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with gabapentin synergistically produces
analgesia in mice
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BACKGROUND AND PURPOSE
Gabapentin is commonly prescribed for nerve pain but may also cause dizziness, sedation and gait disturbances. Similarly,
inhibition of the endogenous cannabinoid enzyme monoacylglycerol lipase (MAGL) has antinociceptive and anti-inflammatory
properties but also induces sedation in mice at high doses. To limit these side effects, the present study investigated the analgesic
effects of coadministering a MAGL inhibitor with gabapentin.

EXPERIMENTAL APPROACH
Mice subjected to the chronic constriction injury model of neuropathic pain were administered the MAGL inhibitor KML29
(1–40 mg·kg�1, i.p.), gabapentin (1–50 mg·kg�1, i.p.) or both compounds. Mice were tested for mechanical and cold
allodynia. The function and expression of cannabinoid CB1 receptors in whole brain homogenates and lipid profile of spinal
cords were assessed after repeated drug administration.

KEY RESULTS
The combination of low-dose KML29:gabapentin additively attenuated mechanical allodynia and synergistically reduced
cold allodynia. The CB1 antagonist, rimonabant, partially reversed the anti-allodynic effects of KML29:gabapentin in me-
chanical allodynia but not cold allodynia. The anti-allodynic effects of KML29:gabapentin did not undergo tolerance inmechanical
allodynia after repeated administration but produced mild tolerance in cold allodynia. High dose KML29 alone reduced CB1 re-
ceptor expression and function, but KML29:gabapentin reduced the density of CB1 receptors but did not alter their function.
KML29:gabapentin influenced additional signalling pathways (including fatty acids) other than the pathways activated by a
higher dose of either drug alone.

CONCLUSION AND IMPLICATIONS
These data support the strategy of combining MAGL inhibition with a commonly prescribed analgesic as a therapeutic approach
for attenuating neuropathic pain.

Abbreviations
2-AG, 2-arachidonylglycerol; 2-LG, 2-linoleoyl glycerol; anandamide, arachidonoylethanolamine; CB receptor, cannabi-
noid receptor; CCI, chronic constriction injury; CI, confidence interval; FAAH, fatty acid amide hydrolase; MAGL,
monoacylglycerol lipase; NAEs, N-acylethanolamines; NAGly, N-arachidonoyl glycine; PEA, N-palmitoyl ethanolamine;
TRPV, transient receptor potential cation channel subfamily V; Zadd, predicted additive ED50 values; Zmix, experimentally
derived ED50 values
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Introduction
Neuropathic pain is characterized by altered nerve function
stemming from peripheral nerve injury, autoimmune and
other disease states, or toxic insult. Treating neuropathic pain
is difficult, because it is often refractory to traditional analge-
sics (Attal et al., 2006; Rahn and Hohmann, 2009). As com-
pared with the well-documented side effects and abuse
potential of traditional analgesics, such as opioids, anticon-
vulsants have a relatively strong safety profile with minimal
adverse drug interactions and are the recommended first-line
treatment for neuropathic pain (Kukkar et al., 2013). How-
ever, anticonvulsants are associated with negative side ef-
fects, including drowsiness, dizziness and ataxia (Beal et al.,
2012; Stahl et al., 2013).Gabapentin is the most commonly
prescribed anticonvulsant for neuropathy and, unlike opi-
oids, repeated administration of gabapentin does not un-
dergo tolerance (Hao et al., 2000; Gottrup et al., 2004),
which reduces abuse potential. Gabapentin is a structural an-
alogue of GABA but binds to α2δ subtype 1 of voltage-gated
calcium channels (Sills, 2006; Kukkar et al., 2013). The
specific mechanisms through which gabapentin produces
analgesia are not completely clear. However, gabapentin is
thought to suppress central sensitization by blocking α2δ
channels, which are densely expressed on presynaptic dor-
sal horn neurons (Tuchman et al., 2010; Stahl et al., 2013),
thus reducing hyperexcitability of spinal nociceptive
neurons.

Despite being routinely prescribed, gabapentin is effective
in only half of chronic pain patients (Moore et al., 2014).
Using an alternative approach targeting multiple systems
with combination therapies could increase the efficacy of
treating neuropathic pain (Chaparro et al., 1996; Gilron
et al., 2005; Grim et al., 2014; Crowe et al., 2015). Combina-
tion therapy combines two or more drugs with different
mechanisms of action, thereby increasing potential efficacy
as compared with administration of either drug alone (Raffa,
2001; Perez et al., 2013). Using this approach offers multiple
advantages, such as allowing for lower doses of each drug,
thereby potentially reducing negative side effects of each
drug, while maintaining pain relief (Raffa, 2001). For exam-
ple, gabapentin has been characterized alone (Moore et al.,
2014) and in combination with other analgesics, including
opioids and antidepressants (Chaparro et al., 1996; Gilron
et al., 2005), in neuropathic pain patients.

Preclinical studies have evaluated the effects of
endogenous cannabinoid ligands (i.e. endocannabinoids)
anandamide (arachidonoylethanolamine) and 2-
arachidonylglycerol (2-AG) by inhibiting their respective
catabolic enzymes, fatty acid amide hydrolase (FAAH) or
monoacylglycerol lipase (MAGL), which have analgesic and
anti-inflammatory properties (Klein, 2005; Schlosburg et al.,
2009; Kinsey et al., 2011; Crowe et al., 2015). Further,
inhibiting FAAH or MAGL increases brain levels of ananda-
mide or 2-AG, respectively (Lichtman et al., 2004; Kinsey
et al., 2009; Long et al., 2009a), thus increasing the bioavail-
ability of the endocannabinoids to bind to cannabinoid
CB1 and CB2 receptors. Specifically, inhibiting FAAH reduces
neuropathic (Russo et al., 2007; Kinsey et al., 2009), inflam-
matory (Schlosburg et al., 2009; Booker et al., 2012) and vis-
ceral pain (Naidu et al., 2009). However, the FAAH inhibitor

PF-04457845 did not reduce pain in a clinical trial of osteo-
arthritis (Huggins et al., 2012), raising questions about the
translation of preclinical to clinical application of this en-
zyme. Similarly, the MAGL inhibitors, JZL184 and KML29,
attenuate pain in models of neuropathic pain (Kinsey et al.,
2010; 2013; Ignatowska-Jankowska et al., 2014) and inflam-
matory pain (Guindon et al., 2011; Ghosh et al., 2013). MAGL
inhibitors attenuate allodynia (i.e. the painful perception of
non-noxious stimuli) and hyperalgesia (i.e. increased sensi-
tivity to noxious stimuli) after nerve injury through a CB1

receptor-mediated mechanism of action (Kinsey et al., 2009;
2010; Ignatowska-Jankowska et al., 2014).

