Skip to main content
. 2017 Dec 4;7:16822. doi: 10.1038/s41598-017-17020-x

Table 3.

Model fit and parameter estimates for the saturated, ACE model and submodels of beverage preferences.

Beverage type Additive genetic effect (A) Shared environment effect (C) Nonshared environment effect (E) -2LL3 Df3 AIC3 Δ -2LL p-value
SSBs 3
Sat 9609.825 2832 3945.825
ACE1 0.36 (0.26, 0.43) 0.00 (0.00, 0.09) 0.64 (0.57, 0.71) 9614.843 2835 3944.843 5.018 0.170
AE 2 0.36 (0.29, 0.43) 0.64 (0.57, 0.71) 9614.843 2836 3942.843 0 1
CE2 0.24 (0.19, 0.29) 0.76 (0.71, 0.81) 9631.547 2836 3959.547 16.704  < 0.001
E2 1.00 (1.00, 1.00) 9703.572 2837 4029.572 72.025  < 0.001
NNSBs 3
Sat 9545.841 2818 3909.841
ACE1 0.35 (0.15, 0.47) 0.05 (0.00, 0.20) 0.60 (0.55, 0.68) 9546.322 2821 3904.322 0.481 0.923
AE 2 0.41 (0.34, 0.47) 0.59 (0.53, 0.66) 9546.719 2822 3902.719 0.397 0.529
CE2 0.28 (0.23, 0.33) 0.72 (0.67, 0.77) 9557.576 2822 3913.576 11.254  < 0.001
E2 1.00 (1.00, 1.00) 9660.699 2823 4014.699 114.377  < 0.001
Orange juice
Sat 7844.431 2840 2164.431
ACE1 0.18 (0.09, 0.25) 0.00 (0.00, 0.04) 0.82 (0.75, 0.90) 7862.541 2843 2176.541 18.11  < 0.001
AE 2 0.18 (0.10, 0.25) 0.82 (0.75, 0.90) 7862.541 2844 2174.541 0 1
CE2 0.08 (0.03, 0.14) 0.92 (0.86, 0.97) 7873.266 2844 2185.266 10.725 0.001
E2 1.00 (1.00, 1.00) 7881.523 2845 2191.523 18.982  < 0.001
Fruit cordial
Sat 8031.215 2838 2355.215
ACE1 0.42 (0.23, 0.48) 0.00 (0.00, 0.15) 0.58 (0.52, 0.90) 8034.727 2841 2352.727 3.512 0.319
AE 2 0.42 (0.36, 0.48) 0.58 (0.52, 0.64) 8034.727 2842 2350.727 0 0.998
CE2 0.29 (0.24, 0.34) 0.71 (0.66, 0.76) 8051.672 2842 2367.672 16.945  < 0.001
E2 1.00 (1.00, 1.00) 8157.514 2843 2471.514 122.787  < 0.001
Milk
Sat 7269.105 2698 1873.105
ACE1 0.32 (0.25, 0.40) 0.00 (0.00, 0.06) 0.68 (0.60, 0.75) 7281.350 2701 1879.350 12.245 0.007
AE 2 0.32 (0.25, 0.40) 0.68 (0.60, 0.75) 7281.350 2702 1877.350 0 1
CE2 0.20 (0.14, 0.26) 0.80 (0.74, 0.86) 7298.526 2702 1894.526 17.176  < 0.001
E2 1.00 (1.00, 1.00) 7340.874 2703 1934.874 59.524  < 0.001
Tea
Sat 7098.183 2406 2286.183
ACE1 0.41 (0.32, 0.50) 0.00 (0.00, 0.03) 0.59 (0.50, 0.68) 7134.002 2409 2316.002 35.82  < 0.001
AE 2 0.41 (0.32, 0.50) 0.59 (0.50, 0.68) 7134.002 2410 2314.002 0.00 1
CE2 0.19 (0.12, 0.26) 0.81 (0.74, 0.88) 7171.829 2410 2351.829 37.83  < 0.001
E2 1.00 (1.00, 1.00) 7201.412 2411 2379.412 67.41  < 0.001
Coffee
Sat 6351.94 1896 2559.94
ACE1 0.29 (0.12, 0.39) 0.00 (0.00, 0.11) 0.71 (0.61, 0.83) 6358.921 1899 2560.921 6.9809 0.07
AE 2 0.29 (0.17, 0.40) 0.71 (0.61, 0.83) 6358.921 1900 2558.921 0 1
CE2 0.17 (0.09, 0.25) 0.83 (0.75, 0.91) 6366.625 1900 2566.625 7.7045  < 0.001
E2 1.00 (1.00, 1.00) 6382.128 1901 2580.128 23.208  < 0.001

Maximum Likelihood Structural Equation Modelling (MLSEM) was used to derive estimates of A, C and E, as well as provide two goodness-of-fit statistics; -2LL and the AIC respectively. The selection of the most parsimonious model was indicated by the p-value and the lowest absolute value of the AIC.

1The full ACE model was nested within the saturated model.

2Sub-models were nested within the full ACE model.

3Abbreviations; - 2LL: -2 times log-likelihood of data, df: degrees of freedom, AIC: Akaike Information Criterion (AIC), NNSBs: Non-nutritive sweetened beverages, SSB: Sugar-sweetened beverages.