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Protected areas buffer species from anthropogenic threats and
provide places for the processes that generate and maintain bio-
diversity to continue. However, genetic variation, the raw mate-
rial for evolution, is difficult to capture in conservation planning,
not least because genetic data require considerable resources to
obtain and analyze. Here we show that freely available environ-
mental and geographic distance variables can be highly effective
surrogates in conservation planning for representing adaptive and
neutral intraspecific genetic variation. We obtained occurrence and
genetic data from the IntraBioDiv project for 27 plant species col-
lected over the European Alps using a gridded sampling scheme.
For each species, we identified loci that were potentially under
selection using outlier loci methods, and mapped their main gra-
dients of adaptive and neutral genetic variation across the grid
cells. We then used the cells as planning units to prioritize pro-
tected area acquisitions. First, we verified that the spatial pat-
terns of environmental and geographic variation were correlated,
respectively, with adaptive and neutral genetic variation. Second,
we showed that these surrogates can predict the proportion of
genetic variation secured in randomly generated solutions. Finally,
we discovered that solutions based only on surrogate informa-
tion secured substantial amounts of adaptive and neutral genetic
variation. Our work paves the way for widespread integration
of surrogates for genetic variation into conservation planning.
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Protected areas spearhead conservation efforts (1). They
buffer species from anthropogenic impacts, providing places

for them to persist. Since the resources available for conserva-
tion are limited, protected areas need to be sited in places that
fulfill conservation objectives for minimal cost (2). To achieve
this, conservation planning exercises often generate plans for
entire networks of protected areas (prioritizations) to preserve
species and broad-scale biodiversity processes (3). After deter-
mining which species to protect [e.g., using evolutionary distinc-
tiveness (4)], conservation planners need to ensure that prioriti-
zations represent the intraspecific genetic variation found within
species to secure their long-term persistence (5–7). As a conse-
quence, there has been increasing interest in designing prioriti-
zations that fulfill this objective (8–12).

Although the strength of natural selection is a continuous
force, genetic variation is often classified as adaptive or neutral
(reviewed in ref. 13). Adaptive genetic variation is associated
with loci that significantly affect fitness. Typically, such “adap-
tive” loci are detected due to anomalous patterns among individ-
uals (e.g., refs. 14 and 15), although phenotypic–genetic associa-
tions are more likely to identify functionally important genomic
regions for individual species (e.g., ref. 16). By representing the
full range of adaptive variation, including adaptations of which
we are currently unaware, protected areas can enhance a species’
capacity to persist in a range of different conditions (5, 17). In
contrast, neutral genetic variation is associated with loci that do

not significantly affect fitness but instead reflect the evolutionary
history of different populations. By representing the full range
of neutral variation, protected areas can safeguard against the
adverse effects of low genetic diversity (18). Thus, optimally sited
protected area networks would represent patterns of both adap-
tive and neutral genetic variation (6).

Recently, the use of surrogate data has been proposed to
generate prioritizations that capture intraspecific genetic varia-
tion (10, 19, 20)—without needing to use genetic data directly.
Since adaptation is ultimately driven by selection pressures,
environmental variables have been proposed as surrogates for
adaptive genetic variation (e.g., refs. 3 and 19). Specifically,
by conserving individuals in a broad range of environmental
conditions, we might expect to capture individuals with a diverse
set of local adaptations, and, overall, capture a large proportion
of the adaptive genetic variation present in the species. However,
the effectiveness of this approach remains unverified. Neutral
genetic variation arises from a reduction in gene flow between
populations. Over the last few years, the field of phylogeography
has predominantly focused on describing neutral genetic diver-
sity, and so the landscape factors that affect neutral variation are
relatively well understood (reviewed in ref. 21). Potential surro-
gates for neutral genetic variation have been based on variables
that predict the level of connectivity between different areas. For
instance, according to the isolation by distance model (22), pop-
ulations located farther apart are predicted to experience less
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gene flow and, in turn, share less genetic material at neutral
loci. Based on this idea, spreading conservation priorities evenly
across the geographic distribution of an island network has been
found to capture more neutral genetic variation (20). However,
this remains untested in spatially contiguous systems where con-
nectivity is complicated by many additional factors [e.g., land
use (23)]—the typical situation in most conservation planning
exercises.

