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3D genome of multiple myeloma reveals spatial
genome disorganization associated with copy
number variations

Pengze Wu', Tingting Li', Ruifeng Li', Lumeng Jia', Ping Zhu', Yifang Liu%, Qing Chen'!, Daiwei Tang?,
Yuezhou Yu' & Cheng Li'3

The Hi-C method is widely used to study the functional roles of the three-dimensional (3D)
architecture of genomes. Here, we integrate Hi-C, whole-genome sequencing (WGS) and
RNA-seq to study the 3D genome architecture of multiple myeloma (MM) and how it
associates with genomic variation and gene expression. Our results show that Hi-C inter-
action matrices are biased by copy number variations (CNVs) and can be used to detect
CNVs. Also, combining Hi-C and WGS data can improve the detection of translocations. We
find that CNV breakpoints significantly overlap with topologically associating domain (TAD)
boundaries. Compared to normal B cells, the numbers of TADs increases by 25% in MM, the
average size of TADs is smaller, and about 20% of genomic regions switch their chromatin
A/B compartment types. In summary, we report a 3D genome interaction map of aneuploid
MM cells and reveal the relationship among CNVs, translocations, 3D genome reorganiza-
tion, and gene expression regulation.
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neuploid genomes with whole or partial chromosomal
gains and losses are observed in more than 70% of cancers
and non-cancerous diseases such as Down syndrome!.
Aneuploidy can be caused by genome instability and mitotic
defects, which leads to cellular responses such as cell cycle delay
and slow growth?. Under certain stress conditions aneuploidy can
also increase cell survival®. Various mechanisms are proposed for
these aneuploidy phenotypes. Copy number variations due to
aneuploidy affect mRNA and protein expression of cancer-related
genes and downstream proliferation pathways?®. Aneuploidy fur-
ther induces chromosome mis-segregation and genome instabil-
ity> and thus promotes tumor cell evolution via feedback loops®.
Despite these findings, the role of aneuploidy in cancer initiation
and progression is not fully understood®.

Chromatin conformation capture techniques, such as Hi-C and
ChIA-PET, have recently been developed to probe the three-
dimensional (3D) genome organization of genomes at high
resolution”> & and reveal gene regulation mechanisms. Studies
using these techniques have found that the mammalian genome is
organized into gene-dense and transcriptionally active compart-
ment A as well as gene-sparse and transcriptionally inactive
compartment B at the megabase scale’. Topologically associating
domains (TADs) are formed at the sub-megabase scale, which are
function units for re%ulating gene expression and overlap with
replication domains® 1°. Within TADs, chromatin loops facilitate
long-range interactions between enhancers and promoters for
gene regulation!!. The 3D organization of the genome is dyna-
mically regulated in key biolo$ical processes such as cell divi-
sion'?, stem cell differentiation'®, and B-cell activation'.

Chromosome conformation capture techniques have recently
been applied to the study of cancer genomes'>. Hi-C data of breast
cancer genomes have revealed that the switching of compartments
A/B between normal and cancer cells is associated with changes in
gene expression'®. TADs in prostate cancer cells are smaller than
those in normal prostate cells and are altered at the TP53 tumor
suppressor locus!’. Conversely, the spatial organization of the
genome also shapes cancer genome alterations'®. For example,
frequencies of translocation partner choices are associated with the
probability of spatial contact of two involved loci'®. Translocations
are prone to occur at hot spots of double-strand breakpoints
located in regions that have high spatial proximity to each other”.
These studies suggest that the 3D organization of the genome and
cancer genome alterations reciprocally influence each other.