Despite the benefits of MAGL inhibition, chronic admin-
istration of high-dose JZL184 or KML29 induces physical de-
pendence and cross-tolerance to cannabinoid receptor
agonists and down-regulates and desensitizes CB1 receptors
(Ignatowska-Jankowska et al., 2014; Schlosburg et al., 2014).
To circumvent the effects of high doses and maximize
analgesia, research has focused on using lower doses of
endocannabinoid modulators in combination with other an-
algesics (Gunduz et al., 2011; Grim et al., 2014; Kazantzis
et al., 2016). For example, the combined pharmacological in-
hibition of MAGL and COX1 and 2 synergistically attenuated
mechanical allodynia and additively attenuated cold
allodynia (Crowe et al., 2015), indicating that MAGL might
be a good candidate for combination therapy. However, re-
peated administration of MAGL combined therapy has not
been studied. In addition, commonly prescribed anticonvul-
sants have not been evaluated in conjunction with drugs af-
fecting the endocannabinoid system. Therefore, the
objective of the present study was to determine the anti-
allodynic effects of acute and chronic administration of the
preclinical MAGL inhibitor, KML29, in combination with
the clinically available anticonvulsant, gabapentin.

Methods

Animals
All animal care and experimental procedures were in accor-
dance with ARRIVE guidelines (Kilkenny et al., 2010;
McGrath and Lilley, 2015) and were approved by the Insti-
tutional Animal Care and Use Committee at West Virginia
University prior to the start of any experiments. A total
of 95 male C57BL/6 J mice (Jackson Laboratory, Bar Harbor,
ME, USA) approximately 20 weeks old at the start of the
experiment were used. Every effort was made to reduce an-
imal suffering and to minimize the number of mice used
whenever possible. Mice were housed in polysofone plastic
NextGen cages (Allentown, Inc.) with corncob bedding.
Mice were housed three to five per cage in a temperature
(20–22°C) and humidity-controlled environment with ad
libitum access to food and water in an AAALAC-accredited
facility at West Virginia University. C57BL/6 J mice are
widely studied and have been evaluated extensively in pain
and behavioural assays (Crowe et al., 2015; Ignatowska-
Jankowska et al., 2015; Deng et al., 2015b). Mice were
randomly assigned, and all experiments were carried out
by trained technicians who were blinded to treatment
conditions.
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Chronic constriction injury (CCI)
Surgery was performed as described previously (Russo et al.,
2007; Kinsey et al., 2009). Mice were anaesthetized with in-
haled isoflurane (Phoenix Pharmaceuticals, Burlingame, CA,
USA) with oxygen. Anesthesia was confirmed by toe pinch.
The right hind leg was shaved and cleaned with three alter-
nating wipes of Betadine solution, followed by 70% ethanol.
An incision was made on the skin lateral to the femur. After
separating the muscle, the sciatic nerve was isolated and par-
tially ligated with a single, double-knotted 5–0 silk suture.
The muscle and skin were then closed with 6–0 nylon suture.
Mice recovered in clean, heated cages and were observed for
ataxia before being returned to the vivarium. Mice were ad-
ministeredketoprofen (5 mg·kg�1, i.p.) for 3 days, as a post-
operative analgesic. The mice were tested repeatedly, starting
7 days post-surgery, to confirm that allodynia developed.
Testing with experimental drug treatments started 4 weeks
post-surgery.

Behaviour assessments
The mice were brought into the testing room, weighed,
injected and subjected to behavioural testing. Mice were
injected with gabapentin or vehicle 60 min before testing. Pi-
lot data in mice subjected to CCI were administered
gabapentin (50 mg·kg�1, i.p.) either 60 or 120 min prior to
allodynia testing, and no differences were found between pre-
treatment times in mechanical (P = 0.70; data not show) and
cold allodynia (P = 0.12; data not shown). For experiments
using KML29 alone and in combination with gabapentin,
mice were injected with drug or vehicle 120 min before test-
ing (Ignatowska-Jankowska et al., 2014). The mice subjected
to CCI were tested for allodynia, starting 7 days after CCI sur-
gery, and placed inside ventilated polycarbonate chambers
on an aluminium mesh table and allowed to acclimatize for
60 min before testing. In the CCI antagonist studies,
rimonabant (3 mg·kg�1, i.p.), SR144528 (3 mg·kg�1, i.p.)
or vehicle was given 15 min before administering the
KML29:gabapentin combination (Crowe et al., 2015). A sepa-
rate group of mice without CCI were subjected to the ‘Billy
Martin tetrad battery’ to evaluate potential negative side ef-
fects of the drugs used in the present study, including non-
selective motor impairment.

A statistical power analysis was performed for sample size
estimation of n = 14 (80% power, α 0.05, effect size 0.40) for
acute allodynia testing, n = 8.5 (80% power, α 0.05, effect size
0.40) for repeated allodynia testing and n = 9 (80% power, α
0.05, effect size 0.60) for the tetrad battery. Final sample sizes
are reported in the figure legends.

Mechanical allodynia test. Mechanical allodynia was tested
using von Frey filaments (North Coast Medical, Morgan
Hill, CA, USA) using the ‘up-down’ method (Chaplan et al.,
1994; Crowe et al., 2015). The plantar surface of either hind
paw was stimulated with each filament, ranging from 0.16
to 6.0 g, starting with the 0.6 g filament, five times at a
frequency of ~2 Hz (Kinsey et al., 2010; 2011; Grim et al.,
2014; Crowe et al., 2015). The filaments were tested in
ascending order until the mouse lifted its paw after three
out of the five stimulations (i.e. a positive response). Once a
positive response occurred, the filaments were tested in

descending order until a positive response was no longer
recorded, thus establishing a sensory threshold.

Acetone-induced cold allodynia test. Immediately following
the von Frey test (i.e. 30 min after starting von Frey test),
10 μL of acetone (99% HPLC grade; Thermo Fisher
Scientific, Waltham, MA, USA) was applied via a 100 μL
pipette (USA Scientific, Ocala, FL, USA) onto the plantar
surface of each hind paw to test cold allodynia (Choi et al.,
1994; Decosterd and Woolf, 2000). Acetone was applied
from below the testing table via air burst by ‘expressing’ the
pipette, thereby avoiding mechanical stimulation of the
paw with the pipette tip. Cold allodynia was operationally
defined as total time lifting or clutching the hind paw,
which included paw lifting when walking or grooming. A
maximum cut-off time of 20 s was used (Decosterd and
Woolf, 2000).

In order to assess the effects of repeated administration of
the low dose combination of KML29:gabapentin, mice were
administered KML29 (40 mg·kg�1, i.p.; Ignatowska-
Jankowska et al., 2014), gabapentin (50 mg·kg�1, i.p.; Kinsey
et al., 2010), KML29:gabapentin combination (13.33:
4mg·kg�1, i.p.) or 1:1:18 vehicle for 7 days, with each admin-
istration separated by approximately 24 h. The low combina-
tion dose was chosen due to its similar effect on both
mechanical and cold allodynia. On the first and sixth day,
mice were tested for mechanical and cold allodynia, as de-
scribed above, 2 h after drug administration. Two hours after
the final injection on the seventh day, mice were killed via
CO2 asphyxia, and brains and lumbar spinal cords were dis-
sected, snap frozen in liquid nitrogen and stored at�80°C un-
til assayed.

