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Abstract

Brain extraction or whole brain segmentation is an important first step in many of the neuroimage 

analysis pipelines. The accuracy and robustness of brain extraction, therefore, is crucial for the 

accuracy of the entire brain analysis process. State-of-the-art brain extraction techniques rely 

heavily on the accuracy of alignment or registration between brain atlases and query brain 

anatomy, and/or make assumptions about the image geometry; therefore have limited success 

when these assumptions do not hold or image registration fails. With the aim of designing an 

accurate, learning-based, geometry-independent and registration-free brain extraction tool in this 

study, we present a technique based on an auto-context convolutional neural network (CNN), in 

which intrinsic local and global image features are learned through 2D patches of different 

window sizes. We consider two different architectures: 1) a voxelwise approach based on three 

parallel 2D convolutional pathways for three different directions (axial, coronal, and sagittal) that 

implicitly learn 3D image information without the need for computationally expensive 3D 

convolutions, and 2) a fully convolutional network based on the U-net architecture. Posterior 

probability maps generated by the networks are used iteratively as context information along with 

the original image patches to learn the local shape and connectedness of the brain to extract it from 

non-brain tissue.

The brain extraction results we have obtained from our CNNs are superior to the recently reported 

results in the literature on two publicly available benchmark datasets, namely LPBA40 and 

OASIS, in which we obtained Dice overlap coefficients of 97.73% and 97.62%, respectively. 

Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated 

the performance of our algorithm in the challenging problem of extracting arbitrarily-oriented fetal 

brains in reconstructed fetal brain magnetic resonance imaging (MRI) datasets. In this application 

our voxelwise auto-context CNN performed much better than the other methods (Dice coefficient: 

95.97%), where the other methods performed poorly due to the non-standard orientation and 

geometry of the fetal brain in MRI. Through training, our method can provide accurate brain 
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extraction in challenging applications. This in-turn may reduce the problems associated with 

image registration in segmentation tasks.

Index Terms

Brain extraction; Whole brain segmentation; MRI; Convolutional neural network; CNN; U-net; 
Auto-Context

I. Introduction

Whole brain segmentation, or brain extraction, is one of the first fundamental steps in the 

analysis of magnetic resonance images (MRI) in advanced neuroimaging applications such 

as brain tissue segmentation and volumetric analysis [1], longitudinal and group analysis [2], 

cortical and sub-cortical surface analysis and thickness measurement [3], [4], and surgical 

planning. Manual brain extraction is time consuming especially in large-scale studies. 

Automated brain extraction is necessary but its performance and accuracy are critical as the 

output of this step can directly affect the performance of all following steps.

Recently neural networks and deep learning have attracted enormous attention in medical 

image processing. Brebisson et.al. [5] proposed the SegNet, a convolutional neural network 

system to segment different parts of the brain. Recently, CNN-based methods have also been 

used successfully in tumor segmentation [6], [7], [8], brain lesion segmentation [9], [10], 

and infant brain image segmentation [11]. In what follows we review the state-of-the-art in 

whole brain segmentation and the related work that motivated this study. We then introduce 

a CNN-based method that generates accurate brain extraction.

II. Related Work

Many algorithms have been developed and continuously improved over the past decade for 

whole brain segmentation, which has been a necessary component of large-scale 

neuroscience and neuroimage analysis studies. As the usage of these algorithms dramatically 

grew, the demand for higher accuracy and reliability also increased. Consequently, while 

fully-automated, accurate brain extraction has already been investigated extensively, it is still 

an active area of research. Of particular interest is a recent deep learning based algorithm 

[12] that has shown to outperform most of the popular routinely-used brain extraction tools.

The state-of-the-art brain extraction methods and tools use evolved combinations of image 

registration, atlases, intensity and edge feature information, and level sets/graph cuts to 

generate brain masks in MRI images. The majority of these algorithms rely heavily on the 

alignment of the query images to atlases or make strong assumptions about the geometry, 

orientation, and image features. Yet the outcome of most of these tools is often inaccurate 

and involves non-brain structures or cuts parts of the brain. Therefore most of these tools 

offer options and multiple parameters to set and try, that ultimately make brain extraction a 

semi-automatic or supervised task rather than fully automatic.
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Among brain extraction methods four algorithms that are distributed with the widely-used 

neuroimage analysis software packages, have been evolved and are routinely used. These are 

the Brain Extraction Tool (BET) from FSL [13], [14], 3dSkullStrip from the AFNI toolkit 

[15], the Hybrid Watershed Algorithm (HWA) from FreeSurfer [16], and Robust Learning-

Based Brain Extraction (ROBEX) [17]. BET expands a deformable spherical surface mesh 

model initialized at the center-of-gravity of the image based on local intensity values and 

surface smoothness. 3dSkullStrip, which is a modified version of BET, uses points outside 

of the expanding mesh to guide the borders of the mesh. HWA uses edge detection for 

watershed segmentation along with an atlas-based deformable surface model. ROBEX fits a 

triangular mesh, constrained by a shape model, to the probabilistic output of a brain 

boundary classifier based on random forests. Because the shape model alone cannot 

perfectly accommodate unseen cases, Robex also uses a small free-form deformation which 

is optimized via graph cuts.