Despite the progress entailed by these findings, few 3D cancer
genome data sets have been established. Since cancer is frequently
associated with genomic alterations such as aneuploidy, copy
number variation (CNV), and mutation, it is important to
characterize the spatial disorganization of the cancer genome and
determine its functional consequences. In this study, with the aim
of better understanding the molecular mechanism of aneuploidy
cancers such as multiple myeloma (MM), we applied an inte-
grated analysis combining Hi-C data, whole-genome sequencing
(WGS) data, and RNA sequencing data on two aneuploid MM
cell lines. We investigated the CNV-driven bias in Hi-C data of
aneuploid cancers. We discovered association between CNVs,
translocations and 3D genome architectures. We also reported
changes in gene expression associated with the disorganized 3D
genome, which are implicated in the development of MM.

Results

Correcting copy number variation bias in cancer Hi-C data.
MM is a cancer developed from antibody-generating plasma B
cells and has two major subtypes, hyperdiploid MM and non-
hyperdiploid MM?!. We used two MM cell lines (RPMI-8226 and
U266) to study the genome-wide chromatin interactions of
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aneuploid cancers. We first confirmed the chromosome aneu-
ploidy through karyotyping experiments. The RPMI-8226 gen-
ome is nearly triploid with multiple trisomy and tetrasomy
chromosomes (Supplementary Fig. 1a, b), while the U266 genome
is nearly diploid with only a few chromosomal gains or losses
(Supplementary Fig. 1c, d). The karyotypes of the two MM cell
lines were further confirmed by CNV analysis of WGS data sets
(Supplementary Fig. le). Next, we performed in situ Hi-C
experiments of these two cell lines with two restriction enzymes
(HindIII and Mbol), and sequenced approximately 200 million
reads for each replicate of the two cell lines. After data analysis
(see material and methods) we obtained chromatin interaction
heatmaps at 40-kb resolution for each sample using combined
data of replicates (Supplementary Table 1). Data processing
showed high quality of the Hi-C data and reproducibility of the
Hi-C replicates, demonstrating the successful performance of Hi-
C experiments (Supplementary Fig. 2a-d).

The whole-genome interaction maps showed that about 70% of
interactions occurred within chromosomes and 30% between
chromosomes. This intra/inter-chromosome interaction ratio is
similar to that of diploid cells as reported previously!! (Fig. 1a
and Supplementary Fig. 3a). We reasoned that trisomic chromo-
somes are sampled more frequently than disomic ones in a Hi-C
library, so chromosome interactions involving chromosome
regions with higher copy numbers would have higher interaction
counts. By applying the same CNV calling method to WGS data
and Hi-C data, we obtained similar CNV results from the two
data types with high correlation coefficients (Fig. 1b, ¢ and
Supplementary Fig. 3b, c). We also found that the average
interaction count inside each CNV block was positively correlated
with its copy number (Fig. 1d and Supplementary Fig. 3d). These
results indicate that raw interaction counts in cancer Hi-C data
are biased by CNVs and should be corrected to obtain per-copy
chromosome interaction map. We compared the ICE*> and
HiCNorm?® methods for normalizing the interaction matrix. ICE
can better correct the CNV bias than HiCNorm (Fig. 1e, f and
Supplementary Fig. 3e, f), so we used it to obtain normalized Hi-
C matrices for downstream analysis.