Tetrad. Testing was conducted 120 min following
administration of KML29 (40 mg·kg�1, i.p.), gabapentin
(50 mg·kg�1, i.p.), KML29:gabapentin (13.33:4 mg·kg�1, i.p.)
or vehicle in the following order: locomotor activity, bar test
(catalepsy), tail immersion test and rectal temperature.
Testing was performed according to previously described
procedures (Martin et al., 1991; Long et al., 2009b;
Schlosburg et al., 2010). Briefly, locomotor activity was video
recorded for a 5 min period in a Plexiglas chamber placed
within a lighted, sound-attenuating chamber. ANYmaze
(Stoelting, Wood Dale, IL, USA) software was used to
determine time spent immobile. Catalepsy was assessed
using a horizontal bar (0.75 cm diameter) placed 4.5 cm off
the benchtop. The mouse was placed with its front paws on
the bar and a timer was started. Time spent immobile on the
bar was recorded, for up to 60 s maximum. If the mouse
moved off the bar, it was placed back on in the original
position up to three times. Nociception was then assessed in
the tail immersion assay. The mouse was placed head first
into a custom-fabricated restraint from absorbent under
pads (VWR Scientific Products, Radnor, PA, USA) with the
tail protruding out. The distal 1 cm of the tail was
submerged into a 56°C water bath. The latency for the
mouse to withdraw its tail (within a 10 s cut-off time) was
scored. Rectal temperature was assessed by inserting a mouse
thermocouple probe 2 cm into the rectum, and temperature
was determined by telethermometer (Physitemp Bat-12).

KML29 and gabapentin synergistically reduce pain BJP
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Homologous competition receptor binding
Increasing concentrations of the non-radioactive CB1/CB2

full agonist CP-55,940 (10�10 to 10�7 M) were incubated in
triplicate with 0.5 nM of [3H]-CP-55,940 in a final volume of
1mL of binding buffer (50mMTris, 0.05% BSA, 5mMMgCl2,
pH 7.4) as described previously (Brents et al., 2011). Each
binding assay contained 50 μg of crude whole mouse brain
homogenates. To achieve equilibrium, reactions were incu-
bated for 90 min at room temperature and terminated by
rapid vacuum filtration through Whatman GF/B glass fibre
filters, followed by three washes with ice-cold binding buffer.
Filters were immediately placed into scintillation vials with
4 mL of scintiverseTM BD cocktail scintillation fluid (Fisher
Scientific, Fair Lawn, NJ, USA). Samples were incubated
overnight in scintillation fluid, vortexed and bound reactiv-
ity determined by employing a liquid scintillation spectro-
photometer (Tri Carb 2100 TR Liquid Scintillation Analyser,
Packard Instrument Company, Meriden, CT, USA).

[35S]-GTPγS binding
[35S]-GTPγS assays were conducted as described previously
(Brents et al., 2012) in buffer containing 20 mM HEPES,
100 mM NaCl, 10 mM MgCl2, 0.05% BSA, 10 μM GDP and
20 U L�1 of adenosine deaminase. Assays were performed in
triplicate in a final volume of 1mL, with all reactions contain-
ing 0.1 nM [35S]-GTPγS and increasing concentrations of the
CB1/CB2 full agonist CP-55,940 (10�9 to 3 × 10�7), and
10 μg of crude whole mouse brain homogenates. To achieve
maximal G-protein activation, reactions were incubated at
30°C for 30 min and terminated by rapid vacuum filtration
through Whatman GF/B glass fibre filters and followed by
four 1 mL washes with ice-cold filtration buffer (20 mM
HEPES, pH 7.4, 0.05% BSA). Filters were immediately placed
into scintillation vials with 4mL of scintiverseTM BD cocktail
scintillation fluid (Fisher Scientific, Fair Lawn, NJ, USA).
Samples were incubated overnight in scintillation fluid,
vortexed and bound reactivity determined by employing a
liquid scintillation spectrophotometer (Tri Carb 2100 TR
Liquid Scintillation Analyser, Packard Instrument Company,
Meriden, CT, USA).

Lipid extraction, HPLC/MS/MS analysis, lipid
quantification
Lipid extraction was performed on frozen spinal cord tissue as
previously described (Leishman et al., 2016a). In brief, frozen
tissue underwent mechanical, methanolic extraction in the
presence of deuterated standards, then partial purification
on C18 columns (Agilent Technologies, Santa Clara, CA,
USA). Eluent fractions were analysed using HPLC/MS/MS
(Shimadzu autosampler and pumps, Columbia, MD, USA;
API 3000 triple quadrupole, Applied Biosystems/MDS Sciex;
Foster City, CA, USA). Quantification of lipids is through a
series of standard curve analyses using Analyst software
(Applied Biosystems/MDS Sciex; Foster City, CA, USA) and
was previously described in greater detail (Leishman et al.,
2016b).

To determine the magnitude change in one treatment
group relative to another and, therefore, the number of ar-
rows to assign each significant difference, the mean level of
a particular lipid in a selected treatment group was divided

by that same lipid’s mean level in the comparison group
(Table 3). For example, the average level of 2-AG in the spinal
cord of KML29-treated mice was 6.39 × 10�9 mol·g�1, and the
average level of 2-AG in the spinal cord of the vehicle-treated
mice was 1.90 × 10�9 mol·g�1; 6.39 × 10�9 divided by
1.90 × 10�9 equals 3.36, meaning that 2-AG levels are over
three times as high in the spinal cord of the KML29-treated
mice and assigning it four up arrows in the 2-AG cell for the
‘Change with KML relative to vehicle’ column because the
magnitude of change was between 3 and 10 times higher.
For decreases, the process was very similar: the mean level
in spinal cord of one group was divided by the same lipid’s
mean level in the spinal cord of the comparison group; how-
ever, the reciprocal of the decimal was taken to express a fold
decrease (if the level in the one group is half of the level of an-
other then that is a twofold decrease). As an example, the
mean level of PGE2 was 4.90 × 10�11 mol·g�1 in the spinal
cord of the KML29-treated mice and 8.18 × 10�11 mol·g�1 in
the corresponding gabapentin-treated spinal cord.
4.90 × 10�11 divided by 8.18 × 10�11 is 0.599 and the recipro-
cal of 0.599 is 1.67, meaning that the decrease is between
1.5 and 2 fold and giving it two down arrows on our scale
in PGE2 cell of the ‘Change with KML relative to
gabapentin’ column.

Data analysis
The data and statistical analysis comply with the recommen-
dations on experimental design and analysis in pharmacol-
ogy (Curtis et al., 2015). All results are presented as
means ± SEM. Results were considered significant at
P < 0.05. Ipsilateral paw sensitivity data were analysed using
a t-test compared to the contralateral paw. Dose–response
data were analysed using one-way ANOVA, followed by
Dunnett’s post hoc test. The antagonist studies were analysed
by two-way (combo vs. antagonist) between-subjects ANOVA
followed by Bonferroni post hoc tests. The repeated adminis-
tration study was analysed by a two-way (acute vs. chronic)
ANOVA followed by paired t-tests. No animals were excluded
from analyses.

