; Ct value of 36B4: E15.5 = 31.8 ± 0.3, P7 = 31.7 ± 0.5, 
P14 = 31.2 ± 0.3, P21 = 31.7 ± 0.1, P42 = 31.9 ± 0.2, P56 = 32.0 ± 0.2; Ct value of Shati: E15.5 = 38.4 ± 0.1, 
P7 = 36.2 ± 0.3, P14 = 34.6 ± 0.1, P21 = 34.2 ± 0.1, P42 = 33.8 ± 0.2, P56 = 33.3 ± 0.3). These findings indicate 
that expression of Shati/Nat8l mRNA increases with whole brain development in mice.

Deletion of Shati/Nat8l altered the MBP level in the brain of juvenile, but not adult mice.  We 
next investigated whether the deletion of SHATI/NAT8L affected the myelin basic protein (MBP) level in the 
prefrontal cortex, which is involved in the myelination and emotional behaviors in mice17,18. To account for sev-
eral isoforms of MBP, we detected protein bands from 10 kDa to 25 kDa in the Western blot analysis as previous 
report20. Immunohistochemical analysis and Western blotting showed the expression of MBP in the prefron-
tal cortex of juvenile (3 weeks old) mice was decreased in Shati−/− mice compared with that of Shati+/+ mice 
(Fig. 1b and d; Shati+/+ mice = 1.00 ± 0.13, Shati−/− mice = 0.66 ± 0.09, t4 = 4.754, p < 0.05). On the other hand, 
the expression of MBP in the prefrontal cortex of the adult (10 weeks old) mice was unchanged in Shati−/− mice 
(Fig. 1c,e; Shati+/+ mice = 1.00 ± 0.10, Shati−/− mice = 0.92 ± 0.13, t4 = 2.483, n.s.). These findings indicate that 
SHATI/NAT8L plays an important role in the regulation of myelin state in the brain of juvenile mice.