The current methods are prone to significant errors when certain geometric assumptions do 

not hold, features are not precisely identified, or image registration, which is often not 

guaranteed to converge to an exact solution, fails. The problems associated with registration-

based segmentation, and the recent promising results in neural network based image 

segmentation motivate further development and use of learning-based, geometry-

independent, and registration-free brain image segmentation.

Recently, Kleesiek et. al. [12] proposed a deep learning based algorithm for brain extraction, 

which will be referred to as PCNN in this paper. PCNN uses seven 3D convolutional layers 

for voxelwise image segmentation. Cubes of size 53×53×53 around the grayscale target 

voxel are used as inputs to the network. In the extensive evaluation and comparison reported 

in [12], PCNN outperformed state-of-the-art brain extraction algorithms in publicly available 

benchmark datasets.

In this study we introduce auto-context CNNs with two network architectures to 

significantly improve brain extraction accuracy. In our first network, which is a voxelwise 

architecture, instead of using 3D convolutional layers with one window size (used in 

PCNN), we use 2D patches of three different sizes as proposed by Moeskops et al. [18]. In 

addition, to account for 3D structure, and efficiently learn from 3D information to identify 

brain voxels from non-brain voxels, we use three parallel pathways of 2D convolutional 

layers in three planes (i.e. axial, coronal and sagittal planes). Our second architecture is a U-

net [19] style network, in which we use a weighted cost function to balance the number of 

samples of each class in training. We discuss the details of our proposed auto-context 

networks, generally referred to as Auto-Net, in this paper.

Context information has shown to be useful in computer vision and image segmentation 

tasks. Widely-used models, such as conditional random fields [20], rely on fixed topologies 

thus offer limited flexibility; but when integrated into deep CNNs, they have shown 

significant gain in segmentation accuracy [21], [10]. To increase flexibility and speed of 

computations, several cascaded CNN architectures have been proposed in medical image 

segmentation [6], [8], [22]. In such networks, the output layer of a first network is 

concatenated with input to a second network to incorporate spatial correspondence of labels. 

Salehi et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To learn and incorporate context information in our CNN architectures, we adopt the auto-

context algorithm [23], which fuses low-level appearance features with high-level shape 

information. As compared to a cascaded network, an auto-context CNN involves a generic 

and flexible procedure that uses posterior distribution of labels along with image features in 

an iterative supervised manner until convergence. To this end, the model is flexible and the 

balance between context information and image features is naturally handled.

Experimental results in this study show that our Auto-Net methods outperformed PCNN and 

the four widely-used, publicly-available brain extraction techniques reviewed above on two 

benchmark datasets (i.e. LPBA40 and OASIS, described in Section IV.A). On these datasets 

we achieved significantly higher Dice coefficients by the proposed Auto-Nets compared to 

the routinely-used techniques, as autocontext significantly boosted sensitivity while 

improving or maintaining specificity. We also examined the performance of the Auto-Net in 

the challenging problem of extracting fetal brain from reconstructed fetal brain MRI. In this 

case we only compared our results to BET and 3dSkullStrip as the other methods were not 

designed to work with the non-standard orientation and geometry of the fetal brain in MRI. 

We present the methods, including the network architectures and the autocontext CNN, in 

the next section and follow with experimental results in Section IV and a discussion in 

Section V.

III. Method

A. Network Architecture

We design and evaluate two Auto-Nets with two different network architectures: 1) a 

voxelwise CNN architecture [24], and 2) a fully convolutional network [25], [26] based on 

the U-net architecture [19]. We describe the details of the network architectures here and 

follow with our proposed auto-context CNN algorithm in the next subsection.

1) A voxelwise network—The proposed network has nine types of input features and 

nine corresponding pathways which are merged in two levels. Each pathway contains three 

convolutional layers. This architecture segments a 3D image voxel-by-voxel. For all voxels 

in the 3D image three sets of in-plane patches in axial, coronal, and sagittal planes are used. 

Each set contains three patches with window sizes of 15 × 15, 25 × 25 and 51 × 51. By using 

these sets of patches with different window size, both local and global features of each voxel 

are considered during training. Network parameters are learned simultaneously based on 

orthogonal-plane inputs, so 3D features are learned without using 3D convolution which is 

computationally expensive.