For the mechanical allodynia assay, raw paw threshold
was expressed as % maximum possible effect (%MPE) using
the equation %MPE = (test threshold / max threshold)*100,
where ‘max threshold’ was the assay’s maximum filament
(i.e. 6 g), and ‘test threshold’ was the paw’s established fila-
ment threshold. For the cold allodynia assay, raw seconds
the paw was lifted was expressed as %MPE using the
equation %MPE = [(max cut-off � test time)/(Max Cut-off)]
*100, where ‘max cut-off’ was the assay’s maximum cut-off
point (i.e. 20 s), ‘test time’ was the time (s) the paw was lifted
off the testing table. The ED50 values were calculated by
interpolation when only two data points were available
(one below and one above 50% MPE) or by standard linear
regression analysis when at least three data points
were available on the linear portion of the dose-effect curve
(Crowe et al., 2015). To determine synergistic, additive or
subadditive interactions, the theoretical additive ED50 value
of the combined drugs was calculated from the individual
dose–response curves. The combination is assumed to equal
the sum of the effects of each drug.

Dose-addition analysis was carried out as previously pub-
lished (Tallarida, 2006; Naidu et al., 2009; Crowe et al., 2015).
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For graphical display, the ED50 of gabapentin was plotted on
the abscissa (x axis), and the isoeffective dose of KML29 was
plotted on the ordinate (y axis) to generate the isobologram.
A line connecting the two points represents the theoretical
additive effect of KML29 and gabapentin dose combinations.
The drugmixture ED50 value was determined by linear regres-
sion as the overall mixture dose (KML29 and gabapentin
doses were summed). The experimentally derived ED50 values
(Zmix) from the dose–response curves of the ratios were com-
pared to the predicted additive ED50 values (Zadd). Zadd values
were calculated using the equation: Zadd = fA + (1� f )B,
where Α was the KML29 alone ED50 value, Β was the
gabapentin alone ED50 value and ƒwas a fractional multiplier
of Α in the computation of the additive total dose. The exper-
iments described in this manuscript tested mixtures that
yielded values of ƒ=0.25, ƒ=0.5 and ƒ=0.75, where ƒ is related
to the proportion of KML29 in a mixture per the equation
ρA=ƒ/Zadd. If the ED50 values of the Zmix are below those of
Zadd and the confidence limit (CI) does not overlap, then
the interaction is considered synergistic. The statistical differ-
ence between the theoretical additivity ED50 value (Zadd) and
the experimental ED50 value (Zmix) was analysed using a
Fisher’s exact test.

For receptor binding assays, curve-fitting and statistical
analyses were conducted utilizing nonlinear regression; the
one site homologous competition binding equation was used
to determine the affinity (KD) of [

3H]-CP-55,940 and CB1 re-
ceptor density (BMAX) expression in crude whole mouse brain
homogenates. Curve fitting of concentration–effect curves
via nonlinear regression was also employed to determine
the EC50 (a measure of potency, in nM) and EMAX (a measure
of efficacy, in pmol·mg�1) for the [35S]-GTPγS binding experi-
ments. Measures of affinity (KD) and potency (EC50) were
converted to pKD or pEC50 values by taking the negative log
of each value so that parametric tests could be used for statis-
tical comparisons. Data were analysed for statistical differ-
ences by a one-way ANOVA, followed by Tukey’s post hoc
comparisons. For the HPLC/MS/MS data, concentrations of
each detected lipid in mol·g�1 adjusted for % recovery were
analysed using one-way ANOVA followed by post hoc Fisher’s
Least Significant Differences Test to determine significant dif-
ferences between treatment groups. All statistical tests for
HPLC/MS/MS data were carried out using SPSS Statistics
(IBM, Armonk, NY, USA).

Materials
Gabapentin was purchased from Sigma-Aldrich (St. Louis,
MO, USA). KML29, rimonabant (SR141716; CB1 receptor an-
tagonist) and SR144528 (CB2 receptor antagonist) were pur-
chased from Cayman Chemical (Ann Arbor, MI, USA). All
compounds were dissolved in a vehicle consisting of ethanol,
Cremophor (Sigma-Aldrich, St. Louis, MO, USA) and normal
saline in a ratio of 1:1:18 parts (Pinto et al., 2010). All solu-
tions were warmed to room temperature and injected i.p. at
a volume of 10 μL·g�1 body mass. While both KML29 and
gabapentin are orally bioavailable, i.p. and p.o. routes of
administration of KML29 have comparable levels of MAGL
inhibition (Chang et al., 2012) and gabapentin pharmacoki-
netics are not influenced by route of administration
(Gambelunghe, Mariucci, Tantucci, & Ambrosini, 2005).
CP-55,940 was purchased from Tocris Bioscience (Bristol,

UK) and prepared as a stock solution in 100% DMSO at a
concentration of 10 mM, divided into aliquots and main-
tained at �4°C until use. [3H]-CP-55950 (168 Ci mmol�1)
and [35S]-GTPγS (1250 Ci mmol�1) were purchased from
Perkin Elmer (Boston, MA, USA). All other reagents for
binding assays were purchased from Fisher Scientific Inc
(Pittsburgh, PA, USA).

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Southan
et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (Alexander et al.,
2015a,b,c).

Results

CCI induces mechanical and cold allodynia
Following the CCI surgery, mice were tested repeatedly, in the
absence of any drug administration, to establish allodynia
development before treatment testing. The mice developed
mechanical [t(29) = 9.47, P < 0.05] and cold [t(29) = �9.50,
P < 0.05] allodynia in the ipsilateral paw [mean(SEM) = 1.23
(0.22)g and 13.27(0.79)s], as compared to the contralateral
paw [mean(SEM) = 4.74(0.28)g and 3.98(0.53)s].

Coadministration of KML29 and gabapentin
additively attenuated mechanical allodynia
and synergistically reduced cold allodynia
Administration of KML29 has been previously shown to
significantly attenuate mechanical and cold allodynia at
≥30mg·kg�1 (Crowe et al., 2015). Gabapentin significantly re-
duced mechanical and cold allodynia at ≥10 mg·kg�1 (data
not shown). To determine the overall ED50 for KML29, the
ED50s for mechanical and cold allodynia, 16.62 and
27.26mg·kg�1, respectively, were averaged, resulting in an
overall ED50 of 22 mg·kg�1 (Crowe et al., 2015). For the over-
all ED50 of gabapentin, the ED50s for mechanical and cold
allodynia, 6.68 and 7.65 mg·kg�1, respectively, were aver-
aged, resulting in an overall ED50 of 7 mg·kg�1. Using the
overall ED50s for KML29 and gabapentin, the 1:1 ratio reflects
1 part KML29 to 0.3 parts gabapentin, the 3:1 ratio reflects 1
part KML29 to 0.1 parts gabapentin and the 1:3 ratio reflects
1 part KML29 and 0.9 parts gabapentin (Figure 1).

The Zmix in the 1:1, 3:1 and 1:3 ratios in the mechanical
allodynia test was lower than the Zadd with some CI overlap,
indicating that the interaction was additive (Table 1). The
Zmix in the 1:1 ratio in the cold allodynia test was less than
the Zadd; however, there was some CI overlap, and thus, the
interaction was considered additive (Table 1). The Zmix in
the 3:1 and 1:3 ratios in the cold allodynia test was less than
the Zadd and did not have any CI overlap, indicating the inter-
actions were synergistic (Table 1).