GTA treatment ameliorated deficit of social interaction caused by deletion of SHATI/NAT8L 
in mice.  We investigated whether the behavioral deficits observed in Shati−/− mice12,13 were ameliorated by 
acetate supplementation, because NAA which synthesized by SHATI/NAT8L is metabolized to aspartate and 
acetate by aspartoacylase in oligodendrocytes. For acetate supplementation, we used GTA which metabolized to 
acetate and distributed to the brain rapidly after oral administration as previous reports21,22. Firstly, we assessed 
the validity of behavioral test in Shati−/− mice (Supplemental Fig. 1). In the locomotor activity test to check 
the change of spontaneous movement, Shati−/− mice showed higher activity than Shati+/+ mice (Supplemental 
Fig. 1A,B; Shati+/+ mice = 23132.88 ± 981.77 counts, Shati−/− mice = 26662.53 ± 1000.57 counts, t14 = 2.486, 
p < 0.05). Next, we reconfirmed the memory by the deletion of SHATI/NAT8L. In the Y-maze test, there was 
no difference in spontaneous alternation between Shati+/+ and Shati−/− mice (Supplemental Fig. 1C; Shati+/+ 
mice = 71.06 ± 1.74%, Shati−/− mice = 69.18 ± 2.80%, t8 = 0.3683, n.s.). Furthermore, in the three-chambered 
social interaction test to investigate the social behavior, Shati−/− mice showed reduced social interaction to 
a stranger mice compared with Shati+/+ mice while it showed increased interaction to object compared with 
Shati−/− mice (Supplemental Fig. 1D; Stranger; Shati+/+ mice = 63.63 ± 1.78%, Shati−/− mice = 49.80 ± 2.54%, 
t8 = 4.599, p < 0.001). Moreover, in the elevated plus maze test to test impulsivity, Shati−/− mice spent longer 
in the open arms compared with Shati+/+ mice (Supplemental Fig. 1E; Shati+/+ mice = 34.97 ± 2.63 s, Shati−/− 
mice = 81.80 ± 8.36 s, t8 = 5.463, p < 0.001). Taken together, Shati−/− mice showed hyper locomotion, impulsivity 
and social deficits. These results are agreed with our previous publications12,13. We treated mice with GTA or 
vehicle (Veh) from the age of P7 to the age of 8 weeks old (Fig. 2a). After GTA treatment, behavioral experiments 
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were performed in the following order; locomotor activity, social interaction test and elevated plus-maze test. 
GTA normalized locomotor activity of Shati−/− mice as the level of Shati+/+ mice groups, although Shati−/− mice 
showed higher locomotor activity compared with Shati+/+ mice (Fig. 2b,c; Shati+/+/Veh mice = 22917.3 ± 1359.6 
counts, Shati−/−/Veh mice = 26761.3 ± 999.6 counts, Shati+/+/GTA mice = 24406.2 ± 1419.8 counts, Shati−/−/
GTA mice = 24556.6 ± 1302.8 counts; Shati+/+/Veh mice vs. Shati−/−/Veh mice, F3,39 = 2.862, p < 0.05). In 
the three-chambered social interaction test, reduced social interaction of Shati−/− mice was rescued to the 
level of Shati+/+ mice by GTA treatment (Fig. 2d; Strenger; Shati+/+/Veh mice = 63.91 ± 1.62%, Shati−/−/Veh 
mice = 50.06 ± 2.29%, Shati+/+/GTA mice = 64.63 ± 1.47%, Shati−/−/GTA mice = 63.11 ± 1.69%; Shati+/+/
Veh mice vs. Shati−/−/Veh mice F3,47 = 5.551; p < 0.001, Shati−/−/Veh mice vs. Shati−/−/GTA mice, F3,47 = 5.188, 
p < 0.001; Shati+/+/GTA mice vs. Shati−/−/GTA mice, F3,47 = 0.3627, n.s). Similarly, the increased time that 
Shati−/− mice spent the open arms in the elevated plus maze compared with Shati+/+ was normalized by GTA 
treatment (Fig. 2e; Shati+/+/Veh mice = 38.49 ± 27.7 s, Shati−/−/Veh mice = 81.62 ± 6.75 s, Shati+/+/GTA 
mice = 49.49 ± 3.14 s, Shati−/−/GTA mice = 52.16 ± 3.69 s; Shati+/+/Veh mice vs. Shati−/−/Veh mice, F3,47 = 6.608, 
p < 0.001; Shati−/−/Veh mice vs. Shati+/+/GTA mice, F3,47 = 4.923, p < 0.001; Shati−/−/Veh mice vs. Shati−/−/GTA 
mice, F3,47 = 4.514, p < 0.001). To investigate the effect of NAA on the brain of the adult mice, we administrated 
NAA for the mice into the cerebral ventricle at every test day. In the social interaction test, there was no difference 
of the approach time of Shati−/−/Veh mice and Shati−/−/NAA mice (Fig. 3a; Shati+/+/Veh mice = 69.04 ± 3.20%, 
Shati−/−/Veh mice = 52.11 ± 2.84%, Shati+/+/NAA mice = 65.28 ± 3.78%, Shati−/−/NAA mice = 53.20 ± 3.05%; 
Shati+/+/Veh mice vs. Shati−/−/Veh mice, F3,31 = 5.268, p < 0.01; Shati+/+/Veh mice vs. Shati−/−/NAA mice, 
F3,31 = 4.926, p < 0.05; Shati−/−/Veh mice vs. Shati+/+/NAA mice, F3,31 = 4.097, p < 0.05). Moreover, to investigate 
which period is important for the affection of the behavioral deficits in Shati−/− mice, we only treated GTA for 
the mice from postnatal day 7 to 21. GTA normalized social interaction of Shati−/− mice as the level of Shati+/+ 
mice groups, although Shati−/− mice showed reduced social interaction compared with Shati+/+ mice (Fig. 3b; 
Shati+/+/Veh mice = 61.40 ± 1.81%, Shati−/−/Veh mice = 50.71 ± 1.71%, Shati+/+/GTA mice = 60.32 ± 2.02%, 
Shati−/−/GTA mice = 59.18 ± 1.40%; Shati+/+/Veh mice vs. Shati−/−/Veh mice, F3,31 = 6.573, p < 0.001; Shati−/−/
Veh mice vs. Shati+/+/GTA mice, F3,31 = 5.905, p < 0.01; Shati−/−/Veh mice vs. Shati−/−/GTA mice, F3,31 = 5.199, 
p < 0.01). We also reported that the level of BDNF mRNA in the prefrontal cortex of Shati−/− mice is decreased 
compared with that of Shati+/+ mice13. Therefore, we also measured the level of BDNF mRNA in Shati+/+ and 

Figure 1.  Expression of Shati/Nat8l mRNA was increased depending on the brain development and SHATI/
NAT8L affects the expression of MBP. (a) Real-time RT-PCR analysis of Shati/Nat8l mRNA in whole brains 
of mice was performed. To standardize the PCR products, we used primers for 36B4 as an internal control. 
The Shati/Nat8l mRNA levels were expressed as the percentage relative to P7 expression. Values represent the 
mean ± S.E.M. (n = 3). (e) embryonic day, P: postnatal day. (b,c) The expression pattern of MBP in juvenile 
(3 weeks old) and adult (10 weeks old) Shati+/+ and Shati−/− mice was detected by immunohistochemistry 
analysis. Scale bars in the figure = 100 μm (d,e) The expression pattern of MBP in between juvenile and adult 
Shati+/+ and Shati−/− mice was detected by Western blot analysis. Values represent the mean ± S.E.M. (n = 5). 
*p < 0.05 vs. Shati+/+ mice (Student’s t test). Full-length blots are presented in Supplemental Figs S2 and 3.
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Shati−/− mice treated with GTA. The expression of BDNF mRNA in Shati−/− mice was significantly decreased 
compared with Shati+/+ mice similar to the previous report13, and GTA treatment from P7 to P21 normal-
ized the level of BDNF mRNA in Shati−/− mice (Fig. 3c; Shati+/+/Veh mice = 100 ± 13.4%, Shati−/−/Veh 
mice = 65.5 ± 8.3%, Shati+/+/GTA mice = 107.3 ± 12.4%, Shati−/−/GTA mice = 96.1 ± 12.1%; Shati+/+/ Veh mice 
vs. Shati−/−/Veh mice, F3,31 = 3.526, p < 0.05; Shati−/−/Veh mice vs. Shati+/+/GTA mice, F3,31 = 4.274, p < 0.01; 
Shati−/−/Veh mice vs. Shati−/−/GTA mice, F3,31 = 3.128, p < 0.05). These findings indicate that GTA treatment 
ameliorates the behavioral deficits and reduction of BDNF mRNA caused by deletion of SHATI/NAT8L in mice.