3D genome is influenced by inter-chromosomal translocations.
Besides CNVs, we found that genomic structure alterations such
as translocations can be reflected by Hi-C interaction matrices.
We reasoned that high inter-chromosomal interactions in Hi-C
matrices are likely due to chimeric chromosomes, which were
caused by translocation events (black boxes in Fig. 1a and Sup-
plementary Fig. 3a). To confirm this, we identified translocations
from the WGS data by using the CREST software’* and com-
pared them with Hi-C inter-chromosomal interactions. In RPMI-
8226, we identified 56 inter-chromosomal translocation events
(Fig. 2a), four of which were also in the top 100 highest Hi-C
inter-chromosomal interactions (blue links in Fig. 2a, b, Fisher’s
exact test p-value: 2.565 x 107%), and the observed/expected ratio
is 90.91 (Supplementary Fig. 4a). To further check whether high
inter-chromosomal interactions represent chimeric chromo-
somes, we referenced the spectral karyotyping (SKY) image of
RPMI-8226 (http://www.ncbi.nlm.nih.gov/sky/). A chimeric
chromosome was detected by SKY, involving chromosome 16 and
22 (Fig. 2c). This translocation of t(16, 22)(q23, q11) was iden-
tified by both WGS data and Hi-C data (Fig. 2d-f), which
involves MM-related genes WWOX?> and MAF?®. By integrating
the WGS data and Hi-C interactions of RPMI-8226, we identified
additional inter-chromosomal translocations supported by both
data types, involving cancer-related genes ADORA2B?’, FLII?®,
AMBRA1?° and PTRPJ*® (Supplementary Fig. 4, Supplementary
Data 1). In U266 cells, we identified 80 genes affected by the
translocation events, including the cancer-related genes TNIK®!,
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FBXW732 and TRIM23® (Supplementary Fig. 5). Some of these
genes have not been implicated in MM before. We also investi-
gated genes that locate within 1Mb distance from the
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Fig. 2 Hi-C data reveal translocation events. a Fifty-six inter-chromosomal translocation events identified in RPMI-8226 by WGS. From outer circle to inner
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identified from the MM cell lines showed higher overall inter- genome is influenced by inter-chromosomal translocations and
action counts than those from normal B cells (Supplementary cancer Hi-C data reflect chromatin interactions from both normal
Fig. 5f). Collectively, these results showed that the 3D cancer and chimeric chromosomes.
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CNV breakpoints are associated with TAD boundaries. A
recent study of the 3D prostate cancer genome found that CNVs
may help establish new TAD boundaries'”. We thus investigated the
relationship between CNVs and TADs in MM cells. ICE-normalized
interaction matrices were used to call TADs and WGS data were

used to call CNV blocks, both at 40-kb resolution. In total, we
identified 3457 TAD boundaries and 596 CNV breakpoints in
RPMI-8226 cells. We found that CNV breakpoints often occur near
TAD boundaries (Fig. 3a). A total of 7.5% of all CNV breakpoints
were also TAD boundaries and 30.7% of the CNV breakpoints
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located within 120kb of TAD boundaries (Fig. 3b). The distances
between CNV breakpoints and their nearest TAD boundaries were
significantly smaller than location-randomized breakpoints.

Since insulation scores can be used to identify TAD
boundaries®*, we averaged insulation scores within 1 Mb of all
TAD boundaries or all CNV breakpoints. The average insulation
scores at both TAD boundaries and CNV breakpoints were lower
than that of surrounding regions (Fig. 3c). The results were
similar in U266 cells (Supplementary Fig. 6a-c), confirming the
association of CNV breakpoints and TAD boundaries in MM
cells. This association can be explained by two possible causes: (i)
CNVs can induce the formation of new TADs with boundaries
close to CNV breakpoints, or (ii) CNV breakpoints occurred
more frequently near TAD boundaries in normal cells, or that
during cancer cell evolution the CNVs that disrupt TAD
structures were preferentially lost. To check the second
possibility, we correlated a database of cancer CNVs®> and
TAD boundaries in normal B cells (GM12878). We found that in
normal B cells, the average insulation score at the myeloma CNV
breakpoints was also lower than that in the surrounding regions
and differed from that at random breakpoint sites (Fig. 3d),
suggesting that TAD boundaries in normal cells are also
associated with cancer CNV breakpoints. These results support
the second assumption that either CNV breakpoints are prone to
occur at TAD boundaries in normal cells or TADs are resistant to
disruption during transformation from normal cells to cancer.