Figure 1(a) shows the schematic architecture of the parallel 2D pathways for one of the 2D 

views. In the first layer, 24 5 × 5 kernels for the patches of size 15 × 15 and 25 × 25, and 7 × 

7 kernels for the patches of size 51 × 51 are used. After the first convolutional layer, ReLU 

nonlinear function and batch normalization is applied. For the second convolutional layer, 

ReLU nonlinear function is used after applying convolutional layer with 32 convolutional 

kernels of sizes 3 × 3, 3 × 3 and 5 × 5, for each patch, respectively. In the last convolutional 

layer 48 kernels of size 3 × 3 are used. In the proposed architecture, fully convolutional 

layers are used instead of fully connected layers [27] to achieve much faster testing time, as 
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the whole image can be tested in a network with convolutional layers while voxels are tested 

in a network with fully connected layers. After applying ReLU function, the output of the 

third convolutional layer is connected to a convolution-type, fully-connected layer with 256 

kernels. Then, the nodes for each patch are concatenated and a 1 × 1 convolution with 64 

kernels is applied. Each of the 2D pathways collects the information of a 2D plane.

To combine the information of 2D planes, the outputs of each set of in-plane patches are 

concatenated. This results in 192 nodes in total. Two kernels of 1 × 1 convolutional layers 

(for brain and non-brain classes) are applied on concatenated nodes with a softmax output 

layer. Figure 1(b) illustrates this step. We refer to this combination of three 2D pathways 

network as our 2.5D-CNN. By adding the auto-context algorithm to this architecture 

(Auto-2.5D-CNN), we aim to combine low-level features from patches with context 

information learned by the network to improve classification accuracy.

2) A fully convolutional network—The voxelwise approach has two drawbacks: 1) 

although using fully convolutional layers instead of fully connected layers makes the 

algorithm faster, it is still relatively slow; and 2) there is a tradeoff between finding local 

features and global features that involves choosing the window size around voxels. In the 

previous section we described how we conquered the latter problem by choosing different 

window sizes. Nonetheless, these drawbacks can also be addressed by using a fully 

convolutional network (FCN) [25]. To this end, we use the U-net [19] which consists of a 

contracting path that captures global features and an expanding path that enables precise 

localization.

The U-net style architecture is shown in Figure 1(c). This architecture consists of a 

contracting path (to the right) and an expanding path (to the left). The contracting path 

contains padded 3 × 3 convolutions followed by ReLU non-linear layers. A 2 × 2 max 

pooling operation with stride 2 is applied after every two convolutional layers. After each 

downsampling by the max pooling layers, the number of features is doubled. In the 

expanding path, a 2 × 2 upsampling operation is applied after every two convolutional 

layers, and the resulting feature map is concatenated to the corresponding feature map from 

the contracting path. At the final layer a 1 × 1 convolution with linear output is used to reach 

the feature map with a depth equal to the number of classes (brain or non-brain tissue). We 

refer to this network as the U-net, as we aim to augment it with the auto-context algorithm 

(Auto-U-net).

B. Auto-Context CNN

We propose auto-context convolutional neural networks by adopting the auto-context 

algorithm developed in [23]. Assuming m training image pairs {(X(j), Y(j)), j = 1…m}, each 

3D image is flattened into a 1D vector  and its corresponding label 

image is flattened into the vector  where  is the label of voxel i 
in image j. In each image the posterior probability of voxel i having label l, computed 

through a CNN fyi (.), by the softmax classifier can be written as:
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(1)

where Ni is the set of patches around voxel i, i = 1, …, n, and c is the number of classes (l = 

0, …, c − 1). During the optimization, the cross-entropy between the true distribution q and 

the estimated distribution p, i.e. H(q, p) = −Σi q(yi)log p(yi|X(Ni)), is minimized. The true 

distribution follows the Dirac function, i.e. q(yi) is 1 for the true label and 0 otherwise. The 

cost function, therefore, would be:

(2)

In auto-context CNN, a sequence of classifiers is designed in a way that, to train each 

classifier, the posterior probabilities computed by the previous classifier are used as features. 

More specifically, for each image at step t the pair of X(Ni), p(t−1)(Ni) is considered as a 

feature for classification of voxel i, where p(t−1)(Ni) is the posterior probability of voxels 

around voxel i. Algorithm 1 shows how the sequence of weights in the network are 

computed for the sequence of classifiers. The learned weights are used at test time for 

classification. The proof of convergence of Algorithm 1 is shown in Appendix A.