GTA treatment from P7 to P21 affected the myelination in the brain of P21 Shati−/− mice.  The 
expression level of MBP, one of indicators of myelin, was reduced in Juvenile of Shati−/− mice (Fig. 1b and d). 
Next, to examine whether decreased MBP in juvenile Shati−/− mice was ameliorated by GTA treatment, we 
performed Western blotting analysis to compare MBP level in the brain of Shati−/− mice after GTA treatment. 
Western blots showed that GTA treatment rescued the decreased protein level of MBP in Shati−/− mice (Fig. 4a,b; 
Shati+/+/Veh mice = 1.00 ± 0.11, Shati−/−/Veh mice = 0.67 ± 0.07, Shati+/+/GTA mice = 1.05 ± 0.09, Shati−/−/
GTA mice = 1.01 ± 0.12; Shati+/+/ Veh mice vs. Shati−/−/Veh mice, F3,27 = 4.272, p < 0.01; Shati−/−/Veh mice vs. 
Shati+/+/GTA mice, F3,27 = 4.877, p < 0.001; Shati−/−/Veh mice vs. Shati−/−/GTA mice, F3,27 = 4.422, p < 0.01). 
To investigate detail the myelin condition in the brain of Shati+/+ and Shati−/− mice, we used electron micros-
copy (Fig. 4c). There is no difference in the g-ratio between Shati+/+ and Shati−/− mice (Fig. 4d; Shati+/+/Veh 
mice = 0.627 ± 0.002, Shati−/−/Veh mice = 0.625 ± 0.020, Shati+/+/GTA mice = 0.636 ± 0.023, Shati−/−/GTA 
mice = 0.640 ± 0.020; Shati+/+/ Veh mice vs. Shati−/−/Veh mice, vs. each groups n.s.). On the other hand, the 