Association between A/B switches and gene expression. The
mammalian genome consists of actively transcribed compart-
ments A and inactive compartments B’. Switching of compart-
ments A/B between normal cells and breast cancer cells is
associated with corresponding changes of gene expression'®. We
investigated whether this phenomenon is exhibited in MM. We
compared MM cells, which are of a B-cell lineage®!, with a
lymphoblastoid B-cell line (GM12878). We determined the
compartment types of the genome at 500-kb resolution in
GM12878, U266, and RPMI-8226 cells using the HiTC package’.
Most genomic regions remained in the same compartments in
MM cells compared to normal B cells (Fig. 4a, b). A total of 8% of
genomic regions switched from the compartment A in normal B
cells to compartment B in one or both MM cells and associated
with downregulated gene expression. 24% of genomic regions
exhibited the opposite switching from compartment B in normal
cells to compartment A in cancer cells and associated with up-
regulated gene expression (Fig. 4b, c). These results are consistent
with the previous study on breast cancer'®.

We next compared TADs in MM cells and B cells. We called
TADs from Hi-C interaction matrices at 40-kb resolution®” and
identified 2756, 3457 and 3342 TADs in GM12878, RPMI-8226
and U266 cells, with their median TAD sizes of 800, 600 and 640
kb, respectively (Fig. 4d). The numbers of TADs increased by 1.2-
fold in both MM cells compared to B cells, and the average size of
TADs in MM was smaller (Fig. 4e). We defined two TADs as
being conserved between two samples if they overlapped by more
than 70% of both TAD regions. We identified 1281 TADs that
were conserved among all the three samples and 740 TADs that
were conserved in the two MM cells but not in normal B cells
(Fig. 4f). This is consistent with recent findings showing an
increased number of TADs in prostate cancers compared with
that in normal prostate cells!”. These results indicate that the 3D
genome architecture of MM cells are reorganized and is
associated with gene expression regulation.

Chromatin conformation and gene expression changes. We
next asked whether reorganization of the 3D genome in MM has
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functional consequences on MM pathology. To explore the func-
tional effects of 3D genome changes between B cells and MM, we
performed KEGG pathway analysis with genes located in the 6% of
genomic regions that switched from compartment B in B cells to
compartment A consistently in both MM cells, and genes located
in the 1% of genome regions that consistently switched in the
opposite direction in both MM cells (Fig. 4b). The pathway
enrichment analysis showed that these genes are strongly asso-
ciated with MM-related pathways, including the MAPK signaling
pathway>®, N-glycan biosynthesis*’, TNF signaling pathway*° and
cytokine—cytokine receptor interaction pathway*! (Fig. 5a). Within
the consistent A/B compartment-switching regions, we found a
cytokine receptor gene cluster at 2q11.2-q12.14% which had A-type
compartment in normal B cell but B-type compartment in both
MM cells, and were associated with downregulated gene expres-
sion involving several interleukins ILIRI, ILIR2, ILI8RI and the
cytokine MAP4K4. The gene expression changes of this locus are
associated with altered TAD structures and epigenetic markers but
not copy number variations (Fig. 5b, ¢). The TAD boundaries
nearby the ILIR2 gene are changed in U266 compared with
GM12878, and the signals of active enhancer markers H3K27ac
and H3K4mel are reduced in U266 compared with GM12878. By
combining Hi-C data, WGS and gene expression data, the spatial
disorganization and gene expression changes in MM can be
associated at the TAD and gene level. It should be noted that some
changes between GM12878 and MM cells might be due to
the differences between lymphoblastoid B cells and plasma B cells.