Algorithm 1

The auto-context CNN algorithm

To illustrate more on the effect of the auto-context algorithm, consider the first convolutional 

layer of each 2D pathway in the 2.5D-CNN. Suppose y is an input 3D patch result of 

concatenating the predicted label and data patches, and x is the output of the first layer for 

one of the kernels. For the convolution operation with kernel size k we have

(3)
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where W is a k × k × d weight matrix, * is the 2D convolution operation, d is the depth of 

the input feature which is 2, and b is the bias. Expanding the summation in equation (3) we 

have

(4)

where W1 and W2 are k × k weight matrices corresponding to the intensity input (y1) and 

label input (y2), respectively. W2 values are optimized such that they encode information 

regarding the shape of the brain labels, their respective location, and the connectedness of 

the labels. During the training of the network at step 0, the weights corresponding to the 

label input, W2, are assigned much lower values than the weights corresponding to the 

intensity input (i.e. W2 << W1) since the label input carries no information about the image 

at the beginning. Note that  is constructed with uniform distribution over classes. On 

the other hand, in the following steps, the weights corresponding to the label input, W2, are 

assigned higher values than the weights corresponding to the intensity input (i.e. W2 > W1). 

Consequently, in testing, the filters corresponding to the predicted labels are more effective 

than the filters corresponding to intensities.

C. Training

1) Voxelwise network—MRI image labels are often unbalanced. For brain extraction the 

number of non-brain voxels is on average roughly 10 times more than the number of brain 

voxels. The following process was used to balance the training samples: for each training 

image, 15000 voxels were randomly selected such that 50% of the training voxels were 

among border voxels. The voxels which had two different class labels in a cube of five 

voxels around them were considered border voxels. Of the remaining 50% of samples, 25% 

were chosen randomly from the brain class and 25% were chosen from the non-brain class.

For training, the cross-entropy loss function was minimized using ADAM optimizer [28]. 

Three different learning rates were employed during the training: In the first step, a learning 

rate of 0.001 was used with 5000 samples for each MRI data pair and 15 epochs. In the 

second step, learning rate of 0.0001 was used to update the network parameters with another 

5000 samples for each MRI data and 15 epochs. Finally, the last 5000 samples for each MRI 

data were used with a learning rate of 0.00005 to update the network parameters. The total 

training time for this architecture was less than two hours.

2) Fully convolutional network—The output layer in the FCN consists of c planes, one 

per class (c = 2 in brain extraction). We applied softmax along each pixel to form the loss. 

We did this by reshaping the output into a width × height × c matrix and then applying cross 

entropy. To balance the training samples between classes we calculated the total cost by 

computing the weighted mean of each class. The weights are inversely proportional to the 

probability of each class appearance, i.e. higher appearance probabilities led to lower 

weights. Cost minimization on 15 epochs was performed using ADAM optimizer [28] with 

an initial learning rate of 0.001 multiplied by 0.9 every 2000 steps. The training time for this 
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network was approximately three hours on a workstation with an Nvidia Geforce GTX1080 

GPU.

Figure 1d illustrates the procedure of using Algorithm 1. To create patches for each voxel in 

the network, two sets of features are used; first, patches of different sizes around each voxel 

are considered as inputs, i.e. X(Ni). Second, exact same patch windows are considered 

around the posterior probability maps calculated in the previous step, , as additional 

sets of inputs. The posterior probabilities are multiplied to the mean of the data intensity to 

be comparable with data intensities. Concatenating these two 2D features provides 3D inputs 

to the network in two different domains.

Training was stopped when it reached convergence, i.e. when the change in the cross-

entropy cost function became asymptotically smaller than a predefined threshold ε:

(5)

For testing, the auto-context algorithm was used with two steps.

IV. Experiments

A. Datasets

We evaluated our algorithm first on two publicly available benchmark datasets and then on 

fetal MRI data which exhibits specific challenges such as non-standard, arbitrary geometry 

and orientation of the fetal brain, and the variability of structures and features that surround 

the brain. We used two-fold cross-validation in all experiments. The output of all algorithms 

was evaluated against the ground truth which was available for the benchmark datasets and 

was manually obtained prior to this study for the fetal MRIs.

The first dataset came from the LONI Probabilistic Brain Atlas Project (LPBA40) [29]. This 

dataset consists of 40 T1-weighted MRI scans of healthy subjects with spatial resolution of 

0.86 × 1.5 × 0.86 mm. The second dataset involved the first two disks of the Open Access 

Series of Imaging Studies (OASIS) [30]. This consisted of 77 1 × 1 × 1 mm T1-weighted 

MRI scans of healthy subjects and subjects with Alzheimer’s disease.