Figure 2.  GTA treatment ameliorates reduced behavioral deficits caused by the deletion of SHATI/NAT8L. 
(a) GTA treatment and several behavioral experiments were performed following this schedule. After GTA 
treatment, behavioral experiments were performed in the following order; locomotor activity, social interaction 
test and elevated plus-maze test. (b,c) A difference in basal locomotor activity was observed in a novel 
environment between Shati+/+ and Shati−/− mice. On the other hand, GTA itself treatment did not affect the 
locomotor activity in Shati+/+ mice. Veh: vehicle, GTA: glyceryltriacetate. Values represent the mean ± SEM. 
(n = 10). *p < 0.05 vs. Shati+/+/Veh mice (ANOVA followed by Bonferroni’s post-hoc test). (d) In the three-
chambered social interaction test, Shati+/+ mice were more interested in a stranger mouse compared with 
Shati−/− mice. Values represent the mean ± SEM. (n = 12). ***p < 0.001 vs. Shati+/+/Veh mice, ###p < 0.001 vs. 
Shati−/−/Veh mice (ANOVA followed by Bonferroni’s post-hoc test) (e) A difference in the duration of time 
spent in the open arms of the elevated plus-maze test was observed, indicating a difference in anxiety-like 
behavior between Shati−/− and Shati+/+ mice. Values represent the mean ± S.E.M. (n = 12). ***p < 0.001 vs. 
Shati+/+/Veh mice, ###p < 0.001 vs. Shati−/−/Veh mice (ANOVA followed by Bonferroni’s post-hoc test). Other 
data of behavioral experiments are represented in Supplemental Fig. S1.
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number of myelinated nerve fiber in the prefrontal cortex of Shati−/− mice were significantly decreased compared 
with Shati+/+ mice (Fig. 4e Shati+/+/Veh mice = 0.112 ± 0.005 /µm2, Shati−/−/Veh mice = 0.049 ± 0.005/µm2, 
Shati+/+/GTA mice = 0.106 ± 0.005/µm2, Shati−/−/GTA mice = 0.081 ± 0.005; Shati+/+/ Veh mice vs. Shati−/−/Veh 
mice, F3,179 = 9.063, p < 0.001; Shati+/+/Veh mice vs. Shati−/−/GTA mice, F3,179 = 4.526, p < 0.001; Shati−/−/Veh 
mice vs. Shati+/+/GTA mice, F3,179 = 8.176, p < 0.001; Shati−/−/Veh mice vs. Shati−/−/GTA mice, F3,179 = 3.639, 
p < 0.01). GTA treatment recovered the number of myelinated nerve fiber partially (Fig. 4e). Nevertheless the 
reduction of myelination in Shati−/− mice, we could not detect the TUNEL positive cell in the brain of juve-
nile and adult Shati−/− mice, respectively (Supplemental Fig. 5). Moreover, we performed Immunostaining of 
marker protein to confirm the number of cell. There is no difference in the number of cells between the brain 
of Shati+/+ and Shati−/− mice (Supplemental Figs 6, 7; Olig2 positive cell, juvenile Shati+/+ mice = 277 ± 23 
cells/cm2, juvenile Shati−/− mice = 284 ± 17 cells/cm2 adult Shati+/+ mice = 303 ± 24 cells/cm2, adult Shati−/− 
mice = 295 ± 23 cells/cm2; NeuN positive cell, juvenile Shati+/+ mice = 1343 ± 66 cells/cm2, juvenile Shati−/− 
mice = 1318 ± 82 cells/cm2, adult Shati+/+ mice = 1311 ± 127 cells/cm2, adult Shati−/− mice = 1235 ± 81 cells/cm2; 
Iba1 positive cell, juvenile Shati+/+ mice = 233 ± 16 cells/cm2, juvenile Shati−/− mice = 232 ± 19 cells/cm2, adult 
Shati+/+ mice = 254 ± 9 cells/cm2, adult Shati−/− mice = 245 ± 13 cells/cm2; GFAP positive cell, juvenile Shati+/+ 
mice = 138 ± 16 cells/cm2, juvenile Shati−/− mice = 145 ± 23 cells/cm2, adult Shati+/+ mice = 116 ± 16 cells/cm2, 
adult Shati−/− mice = 110 ± 16/cm2). These results indicate that dysfunction of myelination did not induce apop-
tosis in Shati−/− mice. Next, we examined the expression of SHATI/NAT8L related genes, ASPA and ATP citrate 
lyase. The expression of ASPA mRNA was no difference in the prefrontal cortex between juvenile and adult 
Shati+/+ and Shati−/− mice (Fig. 5a,d; A Shati+/+ mice = 100 ± 6.21%, Shati−/− mice = 99.2 ± 7.32%, t3 = 0.08488, 
n.s., D Shati+/+ mice = 100 ± 20.00, Shati−/− mice = 127.4 ± 21.77%, t3 = 0.9269, n.s.). However, the expression 
of ATP citrate lyase mRNA in the prefrontal cortex of Shati−/− mice was significantly decreased in the juvenile, 
but not the adult (Fig. 5b,e B Shati+/+ mice = 100 ± 7.13%, Shati−/− mice = 44.30 ± 8.14%, t3 = 3.461, p < 0.05; E 
Shati+/+ mice = 100 ± 13.89%, Shati−/− mice = 102.15 ± 21.19%, t3 = 0.9632, n.s.). To assess the level of acetate 
in the juvenile and adult brain of Shati+/+ and Shati−/− mice, we performed an acetate assay using an acetate 
colorimetric assay kit. The level of acetate in the juvenile prefrontal cortex was found to be decreased in Shati−/− 
mice compared with Shati+/+ mice (Fig. 5c; Shati+/+ mice = 0.72 ± 0.01 µmol/g tissue, Shati−/− mice = 0.62 ± 0.01 
µmol/g tissue, t2 = 6.551, p < 0.05). On the other hand, there was no difference in the acetate level in the 
adult prefrontal cortex between Shati+/+ and Shati−/− mice (Fig. 5F; Shati+/+ mice = 0.69 ± 0.05, Shati−/− 
mice = 0.62 ± 0.01, t3 = 1.476, n.s.). These results indicate that the myelination in the brain of Shati−/− mice is 
significantly delayed compared with that of Shati+/+ mice and GTA treatment ameliorates these impairments.

Discussion
Although only SHATI/NAT8L was identified as N-acetyltransferase in brain2,3, NAA and NAAG are detected in 
the frontal cortex of mice brains. We also investigated the NAA and NAAG contents in Shati+/+ and Shati−/− mice 
by liquid chromatography-mass spectrometry (LC-MS), which is much more sensitive than HPLC methods9,12. 