Discussion
In this study, we investigated the 3D genome of aneuploid cancer
and performed integrated analyses of Hi-C, WGS, and RNA-seq
experiments in two MM cell lines. We found that aneuploid
tumor Hi-C data are biased by CNVs and showed that the ICE
algorithm can correct this CNV bias. Previous 3D genome studies
of cancer also used ICE for normalization, but did not measure
the influence of CNV bias'® 17, Recently a research group also
designed a new method caICB, which based on ICE to eliminate
CNV bias in cancer Hi-C data®’, We found that the 3D cancer
genome is influenced by cancer-specific genome alterations
including CNVs and translocation events. Another recent study
also proposes to use Hi-C data to detect cancer CNVs and
translocations**. In this context, an interesting research direction
is to integrate multiple types of genomic information, such as
CNVs, translocations and 3D interactions to assemble more
accurate cancer genomes, as has been done for normal cells*> °.
Recent studies have revealed that the interplay between higher-
order chromatin structures and somatic copy-number alterations is
important for cancer cell evolution!8~2, Translocation frequency
in cancer is highly correlated with the spatial proximity of two
chromosome breakpoints in normal cells'®2?, The 3D genome
architecture such as pre-existing s;)atial proximity of two sites may
contribute to translocation events®®. Conversely, other studies also
found that genomic variation events can rewire three-dimensional
regulatory architectures and cause pathogenic phenotypes?’. In
addition, duplications within a TAD cause no changes in TAD
structures, but duplications spanning a TAD boundary can result
in formation of novel TADs and dysregulated gene expression
during tissue development*3. In this study, we find that 30% of the
CNV breakpoints in MM occur at or near TAD boundaries, which
may retain primary TAD structures and avoid ectopic enhancer-
gene interactions®. The other 70% CNV breakpoints occur within
the TAD structures, which may cause novel gene regulation in
addition to the dosage effects of altered copy numbers*’. Inter-
estingly, TAD boundaries in normal B cells are also enriched by
myeloma CNV breakpoints, suggesting that CNVs disrupting TAD
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boundaries are selected against during cancer cell evolution. Both
types of CNVs may be selected for their fitness impact during
cancer cell evolution, and further studies are needed to understand
their formation mechanisms and functional effects.

At the TAD scale, we found that MM genomes contain more
TADs and the average TAD size is smaller than in normal B cells.
This finding confirms previously reported results in prostate
cancer!”. RPMI-8226 and U266 cells have different numbers of
chromosomes but similar numbers of TADs. Since the ICE
method normalizes the Hi-C interactions to the per-copy level,
CNVs may be responsible for the increased TAD numbers in MM
cells compared to normal B cells. Based on previous studies and
our findings, we propose that CNVs such as segmental duplica-
tions may generate more TADs, whose association with gene
expression and functional consequences are worth further
studying®®. Heterogeneity of cancer cells may also contribute to
more diverse 3D genomes within a cell population and therefore
increase the detected TAD numbers. Single cell Hi-C techniques
will help to confirm this possibility>°. More studies of 3D cancer
genomes will further clarify the relationship between genome
alterations and 3D genome organization.

During cell differentiation, stimulation response, or cancer
development, the 3D architecture of the genome is reorganized,
which is associated with epigenetic alterations and changes in gene
expression'® 17> >1 52 Tn MM cells, we found that about 20% of
genome regions switched between the A compartment and B
compartment compared to normal B cells. This proportion of A/B
compartment switching is higher than in breast cancer cells
(12.4%, MCF10A vs. MCF7)0. Consistent with breast cancers, we
found that switching of compartment type in MM is associated
with changes in gene expression. Pathway enrichment analysis
also showed that genes located in the switched compartments were
strongly associated with the cytokine-cytokine receptor interaction
pathway, hematopoietic cell lineage pathway and MAPK signaling
pathway. We showed that genes in cytokine-cytokine receptor
interaction pathway, including ILIRI, ILIR2 and MAP4K4 are
downregulated and changed their 3D structures without copy
number variations. ILIR1 and ILIR2 are two cytokine receptors
which can bind with interleukin 1 and regulate the immune sys-
tem and inflammation effects®3, and recently IL-1 has been shown
to enhance Thl-mediated immunity against cancer’. In the
MAPK pathway, up to 50% MM patients have frequent mutations
in genes of NRAS, KRAS, and BRAF®S. Our results showed that
genes CACNG6, DUSP6 and MAP4K3 in the MAPK pathway have
reorganized spatial structures in MM, and associate with gene
expression regulation as well as epigenetic mark changes, which
might contribute to cancer development (Supplementary Fig. 7).
Combining transcriptome and 3D genome analyses, we reveal that
during MM development multiple levels of alterations such as
CNVs, translocations, spatial genome reorganization occur and
influence gene expression. However, since cancer types are diverse
and alterations are heterogeneous, the phenomena observed in
one cancer type may not hold in other cancer types. In the future,
we need to further investigate whether these observations are
universal phenomena across cancer types.