Here we determine whether environmental and geographic
surrogates capture adaptive and neutral genetic variation, respec-
tively, in the context of conservation planning. We use distribu-
tion and genomic data for 27 alpine plant species in the Euro-
pean Alps that were obtained by the IntraBioDiv project (24).
The data were collected following a gridded sampling scheme
which we adopted as planning units for this study. We show that,
for most species, the spatial patterns of adaptive and neutral
genetic variation correlated with environmental [obtained from
WorldClim (25)] and geographic variables. We also show that,
for most species, the level of association is strong enough to be
operational for conservation planning. Finally, we demonstrate
that using these surrogates results in prioritizations that secure
a substantial proportion of intraspecific genetic variation.

Results
We detected putatively adaptive genetic variation in 10 of the
27 plant species. We used two outlier detection methods—
that solely used genetic data and did not use environmental
data—to identify loci under selection. These methods returned
reasonably consistent results (mean 87.92% loci per species
assigned the same classification ±8.75 SD; Dataset S1). Of the
species that were associated with adaptive genetic variation,
only a small proportion of loci were classified as being adap-
tive (mean 3.01% loci per species ±1.95 SD). After identify-
ing the loci showing strong signals of selection, we used non-
metric multidimensional scaling (NMDS) analyses to identify
the main gradients of adaptive (if detected) and neutral varia-
tion for each species. Generally, only a small number of con-
tinuous dimensions were needed to sufficiently describe their
patterns of adaptive (K =2 for all species; SI Appendix, Table
S1) and neutral genetic variation (2≤K ≤ 4 for all species; SI
Appendix, Table S1). The resulting ordinations were used to con-
struct an adaptive (if detected) and neutral genetic space for
each species. The spatial distribution of these genetic spaces
(SI Appendix, Figs. S1–S27) generally showed substantial spatial
autocorrelation (e.g., Cerastium uniflorum and Dryas octopetala;
SI Appendix, Figs. S6 and S8), suggesting that the proposed surro-
gate variables have the potential to be effective for conservation
planning.

We verified that the spatial patterns in environmental varia-
tion correlated with the broad-scale patterns in adaptive genetic
variation for each species. We also verified that there was a cor-
relation between neutral genetic variation and variation in geo-
graphic position. For each species, we constructed dissimilar-
ity matrices expressing differences between the planning units
where individuals were detected based on the units’ (i) environ-
mental characteristics and (ii) geographic position, and also the
(iii) adaptive (if adaptive loci detected) and (iv) neutral genetic
characteristics of the individuals found inside them. The spatial
patterns of environmental variation were significantly correlated
with the patterns of adaptive genetic variation for 8 of the 10
species associated with adaptive variation (P < 0.05; mean 0.09
marginal R2 ± 0.06 SD for significant models; SI Appendix, Table
S2). Similarly, geographic distance between planning units was
also correlated significantly with the spatial patterns of neutral
genetic variation among planning units for 26 of the 27 species
(P< 0.05; mean 0.21 marginal R2 ± 0.16 SD for significant mod-
els; SI Appendix, Table S2). Thus, for most species, planning
units that contained different environmental conditions con-

tained individuals with different adaptive genetic characteristics,
and planning units that were farther apart tended to contain indi-
viduals with different neutral genetic characteristics. After veri-
fying these correlations, our next step was to determine whether
they were strong enough to be useful for conservation planning.