Figure 3.  Behavioral deficit in Shati−/− mice was not recovered by NAA repeated administration. (a) In three-
chambered social interaction test, the mice were administrated NAA into the cerebral ventricle each test days. 
Shati−/− mice were more interested to a novel object, but not to a stranger mouse compared with Shati+/+ mice. 
NAA repeated administration did not ameliorates reduced behavioral deficits in Shati−/− mice. Values represent 
the mean ± SEM. (n = 8). **p < 0.01, *p < 0.05 vs. Shati+/+/Veh mice, #p < 0.05 vs. Shati−/−/Veh mice (ANOVA 
followed by Bonferroni’s post-hoc test) (b) GTA was treated orally to Shati+/+ and Shati−/− pups from postnatal 
day 7 to 21. Shati−/− mice showed reduced social interaction, but it was ameliorated by juvenile GTA treatment. 
Values represent the mean ± SEM. (n = 8). ***p < 0.001 vs. Shati+/+/Veh mice, ##p < 0.01 vs. Shati−/−/Veh mice 
(ANOVA followed by Bonferroni’s post-hoc test) (c) BDNF mRNA levels were measured by Real-time RT-PCR 
analysis. The difference in the level of BDNF mRNA between Shati+/+ and Shati−/− mice was detected, but GTA 
treatment rescue these difference. Values represent the mean ± S.E.M. (n = 8) *p < 0.05 vs. Shati+/+/Veh mice, 
#p < 0.05, ##p < 0.01 vs. Shati−/−/Veh mice (ANOVA followed by Bonferroni’s post-hoc test).
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NAA was markedly decreased and NAAG was completely knocked out in Shati−/− mice (Sumi, Tomohiro, 
Hatanaka, Nitta unpublished data). Although the synthase of NAA is considered to be only SHATI/NAT8L, the 
result from LC-MS experiments also indicates the role of an unknown enzyme in NAA production in the brain. 
Further analysis is needed to elucidate the mechanisms of NAA production.

In the present study, we observed expression of Shati/Nat8l mRNA increases with brain development in mice 
(Fig. 1a). This result indicates that the function of SHATI/NAT8L is important for the brain after birth. To inves-
tigate the function of SHATI/NAT8L in the brain development, we checked the level of MBP in the juvenile and 
adult brain. Interestingly, deletion of SHATI/NAT8L altered the MBP level in the brain of juvenile, but not adult, 
mice (Fig. 1d,e). Our result is consisted with previous report that the MBP level in the adult brain of Shati−/− mice 
is no change compared with Shati+/+ mice23. These results suggest that SHATI/NAT8L could be involved in the 
myelination in the juvenile mouse brain.

We have previously reported that a shorten immobility of Shati+/− mice in the forced swimming test was 
ameliorated by a single intracerebroventricular injection of NAA12. On the other hand, the same treatment of 
NAA could not completely normalize the behavioral deficits seen in Shati−/− mice, the reason for which is still 
unclear12. In the present study, we treated NAA into intracerebroventricules for adult Shati−/− mice repeatedly, 
but NAA did not improve behavioral deficit (Fig. 3b). These results indicate that treatment of NAA for adult 
mice dose not rescue the behavioral deficits of Shati−/− mice. We had also considered it is important to investi-
gate the effect of NAA on rescuing myelination in juvenile mice. It was an important point whether treatment 
of NAA from jugular stage could rescue the behavioral deficits in adult Shati−/− mice. However, NAA could not 
be penetrated from periphery to brain by using intraperitoneal injection although acute and repeated NAA oral 
treatment did not show toxicity24,25. Moreover, it is technically difficult to inject to ventricles of mice in juvenile 
stage, since their brains are too small and brittle. NAA is metabolized to aspartate and acetate by ASPA in oligo-
dendrocytes in the brain. Then acetate is converted to acetyl-CoA and used for lipid synthesis and myelination. 
Moreover, GTA is metabolized to acetate and rapidly distribute to the brain after oral administration as previous 
reports21,22. Hence, we investigated the roles of NAA in behavioral deficits using Shati−/− mice treated with GTA, 
the acetate trimester of glycerol, from P7 to P56. Interestingly, GTA treatment normalized MBP level in the brain 
of juvenile mice and ameliorated reduced social interaction caused by deletion of SHATI/NAT8L in adulthood 

Figure 4.  GTA treatment normalized the myelin in the brain of juvenile mice. (a) The expression pattern of 
MBP between Shati+/+ and Shati−/− mice was detected by Western blot analysis. b) GTA treatment revealed 
the decreased expression of MBP in the brain of juvenile Shati−/− mice. Values represent the mean ± S.E.M. 
(n = 7). **p < 0.01 vs. Shati+/+/Veh mice, ##p < 0.01, ###p < 0.001 vs. Shati−/−/Veh mice (ANOVA followed by 
Bonferroni’s post-hoc test). Full-length blots are presented in Supplementary Fig. S4. (c) Electron micrographs 
of axons in the PFC were showed. Scale bar, 2.0 μm. (d) There is no difference in g ratio of the PFC between each 
mice group. Values represent the mean ± S.E.M. (n = 210 axons). (e) The number of myelinated nerve fiber in 
mice were indicated. GTA treatment reversed the decreased number of myelinated nerve fiber in the brain of 
juvenile Shati−/− mice. Values represent the mean ± S.E.M. (n = 45) ***p < 0.001, ###p < 0.001, ##p < 0.01 vs. 
Shati−/−/Veh mice (ANOVA followed by Bonferroni’s post-hoc test).
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(Fig. 2). Furthermore, to investigate the critical period that affects the behavioral deficits in Shati−/− mice, we 
treated GTA for mice from P7 to P21 until weaning. GTA treatments improve reduced social interaction of adult 
Shati−/− mice. Furthermore, the level of acetate in the juvenile prefrontal cortex was found to be decreased in 
Shati−/− mice compared with Shati+/+ mice (Fig. 5c), suggesting that the presence of acetate in the juvenile period 
is important for social behavior.