The third dataset contained 75 reconstructed T2-weighted fetal MRI scans. Fetal MRI data 

was obtained from fetuses scanned at a gestational age between 19 and 39 weeks 

(mean=30.1, stdev=4.6) on 3-Tesla Siemens Skyra scanners with 18-channel body matrix 

and spine coils. Repeated multiplanar T2-weighted single shot fast spin echo scans were 

acquired of the moving fetuses, Ellipsoidal brain masks defining approximate brain regions 

and bounding boxes in the brain region were defined in ITKSNAP [31], and the scans were 

then combined through robust super-resolution volume reconstruction by either of the 

algorithms developed in [32] or [33] for motion correction and volume reconstruction at 

isotropic resolution of either 0.75 or 1 mm. Brain masks were manually drawn on the 

reconstructed images by two experienced segmenters. Manual brain extraction took between 
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1 to 4 hours per case depending on the age and size of the fetal brain and the quality of the 

images.

B. Results

To evaluate the performance of the algorithms, Dice overlap coefficient was used to compare 

the predicted brain mask P with ground truth mask (extracted manually) R. The Dice 

coefficient was calculated as follow:

(6)

where TP, FP, and FN are the true positive, false positive, and false negative rates, 

respectively. We also report specificity, , and sensitivity, , to compare 

algorithms.

Figure 2 shows the Dice coefficient for the different steps of the training session for all 

datasets in the auto-context CNN algorithm. Improvement in the Dice coefficient is observed 

in both network architectures (U-net and 2.5D-CNN) through the steps of the auto-context 

algorithm.

Table I shows the results of our proposed method compared to the other methods on the two 

benchmark datasets. The results for PCNN were taken from [12]. Auto-context CNNs 

(Auto-Nets) showed the highest Dice coefficients among all methods, with an increase of 

about 0.8% over the best performing methods in the LPBA40 dataset. This significant boost 

in performance was achieved in Auto-Nets through the autocontext algorithm which, by 

incorporating local shape context information along with local patches, allowed a significant 

increase in sensitivity and an increase in specificity.

The main advantage of our CNN-based method was revealed in the fetal MRI application 

where the fetal brains were in different orientations and surrounded by a variety of non-brain 

structures. Figure 3 shows an example, and Table II shows the results of whole brain 

segmentation on reconstructed fetal MRI. Only Auto-Net styles, BET and 3dSkullStrip were 

included in this comparison as the other methods were not designed to work with arbitrary 

brain orientation in fetal MRI and thus performed poorly. As expected, the auto-context 

algorithm improved the results significantly, and the Auto-Nets performed much better than 

the other algorithms in this application, with average Dice coefficients that were more than 

12% higher than the other techniques, and sensitivities that were higher by a margin of more 

than 20%. In fact, as seen in Figure 3, the other two algorithms generated conservative brain 

masks which resulted in high specificity (close to 1) but very low sensitivity. The Dice 

coefficient, sensitivity, and specificity, calculated based on the ground truth for this case, are 

shown underneath each image in this figure.

The effect of using the auto-context algorithm can also be seen in Figure 3, where the 

voxelwise and fully convolutional networks on the right (i.e. 2.5D and U-Net, respectively) 
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are the networks without auto-context. Three different improvements are observed after 

using auto-context steps. First, the label of the brain voxels considered as non-brain by the 

first networks in the middle of the brain voxels (i.e. false negatives) were changed to brain 

voxels (yellow arrows). Second, the very small number of the non-brain voxels considered 

as brain voxels in the first networks (white arrows) were changed to non-brain voxels. Third, 

the auto-context algorithm slightly pushed the edges of the brain to the outside (cyan 

arrows). These three improvements resulted in remarkable improvement in sensitivity at the 

cost of only a slight decrease in specificity in this case. The result is a significant boost in 

segmentation accuracy also shown by a significant increase in the Dice overlap coefficient.

It is worth noting that based on the data in Tables I and II the FCN (Auto-U-net) performed 

slightly better than the voxelwise CNN (Auto-2.5D-CNN) for the LPBA40 and OASIS 

datasets, but the voxelwise CNN outperformed FCN for the fetal MRI data. Our explanation 

is that there was higher level of commonality in shape and features of the samples in the 

LPBA40 and OASIS benchmark datasets compared to the fetal MRI dataset. This 

information was learned by the FCN, resulting in better performance compared to the 

voxelwise approach. For the fetal brain images that were arbitrarily located and oriented in 

the image space and surrounded by various structures, global geometric features were less 

important, and the voxelwise network performed better than the FCN as it learned and relied 

on 3D local image features.

Figure 4 shows an example of a challenging fetal MRI case, where the voxelwise approach 

(Auto 2.5D) performed much better than the FCN approach (Auto U-net) as well as the 

other methods (BET and 3dSkullStrip). As can be seen from both Figures 3 and 4, fetal 

brains can be in non-standard arbitrary orientations, and the fetal head may be surrounded by 

different tissue or organs such as the amniotic fluid, uterus wall or placenta, or other fetal 

body parts such as hands or feet, or the umbilical cord. Despite the challenges raised, our 

Auto-Net methods, in particular the voxelwise CNN performed significantly better than the 

other methods in this application.