Because the experimental points of the collective me-
chanical allodynia tests do not differ significantly from the
theoretical line of additivity, the interaction was additive.
The experimental points of the collective cold allodynia
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of the 1:1 ratio did not differ significantly from the theo-
retical line of additivity, and thus, the interaction was addi-
tive (Figure 1A–D). Because the experimental points of the
cold allodynia in the 3:1 and 1:3 ratios were significantly
different from the line of additivity, the interaction was
synergistic (Figure 1E–H).

Anti-allodynia effects were partially blocked by
a CB1 receptor antagonist
To determine the relative contribution of either cannabinoid
receptor to the observed anti-allodynia, the CB1 antagonist,
rimonabant (3 mg·kg�1; Crowe et al., 2015), or the CB2 antag-
onist, SR144528 (3mg·kg�1; Crowe et al., 2015), was adminis-
tered prior to the combination of KML29 (13.33mg·kg�1) and
gabapentin (4 mg·kg�1) to assess receptor mechanism. There
was an overall main effect of treatment in mechanical
allodynia [F(3,52) = 5.15, P < 0.05; Figure 2A] and cold
allodynia [F(3,52) = 9.49, P < 0.05; Figure 2B]. In mechanical
allodynia, post hoc analyses did not indicate a difference be-
tween KML29:gabapentin and rimonabant or SR144528.
Similarly, in cold allodynia, post hoc analyses did not indicate
a difference between KML29:gabapentin and rimonabant or
SR144528.

Neither drug nor the combination elicited
classic cannabimimetic effects
KML29 (40 mg·kg�1), gabapentin (50 mg·kg�1) and KML29:
gabapentin (13.33:4 mg·kg�1) were assessed for classic canna-
binoid effects using the ‘Billy Martin tetrad battery’. Neither
drug, alone or in combination altered spontaneous locomo-
tor activity [F(3,28) = 0.13, P = 0.94; Figure 2C], bar test cata-
lepsy [F(3,28) = 1.11, P = 0.36; Figure 2D], tail immersion
analgesia [P = 0.94; Figure 2E] or core body temperature
[F(3,28) = 1.04, P = 0.39 Figure 2F].

No tolerance to repeated KML29 and
gabapentin combination in mechanical
allodynia
Mice were treated repeatedly with KML29 (40 mg·kg�1),
gabapentin (50 mg·kg�1), KML29:gabapentin (13.33:
4mg·kg�1) or vehicle for 7 days and were assessed for me-
chanical and cold allodynia on the first (i.e. acute effect)
and sixth day (i.e. chronic effect). On Day 1 of the experi-
ment, KML29, gabapentin and KML29:gabapentin attenu-
ated mechanical allodynia [F(3,27) = 21.88, P < 0.05;
Figure 3A], which replicated the acute results reported above.
On Day 6, gabapentin differed from vehicle (P < 0.05), but

Table 1
ED50 values of KML29 and gabapentin (GBP) in combination

Combination
(doses in
mg·kg−1)

Combination
Ratio

ED50 mg·kg−1 (95% confidence interval) KML29:GBP

Zadd (theoretical) Zmix (experimental)

KML29:GBP 1:1 Mechanical Allodynia 11.80 (8.68–14.93) 11.94 (7.35–19.36)

0.5:0.15 Cold Allodynia 16.62 (12.97–20.27) 13.65 (9.02–20.65)

1:0.3

4.44:1.3

13.33:4

30:9

40:12

KML29:GBP 3:1 Mechanical Allodynia 14.63 (10.36–18.90) 7.38 (4.83–11.27)

0.5:0.05 Cold Allodynia 21.13 (16.04–26.23) 10.06 (6.52–15.52)*

1:0.1

4.44:0.4

13.33:1.3

30:3

40:4

KML29:GBP 1:3 Mechanical Allodynia 8.98 (6.49–11.46) 4.27 (2.76–6.60)

0.5:0.45 Cold Allodynia 12.11 (9.40–14.82) 5.28 (3.43–8.11)*

1:0.9

4.44:4

13.33:12

30:27

40:36

The Zadd and Zmix values reflect the total amount of both drugs combined, where KML29 and gabapentin were summed for each combination.
Experimentally determined Zmix values and predicted Zadd values (95% CI) for mixtures of KML29 and gabapentin in assays of acetone and von Frey.
Asterisks indicate a synergistic interaction as evidence of non‐overlapping 95% CI between Zmix and Zadd values.
*P < 0.05 compared with Zadd using the Fisher test.
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Figure 2
Anti-allodynic effects of KML29:gabapentin combination treatment are partially mediated by CB1 receptors. Mice subjected to CCI were admin-
istered a combination of KML29:gabapentin (13.33:4 mg·kg�1). Pretreatment with rimonabant (SR1; 3 mg·kg�1), but not SR144528 (SR2,
3mg·kg�1), partially reduces anti-allodynia in the von Frey mechanical allodynia test (A), but neither had any effect in the acetone-induced cold
allodynia test (B), (n = 14). KML29 (40 mg·kg�1), gabapentin (50 mg·kg�1) or KML29:gabapentin (13.33:4 mg·kg�1) did not elicit any behav-
ioural changes in spontaneous locomotor activity (C), catalepsy (D), tail immersion (E) or body temperature (F), (n = 8). Data are expressed as
mean (±) SEM. *P < 0.05 versus vehicle.
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KML29 (P = 0.29) and the KML29:gabapentin combination
(P = 0.02) did not differ from chronic vehicle. There was an in-
teraction between the time of treatment (Day 1 or Day 6) and
drug group [F(3,54) = 8.35, P < 0.05; Figure 3A]. Post hoc anal-
yses revealed that acute and chronic administration of
KML29 (40 mg·kg�1) differed (P < 0.05), indicating that re-
peated administration of high dose KML29 leads to toler-
ance. Acute and repeated gabapentin differed from each
other (P < 0.05), whereas the acute and chronic combina-
tion of KML29:gabapentin group did not differ (P = 0.28),
indicating that repeated administration of the low dose
combination does not lead to tolerance.

Similarly, KML29, gabapentin and KML29:gabapentin
attenuated cold allodynia [F(3,27) = 13.16, P < 0.05;
Figure 3B] onDay 1. OnDay 6, gabapentin differed from vehi-
cle (P < 0.05), but KML29 (P = 0.60) and the combination
(P = 0.04) were not statistically significantly different from
chronic vehicle. There was an interaction between the time
of treatment (Day 1 or Day 6) and drug group
[F(3,54) = 7.60, P < 0.05; Figure 3B]. Acute and chronic

Figure 3
The anti-allodynic effects of KML29:gabapentin do not undergo tol-
erance in mechanical allodynia (A) after chronic administration but
show partial tolerance in cold allodynia (B). Mice were administered
KML29 (40 mg·kg�1), gabapentin (50 mg·kg�1) or KML29:
gabapentin (combo; 13.33:4 mg·kg�1) daily for 6 days. Data are
expressed as mean (±) SEM. *P < 0.05 versus vehicle, #P < 0.05 ver-
sus acute treatment. For vehicle, KML29 and KML29:gabapentin
groups n = 8 and for the gabapentin group n = 7. The difference in
experimental numbers reflects an odd number of animals evenly dis-
tributed in the experimental design.