There are several reports that impaired or delayed myelination in the prefrontal cortex induces reduced social 
interaction in adult mice18,19. Also absence of NAA and NAAG is involved in delayed myelination in patients 
with hypoacetylaspartia26. On the other hand, it was reported that BDNF signaling in the developmental brain is 
involved myelination27,28. Previously, it was reported that the levels of BDNF mRNA in the prefrontal cortex were 
decreased in Shati−/− mice13, GTA treatment for Shati−/− mice normalized the decrease of BDNF mRNA and MBP 
level (Figs 3c, 4a,b). Moreover, by using electron microscopy analysis, myelinated nerve filers of Shati−/− mice were 
decrease compared with that of Shati+/+ mice although g- ratio of each groups were not changed. (Fig. 4c,d,e). As 
shown in Supplemental Figs 5–7, the dysfunction of myelination did not induce apoptosis in Shati−/− mice. Hence, 
these results show possibility that the recovery of behavior deficits and delayed myelination in Shati−/− mice by 
GTA treatment is associated with normalization of BDNF mRNA level. There is no report that acetate or GTA 
could directly affect expression of BDNF. Therefore, we assume that the normalization of BDNF mRNA level in 
Shati−/− mice treated with GTA might indicate amelioration of neuronal activity due to impairment of myelination 
in the jugular stage of the Shati−/− mice. BDNF mRNA expression is regulated neuronal activity29.

We have previously reported that SHATI/NAT8L is associated with neurite elongation and the ATP synthetic 
pathway via NAA synthesis14. SHATI/NAT8L is expressed in the mitochondria of neuronal cells, and NAA syn-
thesized by SHATI/NAT8L is associated with the tricarboxylic acid cycle related to metabolism in neurons14. 
Further, NAA is metabolized to acetate and aspartate in the oligodendrocytes. Hence, the ameliorative effect of 
acetate derived from GTA on the behavioral deficits is hypothesized that it acts directly at oligodendrocytes. In 
the present study, we checked the expression of ASPA and ATP citrate lyase mRNA and acetate contents to inves-
tigate the effect on utilization of NAA in oligodendrocyte (Fig. 5a–f). Surprisingly, the levels of ATP citrate lyase 
mRNA and acetate contents were decreased in the PFC of juvenile, but not adult Shati−/− mice. These results sug-
gested that utilization ability of NAA was decreased in the oligodendrocytes of Shati−/− mice. The reduced levels 
of acetate in the brain of Shati−/− mice are consisted with previous report that knock-down of the NAA-cleaving 
enzyme reduces acetate levels in adipocytes30. On the other hand, it was reported that the levels of ATP citrate 

Figure 5.  The expression of SHATI/NAT8L related genes. Real-time RT-PCR analysis of Shati/Nat8l related 
gens were performed. To standardize the PCR products, we used primers for 36B4 as an internal control. The 
expression of (a,d) ASPA and (b,e) ATP citrate lyase mRNA in juvenile and adult Shati+/+ and Shati−/− mice 
was detected. Values represent the mean ± S.E.M. (n = 3 or 4). (c,f) The level of acetate (c) in the whole brain 
in juvenile mice and (f) in the frontal cortex between Shati+/+ and Shati−/− mice was detected by acetate assay. 
Values represent the mean ± S.E.M. (n = 3 or 4) *p < 0.05 vs. Shati+/+ mice (Student’s t test).
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lyase mRNA is increased in the adipocytes of Shati−/− mice and this report is inconsistent with our results31. The 
reasons of discrepancy between ATP citrate lyase mRNA in the brain and adipocytes of Shati−/− mice is unclear 
at the present. We estimate that the differences between the organs cause the result, because ASPA expressed in 
the adipocytes, but not the neurons. Further study is needed to clarify the detail mechanism of this discrepancy.

The findings of the current study and those of previous studies show that deletion of SHATI/NAT8L alters 
MBP level in the brain of juvenile, but not adult mice, suggesting that SHATI/NAT8L is involved in myelination 
via its role in NAA synthesis. Furthermore, Shati−/− mice showed several behavioral deficits, and these deficits 
were ameliorated by GTA treatment during the juvenile stage, suggesting that the behavioral deficits occurred due 
to decreased acetate. These findings suggest that SHATI/NAT8L is involved in myelination in the juvenile mouse 
brain via supplementation of acetate derived from NAA. It is well known that defects in NAA metabolism result 
in impaired postnatal myelination, most notably in Canavan disease23, SHATI/NAT8L might be involved in brain 
development, especially, in myelination, and may be therapeutic targets for developmental disorders. The number 
of patients with developing disorders is much more than Canavan disease. The pharmaceutical therapy is required 
for developing disorders, but we have no means at the present. Then our results will contribute the development of 
the medical tools for developing disorders. The absence of NAA and NAAG is involved in delayed myelination in 
humans. Therefore, it is possible that these molecules participate in other developmental disorders26. We expect that 
SHATI/NAT8L will become a novel therapeutic target for the treatment of cryptogenic developmental disorders.