Figure 5 shows the box plots of the Dice coefficient, sensitivity, and specificity of the 

different algorithms on all three datasets. Among the non-CNN methods Robex performed 

well and was comparable to the 2.5D-CNN on the benchmark datasets, but could not be used 

reliably in the fetal dataset because of the geometric assumptions and the use of an atlas. On 

the other hand, BET and 3dSkullStrip had more relaxed assumptions thus could be used, 

albeit with limited accuracy. It should be noted that none of these methods were designed 

and tested for fetal brain MRI, so it was not expected that they worked well under the 

conditions of this dataset. In all datasets, Auto-Nets performed significantly better than all 

other methods as the auto-context significantly improved the results of both CNN 

architectures (2.5D and U-net).

Paired t-test was used to compare the results of different algorithms. The Dice coefficient of 

the proposed algorithm, Auto-Net (both Auto-2.5D and Auto-U-net), was significantly 

higher than BET, 3dSkullStrip, Robex, and HWA for LPBA40 and OASIS datasets at α 
threshold of 0.001 (p < 0.001). Moreover, it revealed significant differences (p < 0.001) 

between the Dice coefficient of the proposed algorithm (Auto-2.5D and Auto-U-net) with 
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BET and 3dSkullStrip in fetal MRI. Paired t-test also showed significant improvement in the 

Dice coefficients obtained from the voxelwise network and the FCN through the use of the 

auto-context algorithm (i.e. Auto-2.5D vs. 2.5D and Auto-U-net vs. U-net).

Figure 6 shows logarithmic-scale average absolute error heat maps of the different 

algorithms on the LPBA40 dataset in the MNI atlas space [34]. These maps show where 

most errors occurred for each algorithm, and indicate that the Auto-Nets performed much 

better than the other methods in this dataset.

Table III shows the average testing time (in seconds) for each dataset and each algorithm. It 

should be mentioned that the testing time for all the CNN-based methods including the 

PCNN were measured on GPUs, whereas the testing time for all non-CNN based methods 

were measured on multicore CPUs, therefore this data does not directly compare the 

computational cost of different algorithms. It is also noteworthy that by using fully 

convolutional layers instead of fully connected layers in the 2.5D CNN architecture the 

testing time was decreased by a factor of almost 15 fold. Nonetheless, the FCN U-net is still 

significantly faster.

V. Discussion

Our proposed auto-context convolutional neural networks outperformed the recent deep 

learning method [12] and four widely-used brain extraction techniques that were 

continuously evolved and improved over the past decade due to the significant demand for 

accurate and reliable automated brain extraction in the neuroscience and neuroimaging 

communities.

We achieved the highest Dice coefficients as well as a good sensitivity-specificity trade-off 

among the techniques examined in this paper. This was achieved by using the autocontext 

algorithm and FCN approach together for standard datasets and auto-context with multiple 

patch sizes as well as context information in a voxelwise CNN architecture.

While the auto-context FCN based on U-net was much faster than the auto-context 

voxelwise network, it performed only slightly better for the benchmark datasets. On the 

other hand, the auto-context voxelwise network performed much better than the auto-context 

FCN in the very challenging fetal MRI brain extraction problem. The auto-context algorithm 

dramatically improved the performance of both networks.

We trained and examined efficient voxelwise and FCN Auto-Nets in this paper. Extensions 

to 3D networks is analytically straightforward; but the 3D counterparts are typically more 

demanding on computational resources, in particular memory. Generally, in voxelwise 

networks each voxel is considered as an independent sample to be classified. A window or 

different-sized windows around voxels are chosen as features and the network is trained 

using those features. Kleesiek et al. [12] used one cube with constant window size around 

each voxel. Moeskops et al. [18] used different window sizes around voxels but in 2D views. 

The main reason that previous studies did not use both approaches together, is that the 

number of parameters increases significantly with 3D convolutional kernels, especially when 

different, typically large window sizes are used. Such a network can easily consume more 

Salehi et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



memory than what is available on most workstation GPUs. Our 2.5D network made a good 

trade-off in this regards.

To compare our 2.5D network (which consists of three 2D pathway networks) with its 3D 

counterpart, we calculate the number of parameters: The 2.5D network contains 68.81 

million parameters whereas its 3D counterpart contains 793.84 million parameters. With 

direct implementation with a small batch size of 1, the 3D counterpart of our CNN 

consumes more than 40GB of GPU memory. On the other hand, in our 2.5D network 

architecture we efficiently used a batch size of 64. The nearest 3D counterpart of our 

network with similar memory usage contained two cubes with window sizes of 15 and 41. 