For each species, we generated a suite of 10,000 random
prioritizations, and calculated the proportion of environmental
variation and adaptive (if present) genetic variation that each
prioritization captured. We then repeated this process, and cal-
culated the proportion of variation in geographic position and
neutral genetic variation they sampled. The environmental and
geographic variables were moderately effective predictors for the
genetic variation represented by the randomly generated prior-
itizations (Fig. 1 and SI Appendix, Figs. S28 and S29). The rela-
tionship between the proportion of genetic and surrogate vari-
ation secured in the prioritizations varied among the species
(species × proportion of environmental variation interaction
term: χ2

9 =6717.74;P =0.019; species × proportion of geo-
graphic variation interaction term: χ2

26 =4.588808 × 104; P <
0.001). Post hoc analyses showed that these relationships were
positive for all species (environmental: minimum Z = 40.71, max-
imum P < 0.001; geographic: minimum Z = 23.23, maximum
P < 0.001; SI Appendix, Table S3). After establishing that the
proportion of surrogate variation secured in a prioritization
also predicted the proportion of genetic variation it secured,
our final step was to determine whether prioritizations gener-
ated using targets to represent variation in the surrogate vari-
ables were more effective at representing intraspecific genetic
variation.

To determine whether environmental and geographic targets
could improve the effectiveness of prioritizations in representing
genetic variation, we generated prioritizations using (i) “amount
targets” reflecting the traditional approach of representing a
certain proportion of each species’ geographic distribution, (ii)
“amount and surrogate targets” where we targeted representa-
tion of the environmental and geographic surrogates as well as a
certain proportion of each species’ geographic distribution, and
(iii) “amount and genetic targets” where we targeted represen-
tation of the directly measured genetic variation as well as a
certain proportion of each species’ geographic distribution. To
determine whether these patterns were robust, for each of the

Fig. 1. The proportion of (A) adaptive (10 species) and (B) neutral (27
species) genetic variation represented in a suite of randomly generated pri-
oritizations for different species as a function of the surrogate variation they
also secured (lines). The distribution of R2 values (C and D) for the 37 models
shown in A and B.
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three combinations of the targets, we generated prioritizations
under four scenarios: (i) single species with equal costs, (ii) sin-
gle species with acquisition costs, (iii) multispecies with equal
costs, and (iv) multispecies with acquisition costs (Fig. 2 and SI
Appendix, Fig. S30).

The proportion of genetic variation secured in a given prior-
itization was not found to depend on any interaction between
the planning scenario, targets used to generate the prioritiza-
tion, and the type of genetic variation measured (χ2

17 =2.97;
P > 0.99). The proportion of genetic variation secured in a pri-
oritization did depend, however, on the targets used to gener-
ate the prioritization (χ2

2 =67.24; P < 0.001). Most notably,
prioritizations based on the surrogate variables represented sig-
nificantly more genetic variation than amount-based prioritiza-
tions (93.25%± 13.81 SD overall genetic variation secured ver-
sus 78.39%± 23.54 SD; Z1 =4.58; P < 0.001), and were not
distinguishable from prioritizations based on measured genetic
data (94.68%± 3.69 SD; Z1 =0.55; P > 0.99). These results
indicate that environmental and geographic surrogates in this
case far outperform traditional amount-based conservation plan-
ning, and perform almost as well as a conservation plan based
directly on genetic data.

Overall, the prioritizations tended to secure a greater propor-
tion of adaptive genetic variation than neutral genetic variation
(adaptive: mean 95.9%± 8.23 secured across all prioritizations;
neutral: mean 72.08%± 24.06; χ2

1 =1381.57; P < 0.001). Thus,
regardless of the targets used to generate a prioritization, or the
planning context under which the prioritization was generated,
prioritizations tend to secure more adaptive than neutral genetic
variation.

The average proportion of genetic variation secured by
prioritizations varied under different scenarios (χ2

3 =33.97;
P < 0.001). Specifically, prioritizations generated under single-
species scenario with equal costs (mean 78.42% genetic variation
secured ±23.54) secured less genetic variation than those under
the single species with acquisition costs (mean 88.74% genetic
variation secured ±15.54; Z1 = 2.88; P = 0.024) or the mul-
tispecies with acquisition cost scenarios (mean 91.91% genetic
variation secured ±12.31; Z1 =3.67; P =0.001). These results
suggest the proportion of genetic variation secured in a prioriti-
zation may be sensitive to acquisition cost.

