Skip to main content
. Author manuscript; available in PMC: 2018 Nov 1.
Published in final edited form as: IEEE Trans Med Imaging. 2017 Jun 28;36(11):2319–2330. doi: 10.1109/TMI.2017.2721362

TABLE I.

Mean and standard deviation of the scores for different algorithms on LPBA40 and OASIS datasets. The results show that our algorithm increased both sensitivity and specificity and resulted in highest Dice scores among all widely-used tools and the recent PCNN method [12].

LPBA40 OASIS
Method Dice Sensitivity Specificity Dice Sensitivity Specificity
Auto-U-net 97.73 (±0.003) 98.31 (±0.006) 99.48 (±0.001) 97.62 (±0.01) 98.66 (±0.01) 98.77 (±0.01)
U-net 96.79 (±0.004) 97.22 (±0.01) 99.34 (±0.002) 96.22 (±0.006) 97.29 (±0.01) 98.27 (±0.007)
Auto-2.5D-CNN 97.66 (±0.01) 98.25 (±0.01) 99.47 (±0.002) 96.06 (±0.007) 96.21 (±0.01) 98.56 (±0.006)
2.5D-CNN 97.17 (±0.005) 98.52 (±0.01) 99.24 (±0.002) 95.61 (±0.007) 96.3 (±0.01) 98.20 (±0.01)
PCNN 96.96 (±0.01) 97.46 (±0.01) 99.41 (±0.003) 95.02 (±0.01) 92.40 (±0.03) 99.28 (±0.004)
BET 94.57 (±0.02) 98.52 (±0.005) 98.22 (±0.01) 93.44 (±0.03) 93.41 (±0.04) 97.70 (±0.02)
Robex 95.40 (±0.04) 94.25 (±0.05) 99.43 (±0.004) 95.33 (±0.01) 92.97 (±0.02) 99.21 (±0.004)
3dSkullStrip 92.99 (±0.03) 96.95 (±0.01) 97.87 (±0.01) 92.77 (±0.01) 94.44 (±0.04) 96.82 (±0.01)
HWA 92.41 (±0.007) 99.99 (±0.0001) 97.07 (±0.004) 94.06 (±0.01) 98.06 (±0.01) 96.34 (±0.01)