We tested this network on the LPBA40 dataset and observed 1.5% decrease in average Dice 

coefficients while the average testing time increased by a factor of 1.5. This architecture 

contained 154 million parameters. We also systematically evaluated the effect of the three 

pathways and different window sizes. To this end, we trained and tested networks with only 

one pathway in each plane. While the testing times were decreased by a factor of 4, we 

observed significant decrease in average Dice coefficients, at 2.8 – 4.3%. We also observed 

significant decrease in average Dice coefficients by using single window sizes instead of 

using different window sizes (i.e. 5%, 2.1%, and 0.9% drop in the Dice coefficients for 

window sizes of 15, 25, and 51, respectively).

With Auto-Net we overcome one of the persisting challenges in fetal brain MRI processing. 

The extraction of fetal brain from reconstructed fetal MRI previously required a significant 

amount of work to correct the masks provided by BET or other level set whole brain 

segmentation techniques [35], [36]. Atlas-based segmentation methods heavily rely on 

image registration which involves time-consuming search and optimization to match the 

arbitrary orientation of images [37], followed by deformable registration to age-matched 

templates [38], or patch-based label propagation [39], which are also time consuming and 

difficult due to the presence of residual non-brain tissue after initial alignments. Most of the 

work in the literature focused on brain detection and localization in original fetal brain MRI 

scans, mainly to improve automated motion correction and reconstruction, e.g. [40], [41], 

[42]. While accurate bounding boxes are detected around the fetal brain by these methods, 

leading to improved motion correction [41], the estimated brain masks are not exact and 

consequently the reconstructed images involve significant non-brain tissue. Therefore 

accurate brain extraction is critically needed after reconstruction. Rather than being 

dependent on difficult and time-consuming image registration processes, the Auto-Net fetal 

brain extractions, proposed here, work at the voxel level to mask the fetal brains and prepare 

them for registration to an atlas space [43] for further analysis. Brain masks are also useful 

in other processing tasks, such as intensity non-uniformity correction [44], which poses 

significant challenges in fetal MRI as can be seen in Figure 4.

In comparison with other methods, the features in CNN-based methods are learnt through 

the training step and no hand-crafted features are needed. After training, these methods are 

fast in testing. We noted that these methods do not use image registration nor do they make 

assumptions about global image geometry. Rather, the networks learn to classify voxels 

based on local and shape image features. An inherent assumption in such learning-based 

methods is that a suitable training set is available. This is a strict assumption both in terms of 
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the existence of the training set and in that any new test image should have the same feature 

distribution as the training set. We used one modality in this study. It is expected that if 

multiple modalities, such as T1-weighted, T2-weighted, FLAIR, or CT images along with 

their training data are available and used, they result in increased accuracy. The only change 

in the architecture will be the additional third dimension of the kernel of the first 

convolutional layer.

VI. Conclusion

We developed and evaluated auto-context convolutional neural networks with two different 

architectures (a voxelwise network with three parallel 2D pathways, and a FCN style U-net) 

for whole-brain segmentation in 3D MRI. The auto-context CNNs outperformed a recent 

deep learning method and four widely-used brain extraction methods in two publicly 

available benchmark datasets and in the very challenging problem of extracting fetal brain 

from reconstructed fetal MRI. Unlike the current highly evolved brain extraction methods 

that use a combination of surface models, surface evolutions, and edge and intensity 

features, CNN-based methods do not use image registration or assume global geometric 

features such as certain orientations, but require suitable training data.
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Appendix A

Theorem 1

The cross-entropy cost function in Algorithm 1 monotonically decreases during the training.

Proof

To show that the cross-entropy cost function decreases monotonically, we show that the cost 

at each level will be smaller or at least equal to the cost at previous level. At the arbitrary 

step t,

(7)

and

(8)

Also, note that the posterior probability is:
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(9)

Using fyk (X(Ni), p(t−1)(Ni)) = log p(t−1),i(yi) cross-entropy in level t will be equal to cross-

entropy in level t−1. Since, during the training in step t we are minimizing the cross entropy 

cost function, p(t),i(yi) should at least work better than p(t−1),i(yi). Therefore:

(10)
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Fig. 1. 
Schematic diagram of the proposed networks: a) The proposed voxelwise architecture for 

2D image inputs; b) the network architecture to combine the information of 2D pathways for 