Discussion
We have shown that broad-scale environmental and geographic
variables can be effective as surrogates for adaptive and neutral
genetic variation in conservation planning. Our study investigates
this using field measurements of genetic variation for a suite of
plant species across an ecoregion (26). For most species, the pro-
portion of surrogate variation captured in a prioritization pre-
dicted the proportion of genetic variation that was also captured
in the prioritization. Moreover, for most species, prioritizations
generated using geographic targets secured a greater proportion
of neutral genetic variation than traditional conservation plan-
ning methods. These environmental and geographic surrogates
were based on freely available datasets and, with the exception
of a few places with poor climatic data (25), could be applied to
any study region across the world.

Our results demonstrate that environmental and geographic
variables are effective surrogates for most species considered
here (Fig. 2). Despite this, geographic distance was a surprisingly
poor surrogate for neutral genetic variation for a few species
(e.g., Gentiana nivalis R2 = 0.3; Gypsophila repens R2 = 0.25;
Luzula alpinopilosa R2 = 0.28). One explanation for this result
is that geographic distance will be a poor surrogate for neutral
genetic variation where spatial genetic structure is complicated
by additional factors (10, 23, 27). For example, some species can
maintain relatively high connectivity between distant populations
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Fig. 2. The proportion of adaptive and neutral genetic variation secured
for each species in solutions based on different targets and scenarios. Box
plots show the median, and the 25th and 75th percentiles. Whiskers show
the data at 1.5 times the interquantile range. Points show data outside the
whiskers. Red lines show the target proportion of genetic variation.

[e.g., wind dispersing plants (24)] and, in some places, gene flow
can be disrupted by landscape features [e.g., anthropogenically
modified land (23)]. Overall, such species were the exception in
our analysis, and both surrogates performed moderately well for
most species.

Our results show that environmental and geographic surro-
gates can be used to capture genetic variation in prioritiza-
tions. The next question is, what percentage of surrogate vari-
ation should planners target to preserve genetic variation? To
secure at least 90% of the species’ neutral genetic variation,
prioritizations needed to sample 94.45%± 6.64 SD of the vari-
ation in geographic position among the planning units occu-
pied by each species. Additionally, to secure at least 90% of
each species’ adaptive genetic variation, prioritizations needed
to sample 57.01%± 6.67 SD of the environmental variation in
planning units occupied by each of the species. For all species,
however, it was possible to generate solutions that secured a
large proportion of the surrogate variation (>90%) and only a
small proportion of genetic variation (<20%; SI Appendix, Figs.
S28 and S29). Planners may avoid such outcomes by using both
amount- and surrogate-based targets. Depending on the study
area and the species of conservation interest, higher targets may
be needed to increase the likelihood that prioritizations will
secure a large proportion of the intraspecific genetic variation
for all of the species in the planning exercise.

Our results suggest that conservation planners can secure a
representative sample of intraspecific adaptive genetic variation
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using conventional reserve selection methods without needing
surrogate or genetic data (Fig. 2). This finding was evident
in both the single-species and multispecies prioritizations. One
explanation for the single-species prioritizations is that, because
the spatial patterns of adaptive variation tended to cluster into
a few main groups (e.g., Carex sempervirens and C. uniflorum;
SI Appendix, Figs. S5 and S6), a random selection of planning
units across a species’ geographic distribution would have a fairly
high chance of capturing individuals that belonged to several
of the main genetic groups. This mechanism also explains why
adaptive variation accumulated much more quickly than neutral
genetic variation in the randomly generated prioritizations (Fig.
1). On the other hand, one potential explanation for the mul-
tispecies prioritization is that, because it was generated using
a comprehensive set of species—each with their own habitat
preferences—the solution was forced to secure each species in
a range of different suitable habitats and, in turn, capture a rep-
resentative sample of the species’ adaptive genetic variation. If
future studies on other taxa and biomes verify that conventional
reserve selection methods do indeed conserve intraspecific adap-
tive genetic variation, this finding could have large implications
for conservation planning.