In summary, we have investigated the 3D genome of MM and
analyzed the relationships among TADs, CNVs, translocations,
and gene expression to identify MM-related pathways and key
genes. These findings extend our understanding of MM as well as
the spatial disorganization of aneuploid cancer genome, which
may implicate in clinic treatment and drug development for MM.

Methods

Cell culture. The RPMI8226 and U266 cell lines were purchased from ATCC
(Virginia, USA). Cells were cultured in RPMI-1640 medium (ATCC-30-2001) with
10% fetal bovine serum and 5% CO, at 37 °C.
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Hi-C experiments. Cells were grown to 70-80% confluence in 10-cm dishes,
washed with phosphate-buffered saline and counted with a cell counting chamber.
A total of 2-5 x 10° cells were isolated and cross-linked with 1% formaldehyde for
10 min at room temperature, and then 2.5 M-glycine solution was added to a final
concentration of 0.2 M. Then cells were collected, flash-frozen in liquid nitrogen
and stored at —80 °C. The Hi-C experiment was performed following the in situ Hi-
C protocol'!" Briefly, the cross-linked cells were lysed and digested with HindIII or
Mbol, filled with biotin-14-dATP, proximately ligated with T4 DNA ligase and
reverse crosslinked with 5 M sodium chloride. Then the genome DNA was purified,
sheared and size-selected. Biotin pull-down was performed to enrich target DNA
fragments, followed by standard Illumina library construction.

Whole-genome sequencing experiments and analysis. Whole genome DNA of
the two MM cell lines were extracted and sequenced at 50x depth through XTen
(Ilumina). The sequenced reads were mapped to the human reference genome
(hg19) by the bwa-mem software®>. Only uniquely mapped reads were used for
downstream analysis. The Picard software (http://broadinstitute.github.io/picard)
was used to remove PCR duplicates. The total mapping rate is above 90% for each
sample.

RNA-seq experiments and analysis. Total mRNA with polyA tail was extracted
and reverse transcribed to cDNA for sequencing. Three biological repeats were
performed for each sample and 20 million reads was sequenced for each repeat.
The sequenced reads were mapped to the human reference genome (hgl9) by
TopHat2°® and gene expressions were quantified by Cufflinks®’. We used the
RStudio software for the downstream statistical analyses.

Hi-C data analysis. We performed reads mapping and filtering of the Hi-C data
following previous methods®®. Briefly, all Hi-C sequencing reads were mapped to
the human reference genome (hg19) using Bowtie2**. The two ends of paired-end
reads were mapped independently using the first 36 bases of each read. We filtered
out redundant and non-uniquely mapped reads, and kept the reads within 500 bp
upstream of enzyme cutting sites (HindIII or Mbol) due to the size selection. We
utilized the iterative correction and eigenvector decomposition (ICE) method?? and
HiCNorm?® to normalize raw interaction matrices and compared their effect on
correcting CNV bias.

A/B compartment analysis. We used ICE-normalized interaction matrices at
500-kb resolution to detect chromatin compartment types by R-package HiTC>®.
Positive or negative values of the first principal component separate chromatin
regions into two spatially segregated compartments. The compartment with higher
gene density was assigned as A compartments, and the other compartment was
assigned as B compartment!®,

TAD analysis. We used ICE-normalized interaction matrices at 40-kb resolution
to call TAD by a Perl script matrix2insulation.pl (http://github.com/blajoie/crane-
nature-2015). A higher resolution was used because TADs are smaller than A/B
compartments. Insulation Scores (IS) were calculated for each chromosome bin
and valleys of IS identified TAD boundaries. TADs smaller than 200 kb or located
in telomeres/centromeres were filtered out as in previous methods®’. When
comparing TADs between two cell lines, at least 70% overlap between two TADs
were considered as conserved TADs!”. We used Bedtools with the option of
“intersectBed —f 0.70—r” to identify conserved TADs®C,

CNV analysis. CNVs were called by the Control-FREEC software at 40-kb and
500-kb resolution®!. Uniquely-mapped reads of the WGS dataset or Hi-C data sets
were used as inputs. The ploidy parameter for RPMI-8226 and U266 cells was set
to 3 and 2, respectively, based on the karyotyping results. We also used the ploidy
parameter of 2 for RPMI-8226 and found a similar CNV results as using the ploidy
parameter 3.