3D segmentation; c) the U-net style architecture. The 2D input size for the LPBA40 and 

fetal MRI datasets was 256 × 256 and for the OASIS dataset was 176 × 176; and d) the auto-

context formation of the network to reach the final results using network (a) as example. The 

context information along with multiple local patches are used to learn local shape 

information from training data and predict labels for the test data.
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Fig. 2. 
The Dice coefficient of training at four steps of the auto-context algorithm on all datasets 

based on the U-net (up) and the voxelwise 2.5D CNN approach (bottom). These plots show 

that the networks learned the context information through iterations and they converged.
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Fig. 3. 
Predicted masks overlaid on the data for fetal brain MRI; the top images show the 

improvement of the predicted brain mask in different steps of the Auto-Net using 2.5D-

CNN. The middle images show the improvement of the predicted brain mask in different 

steps of the Auto-Net using U-Net. The bottom left and right images show the predicted 

brain masks using BET and 3dSkullStrip, respectively. The right image shows the ground 

truth manual segmentation. Despite the challenges raised, our method (Auto-Net) performed 

very well and much better than the other methods in this application. The Dice coefficient, 

sensitivity, and specificity, calculated based on the ground truth for this case, are shown 

underneath each image in this figure.
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Fig. 4. 
Predicted masks overlaid on the reconstructed fetal brain MRI for a challenging case with 

decent image reconstruction quality and intensity non-uniformity due to B1 field 

inhomogeneity; the top images show the predicted brain masks by Auto-Net using 2.5D-

CNN (left) and U-net (right). The bottom left and right images show the predicted brain 

masks using BET and 3dSkullStrip, respectively. The right image shows the ground truth 

manual segmentation. As can be seen, fetal brains can be in non-standard arbitrary 

orientations. Moreover, the fetal head may be surrounded by different tissue or organs. 

Despite all these challenges, the Auto-2.5D CNN performed well and much better than the 

other methods in this case. The Dice coefficient, sensitivity, and specificity, calculated based 

on the ground truth, are shown underneath each image in this figure.
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Fig. 5. 
Evaluation scores (Dice, sensitivity, and specificity) for three data sets (LPBA40, OASIS, 

and fetal MRI). Median is displayed in boxplots; blue crosses represent outliers outside 1.5 

times the interquartile range of the upper and lower quartiles, respectively. For the fetal 

dataset the registration-based algorithms were removed due to their poor performance. 

Those algorithms were not meant to work for images of this kind with non-standard 

geometry. Overall, these results show that our methods (Auto-Nets: Auto 2.5D and Auto U-

net) made a very good trade-off between sensitivity and specificity and generated the highest 

Dice coefficients among all methods including the PCNN [12]. The performance of Auto-
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Nets was consistently superior in the fetal MRI application where the other methods 

performed poorly due to the non-standard image geometry and features. Using Auto-context 

algorithm showed significant increase in Dice coefficients in both voxelwise and FCN style 

networks.
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Fig. 6. 
Logarithmic-scale absolute error maps of brain extraction obtained from six algorithms on 

the LPBA40 dataset. This analysis shows that Auto-Nets performed much better than the 

other methods in this dataset.
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TABLE II

Mean and standard deviation of the scores of different algorithms on the fetal dataset. The results show that 

highest Dice coefficients were obtained by Auto-Net compared to BET and 3dSkullStrip among the techniques 

that could be used in this application. Also, the voxelwise approach (Auto-2.5D-CNN) performed much better 

than the FCN (Auto-U-net) in this application.

Method Dice Sensitivity Specificity

Auto-U-net 93.80(±0.02) 94.64(±0.04) 98.65(±0.01)

U-net 92.21(±0.03) 96.46(±0.03) 97.57(±0.01)

Auto-2.5D-CNN 95.97(±0.02) 94.63(±0.02) 99.53(±0.004)

2.5D-CNN 94.01(±0.01) 94.20(±0.03) 98.88(±0.008)

BET 83.68(±0.07) 73.00(±0.1) 99.91(±0.001)

3dSkullStrip 80.57(±0.12) 69.19(±0.16) 99.97(±0.001)
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TABLE III

Average runtimes (seconds) of the methods compared in this study: the non-CNN methods were tested on an 

Intel(R) Core(TM) i7-5930K CPU with 3.50 GHz and 64 GB RAM for all data sets (LPBA40, OASIS and 

Fetal). The CNN-based methods were tested on an NVIDIA GeForce GTX 1080 (Pascal architecture). The 

PCNN timings are based on those reported in [12] using an NVIDIA Titan GPU with Kepler architecture.

Method LPBA40 OASIS Fetal

Auto-U-net 10.03 22.85 14.11

U-net 4.57 11.36 6.87

Auto-2.5D-CNN 794.42 641.26 501.73

2.5D-CNN 396.23 320.12 244.9

PCNN 36.51 40.99 -

BET 2.04 1.96 1.62

3dSkullStrip 130.4 119.12 82.72

Robex 52.10 63.25 -

HWA 18.73 13.42 -
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