There are several limitations associated with our analysis.
Firstly, the size of the planning units we used (∼20× 22.5 km)
is larger than is typically used in regional conservation plan-
ning. We used this resolution because the genetic data were col-
lected at this scale. While we could have interpolated the genetic
data to a finer resolution, this would have introduced addi-
tional spatial autocorrelation and biased our analysis. Secondly,
we used geographic distances as surrogates for neutral genetic
variation. Although distances that incorporate data on disper-
sal cost may perform better (e.g., topography), such distances
often require species-specific scaling (e.g., ref. 23) and so can-
not easily be used in multispecies planning exercises. Thirdly, we
used amplified fragment length polymorphism data (AFLP) (28)
to describe genetic variation. While next-generation sequencing
provides higher-resolution genetic information (13), we know of
no suitable multispecies genomic dataset, and our methodology
would still have used only the main gradients of the genetic varia-
tion to generate prioritizations in a feasible period. Furthermore,
even with modern population genomic approaches, a survey can,
at best, hope to identify markers that are linked to function-
ally adaptive variants. Fourthly, to our knowledge, none of the
species we investigated here are at serious risk of extinction (29,
30). Since anthropogenic processes can alter patterns of species’
genetic variation (e.g., ref. 23), future work should aim to estab-
lish whether these surrogates are effective for imperiled species.
Finally, conventional conservation planning exercises are sensi-
tive to the quality and completeness of the underlying distri-
bution data (31), and it is likely that the effectiveness of these
surrogates is also sensitive to data quality. For instance, prior-
itizations generated using distribution data that omitted popu-
lations in specific habitats may fail to represent certain adapta-
tions. Recent advances in distribution modeling have provided a
wealth of data for conservation planners (32), and so they should
endeavor to obtain high-quality data where possible. Neverthe-
less, our findings pave the way for the widespread integration
of evolutionary processes at the intraspecific level into reserve
selection.

Genetic data provide a broad range of insights into a species’
persistence and are fundamental to managing certain kinds of
conservation problems (7). However, conservation interventions
often need to be implemented urgently before the highest-
quality data are available (33). We found broad-scale environ-
mental and geographic variables to be effective surrogates for
representing adaptive and neutral genetic variation for most
species in our study system. We call for further studies to
examine these surrogates in other taxa and biomes. In cases

where genetic data are not available, careful use of such surro-
gates in conservation planning could vastly improve the chances
of long-term biodiversity persistence for relatively little addi-
tional cost.

Materials and Methods
Study System. We used data for 27 alpine plant species in the European
Alps collected by the IntraBioDiv project (ref. 24 and Fig. 3A). This dataset
has been used to explore patterns of adaptive (e.g., ref. 34) and neutral
genetic variation (e.g., ref. 26), and the potential for species richness as a
surrogate for genetic diversity (35). Data were collected using a 20′ lon-
gitude by 12′ latitude grid (∼20×22.5 km; SI Appendix, Fig. S31). Project
surveyors visited every second grid cell, and, for each species, they col-
lected samples from three individuals if any individuals were found. They
genotyped samples using AFLPs, and constructed matrices denoting the
presence of polymorphisms at loci for each species (mean 130.7±54.9 SD
markers genotyped per species; for more information, see ref. 26). Thus,
the dataset contains information describing the genomic properties of
individuals for each species over a geographic grid. We used these data
because they comprised comparable genetic information for a range of
species with different evolutionary and life histories collected using a stan-
dardized sampling scheme. To permit replication and validation of this
study, all of our data, code, and results are stored in an online repository
(www.github.com/jeffreyhanson/genetic-surrogates) and are also available
under the digital object identifier (DOI) 10.5281/zenodo.843625. All spatial
and statistical analyses were conducted in R (version 3.3.2) (36).

Landscape Data. We adopted the sampling grid used to collect data as plan-
ning units to develop prioritizations. Of the total 388 cells in the grid, we
used the 149 cells that contained samples for subsequent analysis. We calcu-
lated the total human population density inside each planning unit [1 km2

resolution from the Global Rural-Urban Mapping Project (37)] and used this
to represent acquisition cost (Fig. 3B).