Figure 4
Homologous [3H]-CP-55,940 receptor binding and CP-55,940 stim-
ulated G-protein activation in mouse whole brain homogenates. (A)
Specific binding was determined as described in the Methods by
incubating 0.5 nM [3H]-CP-55950 with increasing concentrations
(10-10to 10�7M) of CP-55,940 and 50 μg of whole mouse brain
membranes prepared from mice chronically treated with vehicle
(black circles), gabapentin (blue circles), KML29 (red triangles) or a
combination of gabapentin and KML29 (green squares). Receptor
affinity (KD in nM) and density (BMAX in pmol·mg�1 protein) was de-
termined by nonlinear regression analysis of specific [3H]-CP-55950
binding, and values are presented in Table 1. (B) Whole brain ho-
mogenates (10 μg) prepared from mice chronically treated as la-
belled were incubated in the presence of 0.1 nM [35S]-GTPγS with
increasing concentrations (10�9 to 3 × 10�7) of the full CB1 receptor
agonist CP-55,940 as described in the Methods. The potency (EC50

in nM) and efficacy (EMAX in pmol·mg�1 protein) of G-protein activa-
tion was determined by nonlinear regression analysis, and values are
presented in Table 2a. (n = 7–8).
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administration of KML29 (40mg·kg�1) differed (P< 0.05), in-
dicating that repeated administration of high dose KML29
leads to tolerance. Acute and chronic gabapentin did not dif-
fer, whereas the acute and chronic combination of KML29:
gabapentin differed (P < 0.05), indicating partial tolerance
developed in the low combination group.

To assess whether there was a change in efficacy of the
mixtures to produce anti-allodynia that went along with
the potency shifts allodynia, the maximum effective doses
of each drug alone and each of the three mixtures was
compared by between-subjects ANOVA. There was no sig-
nificant effect of treatment condition on the maximal ef-
fect on either mechanical allodynia (P = 0.45) or cold
allodynia (P = 0.20).

Chronic KML29:gabapentin reduces CB1
receptor density but not function in whole brain
homogenates
The CB1/CB2 agonist CP-55,940 produced concentration-
dependent and complete displacement of radiolabeled [3H]-
CP-55,940 (i.e. homologous competition) from CB1 receptors
expressed in brain homogenates and was best fit by a one-site
model. In mice injected daily with vehicle, [3H]-CP-55,940
bound to CB1 receptors with an affinity (KD) of 1.69 nM and
a receptor density (BMAX) of 5.294 pmol·mg�1 protein. Re-
peated gabapentin administration failed to alter the BMAX of
CB1 receptors, while repeated treatment with the MAGL
inhibitor KML29 significantly decreased the density of CB1

receptors in brain homogenates by 32% [F(3, 27) = 5.69,
P < 0.05; Figure 4; Table 2a]. Finally, in mice receiving

KML29:gabapentin, the BMAX of CB1 receptors was reduced
to levels comparable to that produced by KML29 alone
(29%) when compared to vehicle-treated controls.
Chronic drug treatment produced slight but significant
effects on the affinity (KD) of CP-55,940 for CB1 receptors
[F(3, 27) = 16.85, P < 0.05; Figure 4; Table 2a]. For example,
KML29 treatment alone and in combination with gabapentin
significantly reduced CP-55,940 affinity from 1.69 nM in
control animals, to 2.82 and 2.85 nM in KML29 and
KML29:gabapentin-treated mice respectively.

The CB1 cannabinoid receptor is a GPCR that produces
intracellular effects via interaction with the Gi/Go-subtype
of G-proteins (Dalton et al., 2009). Upon binding to CB1 re-
ceptors, agonists produce activation of G-proteins that can
be quantified in membrane preparations by measuring
increases in agonist-induced binding of [35S]-GTPγS, a
nonhydrolyzable GTP analogue (Harrison and Traynor,
2003). Therefore, to measure the function of CB1 receptors
expressed in brain membranes of treated mice, the ability of
increasing concentrations of CP-55,940 to increase
[35S]-GTPγS binding was examined. In vehicle-treated mice,
CP-55,940 produced a concentration-dependent increase in
[35S]-GTPγS binding in brain membranes with a potency
(EC50) of 9.6 nM and efficacy (EMAX) of 0.610 pmol·mg�1 pro-
tein. Although repeated treatment with gabapentin alone did
not change the efficacy of CP-55,940-mediated G-protein ac-
tivation, daily injections of KML29 significantly decreased
the EMAX of CP-55,940 in mouse brain homogenates by 34%
[F(3, 27) = 3.83, P < 0.05; Figure 4B]. Importantly, unlike that
observed for effects on CB1 receptor density, the combination

Table 2a
Homologous [3H]-CP-55,940 receptor binding in mouse whole brain homogenates

Group

[3H]-CP-55,940 binding

KD (nM) pKD (�Log[KD]) BMAX (pmol·mg�1) n

Vehicle 1.69 8.88 ± 0.04a,b 5.29 ± 0.42a 8

GBP 1.75 8.76 ± 0.03a,b 4.81 ± 0.23a,b 7

KML29:GBP 2.85 8.55 ± 0.03a,b 3.76 ± 0.37a,b 8

KML29 2.82 8.56 ± 0.03a,b 3.60 ± 0.31b 8
a,bpKD and BMAX values not sharing a letter are significantly different from values within the same column; That is, differences were observed with BMAX,
but no differences were observed with pKD. P < 0.05, one-way ANOVA, Tukey’s post hoc test.

Table 2b
CP-55,940 stimulated [35S]-GTPγS binding in mouse whole brain homogenates

Treatment [35S]-GTPγS binding

Group EC50 (nM) pEC50 (�Log[EC50]) EMAX (pmol·mg�1) n

Vehicle 9.6 8.03 ± 0.04a,b 0.61 ± 0.06a 8

GBP 9.7 8.03 ± 0.05a,b 0.58 ± 0.04a,b 7

KML29:GBP 10.4 8.01 ± 0.06a,b 0.49 ± 0.05a,b 8

KML29 17.6 7.77 ± 0.05a,b 0.41 ± 0.03b 8
a,bpEC50 and EMAX values not sharing a letter are significantly different from values within the same column; That is, differences were observed with EMAX,
but no differences were observed with pEC50. P < 0.05, one-way ANOVA, Tukey’s post hoc test.
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of gabapentin and KML29 produced a slight (19%), but non-
significant, reduction in the efficacy of CP-55,940 to activate
G-proteins in brain homogenates.

Similar to effects on CP-55,940 affinity (KD) repeated
KML29 also had a slight but significant [F(3, 27) = 6.25,
P < 0.05; Table 3] effect on the potency (EC50) of CP-55,940
to activate G-proteins. Specifically, KML29 treatment alone
significantly reduced the potency of CP-55,940 from 9.6 nM
in controls to 17.6 nM in treated mice.

The increase in [35S]-GTPγS binding produced by
CP-55,940 in whole mouse brain homogenates was due to
activation of CB1 receptors, because G-protein activation is
blocked by co-incubation with the CB1 antagonist
rimonabant (data not shown).