Materials and Methods
Animals.  We have previously described the generation of Shati−/− mice18. Animals were housed in a room 
with a 12 h light/dark cycle (light cycle starting at 8:00 AM.). Food and water were available ad libitum. All 
experiments followed the National Institute of Health Guidelines for the Care and Use of Laboratory Animals 
and were approved by the committee for Animal Experiments of the University of Toyama (A2015PHA-23, 
G2015PHA-15).

Administration of glyceryltriacetate (GTA) and N-acetylaspatate (NAA).  Glyceryltriacetate 
(GTA; Wako, Osaka, Japan) treatment was performed as previously described21,22. GTA was treated orally to 
Shati+/+ and Shati−/− pups from day 7 after birth until day 14 at a dose of 4.2 g/kg. 5.8 g/kg GTA was administered 
from day 15 to day 21. After weaning (after day 22), the pups received GTA in their water (5% GTA by weight). 
Intracerebroventricular injection of NAA was performed as previously described12. Briefly, a microsyringe with a 
28-gauge stainless-stell needle (3 mm in length) was used for the microinjection. The mice were lightly anesthe-
tized and the needle was implanted into the lateral ventricle (AP −0.6 mm, ML +1.0 mm, DV −2.5 mm). NAA 
was solubilized in Saline to obtain a concentration of 20 µg/µL. The i.c.v. injection volume was 3 µL, 30 min before 
each Three-chambered social interaction test trail, and the injection speed was 20 s.

Schedule of behavioral tests and sampling for brain tissues.  All behavioral tests were performed 
from the age of 8-9 weeks old in the following order so as to reduce the stress on the mice; locomotor activity, 
Y-maze test, three-chambered social interaction test, and elevated plus maze test. After the behavioral tests, brain 
samples were collected and used for Western blotting or acetate assay. The brains used for the experiments with 
electron microscopy were separately prepared. Behavioral tests were finished during the ages of 9–10 weeks old, 
and sampling was performed when the mice became 10 weeks old (Fig. 2a).

Quantitative RT-PCR.  Quantitative RT-PCR was performed as previously described14. The Shati/
Nat8l primers used for real-time PCR were as follows: 5′-GTGATTCTGGCCTACCTGGA-3′ (forward) and 
5′-CCACTGTGTTGTCCTCCTCA-3′ (reverse). The other primers were as follows: 5′-GCAAACATGTCTATGAG 
GGTTCG-3′ (BDNF forward), 5′-ACTCGCTAATACTGTCACACACG-3′ (BDNF reverse), 5′-GAAGCTGAC 
CTTGCTGAACC-3′ (ATP citrate lyase forward), 5′-CCGTAATTCGCCAGTTCATT-3′ (ATP citrate lyase 
reverse), 5′-CATTGAGCATCCTT-3′ (ASPA forward), 5′-TGAGGCTGAGGACCAACTTC-3′ (ASPA reverse) 
36B4 transcript was used as the internal control. The amount of 36B4 transcript was quantified using the forward 
primer 5′-ACCCTGAAGTGCTCGACATC-3′ and the reverse primer 5′-AGGAAGGCCTTGACCTTTTC-3′.

Immunostaining of mice brains.  Immunostaining was performed as previously described14. Sections were 
fixed with 4% paraformaldehyde in 20 mM Tris-HCl (pH 7.4) containing 150 mM NaCl, 3 mM KCl, and 0.1% 
Tween 20 (TBS-T) for 20 min, washed with TBS-T, and then incubated with 0.25% Triton X-100 in TBS-T for 
15 min. The sections were treated with 10 mM citrate solution (pH 6.0) for antigen retrieval at 95 °C for 15 min, 
washed with TBS-T, and then blocked in 10% goat serum (Sigma-Aldrich, St. Louis, MO) in TBS-T for 1 h. 
Sections were incubated with primary antibody (MBP, 1:500 BioLegend, San Diego, CA; Olig2, 1:500 Abcam, 
cambridge UK; NeuN, 1:500 MBL, Nagoya, JAPAN; GFAP, 1:500 Cell Signaling Technology, Beverly MA; Iba1, 
1:500 Wako, Japan) with 10% goat serum in TBS-T at 4 °C overnight, washed with TBS-T, and then incubated 
with CFTM 594 goat anti-rabbit IgG(H + L) (1:1000 Biotium, Hayward, CA) and CFTM 488 goat anti-mouse IgG 
(H + L) (1:1000 Biotium) at room temperature for 2 h. After being washed, the sections were mounted using 
Fluoromount (Diagnostic BioSystems, Pleasanton, CA).