CNV bias correction in Hi-C data. We defined a CNV block as a continuous
region of chromosome with the same estimated copy number. For each Hi-C
interaction matrix corresponding to a CNV block, the median diagonal interaction
value was used to represent the interaction strength within that CNV block. We
then fitted a linear regression model to assess the relationship between interaction
strength and copy numbers of all CNV blocks. A significantly positive slope
indicated the existence of CNV bias in Hi-C data of cancer samples. We applied
this analysis on raw interaction matrices as well as ICE and HiCNorm corrected
interaction matrices to evaluate the correction of CNV bias in Hi-C data.

Translocation analysis. The WGS reads were used to identify translocation events
by the CREST software with the default parameters®*. Further filtering criteria
included (i) the supporting reads at both sites of an inter-chromosomal translo-
cation are greater than 10% of the total reads at these positions; (ii) the sum of
supporting reads at the two sites of an inter-chromosomal translocation are greater
than 40. We used Fisher’s exact test to check whether the inter-chromosomal
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translocations identified from WGS data were enriched in the top 100 bin pairs
with the highest inter-chromosomal Hi-C interactions.

Overlap between TAD boundaries and CNV breakpoints. The cancer CNV
dataset was downloaded from http://202.97.205.78/CNVD/, a database of “Copy
Number Variation in Disease” via manual text mining from published papers. This
database includes 845 diseases across 20 species with half records for human. Only
CNVs of MM were selected which includes 302 instances. CNV's with length larger
than 500 kb and sample rate over 0.1 were kept. After filtering, there remains 161
CNVs. We then plotted the insulation scores of GM12878 within 1 Mb regions
from these filtered CNV breakpoints or GM12878 TAD boundaries.

Gene ontology analysis. Gene pathway enrichment analysis for the switched on/
off genes used the DAVID Bioinformatics Resources 6.7°%. All the human genes
were used as the background gene list. Switched on genes are defined as their
genomic compartment changed from B to A in both MM cell lines (compared with
GM12878). Switched off genes are defined as their genomic compartment changed
from A to B in both MM cell lines (compared with GM12878).

ChlIP-seq data analysis. We obtained the ChIP-seq data of U266 cells from the
NCBI BioProject database (PRJEB1912/ERS333898), and the ChIP-seq data of
GM12878 cells from the UCSC Table Browser. The raw fastq files of U266 ChIP-
seq data were processed using cutadapt63 software to remove adaptor sequence,
then reads were mapped by bowtie2>” using reference hg19, and duplicated reads
were removed by picard tools (http://broadinstitute.github.io/picard). The mapped
bam files were transferred to the MACS® 95 software to call peaks with default
parameters as the ENCODE pipeline recommended.

Statistical tests. We calculated the p-values of Fig. 4b, f to check whether the
overlap is significant by comparing the overlap between different cell types using
Fisher’s exact test.

Data availability. All essential codes used for analysis are available at GitHub
(http://github.com/ChengLiLab/myeloma). The Gene Expression Omnibus (GEO)
accession number for the WGS, RNA-seq, and Hi-C data sets generated in study is
GSE87585. The WGS dataset, RNA-seq dataset, and Hi-C dataset of GM12878 can
be accessed by ERX069505 (SRA), GSM758560 (GEO), and GSE63525 (GEO) via
NCBI. The CNVD data can be accessed via http://202.97.205.78/CNVD/.
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