Chronic KML29:gabapentin increases 2-AG,
anandamide and NAEs in the spinal cord
Nineteen of the 26 lipids screened were present in all sam-
ples. The remaining seven were detectable in only some of

the samples; therefore, those were not statistically analysed
here. A series of comparisons of each of the 19 lipids in
each of the four treatment groups was performed so that
each of the three drug treatments was compared directly
to the vehicle. We then compared each of the individual
drug treatments to the combination treatments, and then,
we compared the individual drug treatments. A full list of
all lipids measured, the mean values for each and statistical
comparisons for all interactions are available in supple-
mental data (Supporting Information Table S1). A
composite of these series of comparisons is provided in
Table 3.

Compared to vehicle controls, 40 mg·kg�1 of KML29
for 7 days caused a predictable increase in 2-AG
[F(3,27) = 70.58; P < 0.05] and 2-linoleoyl glycerol (2-LG)
[F(3,27) = 8.39; P< 0.05]. In comparison to KML29 treatment,
50 mg·kg�1 gabapentin for 7 days showed an identical profile
to high dose KML29, except gabapentin decreased PGE2
[F(3,27) = 8.19; P < 0.05;Figure 5D].

Table 3
Eicosanoids in lumbar spinal cords

Change
with GBP
relative
to vehicle

Change
with KML29
relative
to vehicle

Change
with combo
relative
to vehicle

Change
with KML29
relative
to GBP

Change
with combo
relative
to GBP

Change
with combo
relative
to KML

N-acyl ethanolamine

N-palmitoyl ethanolamine ↑↑

N-stearoyl ethanolamine

N-oleoyl ethanolamine

N-linoleoyl ethanolamine ↑↑↑

N-arachidonoyl ethanolamine ↑↑ ↑

N-docosahexaenoyl ethanolamine ↑

N-acyl glycine

N-palmitoyl glycine

N-stearoyl glycine

N-oleoyl glycine

N-arachidonoyl glycine ↑↑↑↑

N-acyl taurine

N-arachidonoyl taurine ↑

Free Fatty Acids

Oleic acid

Linoleic acid ↑↑ ↑↑ ↑

Arachidonic acid

2-acyl-sn-glycerol

2-palmitoyl-sn-glycerol ↑↑

2-oleoyl-sn-glycerol ↑↑ ↑

2-linoleoyl-sn-glycerol ↑↑↑ ↑↑↑ ↑↑ ↑↑↑

2-arachidonoyl-sn-glycerol ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑

PGs

PGE2 ↑ ↓ ↓↓ ↓ ↑

Summary of lumbar spinal cord levels of eicosanoids from mice treated repeatedly with KML29 (KML; 40 mg·kg�1), gabapentin (50 mg·kg�1) or
KML29:gabapentin (combo; 13.33:4 mg·kg�1). Tissue was collected from mice subjected to CCI 2 h after drug administration. Arrows indicate fold
increase or decrease ↑↑↑↑ (≥10), ↑↑↑↑ (3–9.99), ↑↑↑ (2–2.99), ↑↑ (1.5–1.99), ↑ (1–1.49), ↓ (1–1.49), ↓↓ (1.5–1.99).
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The greatest changes in lipid levels occurred after the
combination dose of KML29:gabapentin (13.33:4 mg·kg�1)
was administered for 7 days. Unlike the treatment of KML29
or gabapentin alone, the combination therapy significantly
increased levels of anandamide [F(3,27) = 3.07; P < 0.05;
Figure 5A] and its endogenous structural analogues, the
N-acylethanolamines (NAEs) and N-arachidonoyl taurine.

Specifically, the individual NAEs increased by the combina-
tion therapy were N-palmitoyl ethanolamine (PEA),
N-linoleoyl ethanolamine and N-docosahexaenoyl ethanol-
amine (Table 3). Linoleic acid was also significantly
increased [F(3,27) = 4.41; P < 0.05; Figure 5F]; however, no
change was observed in levels of arachidonic acid. Levels
of N-arachidonoyl glycine (NAGly), which were significantly

Figure 5
Lumbar spinal cord levels of eicosanoids expressed as mean (±SEM) in pmol·g�1. Tissue was collected from mice subjected to CCI and adminis-
tered KML29 (40 mg·kg�1), gabapentin (50 mg·kg�1) or KML29:gabapentin (combo; 13.33:4 mg·kg�1) daily for 7 days. Samples were collected
2 h after the final drug administration. *P < 0.05 versus vehicle (n = 7–8).
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increased with gabapentin alone, were not significantly
different from vehicle with the combination therapy.
Conversely, levels of 2-AG (Figure 5C) and 2-LG (Figure 5E)
that were significantly increased with KML29 treatment
remained elevated. Interestingly, levels of 2-oleoyl glycerol
and 2-palmitoyl glycerol that were unchanged with KML29
treatment alone were also significantly increased with
KML29:gabapentin. Levels of PGE2, which were increased
with gabapentin, were unchanged with the combination
therapy.

Discussion
Themain goal of this study was to evaluate the interaction be-
tween MAGL inhibition and gabapentin in a model of
neuropathic pain in mice. The selective MAGL inhibitor,
KML29, dose-dependently attenuated mechanical and cold
allodynia, as previously reported (Crowe et al., 2015).
Gabapentin also dose-dependently reduced mechanical
and cold allodynia. Fixed-dose proportions of KML29
and gabapentin additively reduced mechanical allodynia
and synergistically attenuated cold allodynia. The reductions
in allodynia were achieved by combining subthreshold doses
of both drugs. Cannabinoid receptor involvement in the
observed anti-allodynia was also probed. The CB1 antagonist
rimonabant, but not the CB2 antagonist SR144528, partially
attenuated the anti-allodynic effect of KML29:gabapentin in
mechanical allodynia, indicating that the anti-allodynic
effects were at least partly mediated by CB1 receptors. How-
ever, neither rimonabant nor SR144528 affected cold
allodynia, indicating a non-cannabinoid mechanism, and
possibly also a stronger contribution of gabapentin in reduc-
ing cold allodynia.

Using lower doses of candidate analgesics reduces drug
exposure and may subsequently reduce the risk of drug toler-
ance. For example, chronic administration of high-dose, but
not low-dose, MAGL inhibitors causes functional antago-
nism of CB1 receptors. Specifically, the MAGL inhibitor,
JZL184 (≥16 mg·kg�1), causes down-regulation and desensiti-
zation of CB1 receptors (Schlosburg et al., 2010; Kinsey et al.,
2013), thereby reversing 2-AG-mediated antinociception.
The tolerance to JZL184 is spared at lower doses (Kinsey
et al., 2013). Similarly, the anti-oedematous and anti-
allodynic effects of KML29 following carrageenan injection
were reversed after repeated administration (Ignatowska-
Jankowska et al., 2014), indicating that the chronic blockade
of MAGL with high-dose KML29 produces tolerance. Al-
though acute administration of a high-dose MAGL inhibitor
is beneficial for acute preclinical models of pain, chronic
pain conditions, such as neuropathic pain, require long-term
treatments.