Western blotting.  Brains were isolated and cut into 1 mm-thick sections. The prefrontal cortex was isolated 
from the brain section and fractured in RIPA buffer (50 mM Tris-HCl pH 7.5, 152 mM NaCl, 5 mM EDTA, 1% 
TritonX-100, 0.5% sodium deoxy cholate, 1 mM PMSF, 2% protease inhibitor cocktail, and 1% phosphatase inhib-
itor cocktail). After centrifugation, the supernatant was collected in a fresh tube and the protein concentration 
was measured (BCA kit, Wako). Equal amounts of protein from each sample were mixed with loading buffer 
(50 mM Tris-HCl pH 7.5, 5% 2-mercaptoethanol, 2% sodium dodecyl sulfate (SDS), 5% sucrose, and 0.005% 
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bromophenol blue) and then denatured at 100 °C. The protein extracts were subjected to SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) (10% acryl amide gel) in electrophoresis running buffer and electrophoresed for 1 h 
at room temperature at 0.2 mA, and then transferred onto a membrane (Millipore, Darmstadt, Germany) for 1 h 
at 100 V. The membrane was blocked with 5% skim milk powder in TBS-T for 1 h. After washing by TBS-T, the 
membrane was incubated with primary antibodies (MBP, BioLegend, 1:1000; GAPDH, MBL, Nagoya, JAPAN) 
overnight. After extensive rinsing, the membrane was incubated with a secondary antibody (Anti-Mouse IgG 
HRP-Linked Fragment, Cell Signaling Technology, Danvers, MA) for 1 h at room temperature. The correspond-
ing bands were detected using an ECL-plus Western Blotting Detection System (GE Healthcare, Little Chalfont, 
UK). Densitometry of western blot data was performed using image j software. To account for several isoforms of 
MBP, protein bands from 10 kDa to 25 kDa were used17.

Measurement of locomotor activity.  Measurement of locomotor activity was performed as previ-
ously described9. Mice were placed individually in a transparent acrylic cage with a black frosted Plexiglas floor 
(45 × 25 × 40 cm), and locomotor activity was measured every 5 min for 60 min using digital counters with infra-
red sensors (Scanet MV-40; MELQEST, Toyama, Japan).

Y-maze test.  Measurement of spontaneous alternation behavior was performed as previously described13. 
The percentage alternation was calculated using the following formula: (number of alternations)/(total number 
of arm entries-2) × 100 (%).

Three-chambered social interaction test.  The social interaction test was performed using a 
three-chambered plastic box (60 × 40 × 22 cm, MELQEST), as described in a previous report32. An unfamiliar 
C57BL/6J male (Stranger) that had no contact with the subject mice were placed in one side of the chamber, and 
an object was placed on the other side. The stranger mouse and the object were enclosed in a small, round wire 
cage, which allowed olfactory, visual, auditory, and tactile contact, but did not allow for deep contact. The subject 
mouse was first placed in the middle chamber and allowed to explore the entire social test box for a 10 min ses-
sion. Measurement of the interaction time was taken from the amount of time spent around the wire cage.

Elevated plus maze test.  The elevated plus maze test was performed as previously described13. In brief, 
this maze is comprised of two open arms (25 × 5 × 5 cm), two closed arms (25 × 5 × 27 cm), and a home platform 
(5 × 5 cm). It was elevated to a height of 55 cm above the floor. The time spent in open arm was measured.

Electron microscopy.  Electron microscopy was performed as previously described11. In brief, Shati+/+ and 
Shati−/− mice at postnatal day 21 were anesthetized and perfused intracardially with 2.0% glutaraldehyde in 0.1 M 
cacodylate buffer pH 7.4 for 15 min. The brains were removed and dissected 1–2 mm thick section which included 
the prefrontal cortex. The sections were left in fixative overnight at 4 °C then washed in 0.1 M cacodylate buffer, 
dehydrated with graded ethanols and infiltrated with propylene oxide. After infiltration of propylene oxide, the 
section was oriented and embedded with epoxy resin. Sections (1 µm) of the specimen block were cut on Ultracut 
micotome (Leica), stained with 0.5% toluidine blue in 1% sodium borate in water and prefrontal cortex was then 
identified by light microscopy and areas were selected for thin sectioning. Thin sections (100 nm) were collected 
on copper grids, stained with uranyl acetate and lead citrate. The samples were viewed at electron microscope.

Acetate assay.  Acetate assay were performed using an acetate colorimetric assay kit (BioVision, Milpitas, 
CA), following the manufacturer’s instructions.

TUNEL staining.  TUNEL staining was performed using In situ Apoptosis Detection Kit (Takara, Kusatsu, 
JAPAN), following the manufacturer’s instructions.

Statistical Analyses.  All data were expressed as the mean ± standard error of the mean (S.E.M.). Statistical 
differences between two groups were determined by Student’s t-test. Statistical differences among values for indi-
vidual groups were determined by analysis of variance (ANOVA), followed by Bonferroni’s post-hoc test when F 
ratios were significant (Prism version 5).
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