As expected, in the present study, prolonged MAGL inhi-
bition by high-dose KML29 produced analgesic tolerance in
mechanical and cold allodynia, which was confirmed by a re-
duction in CB1 function (desensitization) and density (down-
regulation) in whole brain homogenates. In contrast to
KML29, gabapentin produced anti-allodynia that persisted
following chronic administration in both tests. The combina-
tion treatment of low-dose KML29:gabapentin did not show
tolerance in mechanical allodynia, but tolerance may have

developed in the cold allodynia test. Given the marginal ef-
fect, CB1 binding and GTPγS were assayed in whole brain ho-
mogenates. The combination reduced CB1 density but did
not alter CB1 function. This reduced CB1 density may ac-
count for the incomplete anti-allodynic tolerance of the drug
combination evident in cold allodynia not observed in me-
chanical allodynia.

To further elucidate the mechanisms through which the
KML29:gabapentin combination synergistically interact to
attenuate allodynia, we quantified spinal cord lipid levels fol-
lowing repeated administration of each drug alone and in
combination. High dose KML29 increased 2-AG by threefold
as compared to vehicle, while gabapentin increased NAGly
and PGE2. Surprisingly, the combination of KML29:
gabapentin not only increased 2-AG but also increased PEA,
N-acyl glycines, 2-acyl glycerols and N-arachidonoyl taurine,
which may indicate that dual administration of KML29 and
gabapentin influences additional pathways other than those
pathways activated by the two drugs alone. For example,
KML29:gabapentin drive increases in all 2-acyl glycerols
tested. Levels of PGE2 are at baseline with combination treat-
ment but were affected in opposite ways with individual
treatment, suggesting that the suppression of PGE2 may be
one of the ways the combination therapy is functioning.
NAEs andN-arachidonyl taurine are potent transient receptor
potential cation channel subfamily V (TRPV) receptor li-
gands; however, the increases shown with the combination
therapy was a low magnitude, which likely means that their
effects on TRPVs would be minimal.

Mechanistically, we suggest that it is the dramatic and
sustained increases in 2-acyl glycerols, which appear to be in-
volved in stabilizing PGE2 levels that is part of the lipid sig-
nalling driving the decrease in pain-related behaviours
observed with the combination therapy. Lipid-based signal-
ling molecules were quantified in the lumbar enlargement
of the spinal cord. CCI surgery induces cFos expression in
the lumbar spinal cord and activating CB receptors decreases
cFos in the lumbar spinal cord (Rodella et al., 2005). Similarly,
it is plausible that gabapentin-induced reductions in pain
pathway signalling indirectly alter endocannabinoid levels
in discrete regions that were not captured in the present
study, which examined homogenates of the lumber spinal
cord. In rats, CCI surgery site specifically increases ananda-
mide and 2-AG in the lumbar spinal cord, as compared with
sham operated rats (Petrosino et al., 2007). Because pain per-
ception is mediated by afferent signalling in the dorsal spinal
cord, quantifying endocannabinoid levels in the dorsal, lum-
bar spinal cord is a priority for future studies.

The efficacy of low dose gabapentin can be potentiated
when combined with other non-cannabinoid drugs. For ex-
ample, patients with diabetic neuropathy or postherpetic
neuralgia reported lower pain scores after receiving
gabapentin and morphine than when administered mor-
phine or gabapentin alone (Gilron et al., 2005). However,
combining gabapentin and morphine was also associated
with a higher incidence of constipation and dry mouth, com-
pared to gabapentin or morphine alone respectively (Gilron
et al., 2005). Similarly, patients reported an increase in pain
relief after receiving a combined treatment of gabapentin
and oxycodone but experienced an increase in opioid-
associated side effects (Hanna et al., 2008). In other words,
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the interaction of the combined drugs non-selectively en-
hanced both analgesia and negative side effects of either
drug. To evaluate potential changes in cannabimimetic side
effects in the current study, KML29, gabapentin, KML29:
gabapentin and vehicle were assessed for classic cannabinoid
effects in the tetrad battery. None of the treatment groups
elicited catalepsy, locomotor activity, tail immersion or body
temperature differences, indicating that none of the treat-
ments produced overt cannabimimetic effects. Moreover,
the drug mixture results in the tetrad support that the syner-
gistic antinociceptive effects were not due to a generalized
suppression of all behaviour. However, an important limita-
tion of the present study is that the treatment side effects
were evaluated in non-operated mice, and thus, it is possible
that mice subjected to CCI may respond differently.

Patients with neuropathic pain tend to be over-represented
in pain clinics due to higher reported pain intensity, longer du-
ration of pain and less effective pain relief, as compared with
other forms of chronic pain (Torrance et al., 2006; 2007),
underscoring the need to develop new, effective therapeutic
treatments. Examining the effectiveness and safety of a MAGL
inhibitor in clinical trials is an important step towards the
development of new analgesics that target MAGL.

Clinically, synthetic cannabinoids are prescribed to
cancer patients to stop emesis (Sticht et al., 2015); however,
less is known about the efficacy of cannabinoids to control
pain associated with chemotherapy-induced neuropathy in
patients. While there are relatively few clinical studies
evaluating cannabinoids for chemotherapy-induced neurop-
athy in humans, one study evaluated Sativex (an inhaled
combination of Δ9-THC and cannabidiol) in combination
with patients’ existing opioid treatment to increase the effi-
cacy of reducing cancer pain (Johnson et al., 2010). Sativex,
in combination with the existing opioid regimen, reduced
pain severity, as compared to placebo, although it did not
decrease the dose of opioids taken (Johnson et al., 2010).
Murine models of chemotherapy-induced neuropathic pain
indicate that cannabinoids attenuate mechanical and cold
allodynia (Hohmann, 2005; Guindon et al., 2013; Deng
et al., 2015a,b) and prevent neuropathy when given in
conjunction with chemotherapy (Ward et al., 2011; 2014;
Rahn et al., 2014). Taken together, the results from clinical
and preclinical research indicate that drugs targeting the
endocannabinoid system alone and in conjunction with
other non-cannabinoid targets alleviate multiple types of
neuropathic pain.

In summary, coadministration of KML29 and gabapentin
additively reduced mechanical allodynia and synergistically
reduced cold allodynia. Repeated administration of low dose
KML29:gabapentin did not undergo tolerance in mechanical
allodynia and did not alter CB1 receptor function in the
brain. The synergistic interaction of the drugs was also
evident in lipidomic analyses of the spinal cord, which
indicate that the combination treatment activates pathways
in addition to those altered by either drug alone. The
combination of these drugs may be beneficial for increasing
analgesia, while administered at relatively low doses. These
data provide support to the strategy of targeting the
endocannabinoid system in conjunction with non-
cannabinoid systems, to develop new candidate analgesics
with limited negative side effects.
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Table S1 Lumbar spinal cord levels of eicosanoids frommice
treated repeatedly with KML29 (KML; 40 mg·kg�1),
gabapentin (GBP; 50 mg·kg�1), or KML29: GBP (combo;
13.33:4 mg·kg�1). Tissue was collected from mice subjected
to chronic constriction injury 2 h after drug administration
Spinal cord levels are expressed as mean (SEM) in pmol·g�1.
Tissue was collected from mice with CCI 2 h after drug ad-
ministration. *P < 0.05 versus vehicle, Dunnett’s post hoc
test.
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