We created environmental and geographic surrogate variables for each
species (SI Appendix, Fig. S32). To describe the geographic location of
each planning unit (SI Appendix, Fig. S33), we projected the grid into
an equidistant coordinate system (Europe Equidistant Conic; ESRI:102031),
calculated the centroid of each grid cell, and extracted their 2D coordi-
nates. To describe the environmental characteristics of each planning unit
(SI Appendix, Fig. S34), we obtained 19 climatic layers [30′′ resolution;
obtained from WorldClim (25)], projected them and the planning units
into an equal-area coordinate system (Europe Lambert Conformal Conic;
ESRI:102014), and computed planning unit averages for each climatic vari-
able. To reduce dimensionality, for each species, we subjected the climatic
values associated with the planning units they were found in to a principal
components analysis (PCA). We used the first three principal components to
characterize climatic variation found across the species’ geographic distribu-
tions inside the study area (mean 90.26% variation described ±0.99 SD of
the total climatic variation; SI Appendix, Table S4). Thus, we constructed a
2D geographic space as a potential surrogate for neutral genetic variation,
and a 3D environmental space as a potential surrogate for adaptive genetic
variation for each species. In these spaces, each planning unit was associated
with a single point. Planning units that contained environmental conditions
that were more comparable, or were located in places with higher spatial
proximity, were associated with points that were closer together in these
environmental or geographic spaces.

Adaptive and Neutral Genetic Data. To investigate the effectiveness of our
surrogates, we first needed to identify which of the sampled loci were adap-
tive (SI Appendix, Fig. S35). Following recommended practices, we used two

5
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Fig. 3. Map of the study area showing (A) the pattern of species richness
and (B) the distribution of acquisition cost depicted using a quantile-based
color ramp. Squares denote planning units.
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outlier detection methods to achieve this [an individual- and a population-
level method (38)]. The basic premise underpinning such methods is that
neutral loci are expected to exhibit a certain level of variation, and loci
that deviate from this expectation are likely to be under selection (13). The
advantage of these methods—in contrast with environmental association
analyses—is that they do not use environmental data, which would have
introduced an element of circularity into our analysis. Loci identified by
both outlier detection methods were treated as adaptive, and the remain-
der were treated as neutral. To minimize false positives, we omitted loci
from both methods where the global frequency of the minor allele was less
than 10%, and treated them as neutral.

The first outlier detection method involved fitting multinominal-Dirichlet
models implemented in BayeScan (version 2.1) (14). We adopted a sim-
ilar methodology to Bothwell et al. (34) and applied it to each of the
species separately. Following their methodology, we initially grouped
conspecifics into genetic lineages to further minimize false positives
(SI Appendix, Figs. S36–S62), by fitting admixture and correlated alle-
les models implemented in Structure [version 2.3.4 (39); 20 replicates
per species; 5,000 admixture burn-in iterations; 300,000 burn-in itera-
tions; 400,000 total iterations] using the number of lineages previously
determined by Alvarez et al. (26) and combining replicate runs using
ClumPP [version 1.1.2 (40); greedy algorithm based on the G′ statistic;
1,000 iterations]. We then ran BayeScan for each species using these lin-
eages (1:1 prior odds; four replicates per species; 20 pilot runs; 100,000
burn-in iterations; 110,000 total iterations thinned by 10 iterations) using
a suitable false discovery rate [q≤ 0.1 (41)]. We omitted individuals if
their population membership was uncertain (maximum membership prob-
ability < 0.75).

The second outlier detection method involved fitting PCAs to identify
outlier loci [implemented in the pcadapt R package (42)]. To enable com-
parisons between the two outlier detection methods, we used the same
individuals in this analysis as in the BayeScan analysis. For each of the 27
species, we first imputed missing data by replacing missing values with the
average frequency among conspecifics, then ran a PCA over the loci matrix,
and extracted the minimum number of components needed to secure the
overarching population level variation among the loci (10% of the variation
in loci). We then computed q values using Mahalanobis distances, and used
the same false discovery rate used in the BayeScan analysis to identify loci
under selection [using the qvalue R package (43)].

After classifying loci as adaptive or neutral, we mapped the main gra-
dients of the adaptive (if detected) and neutral genetic variation for each
species. We discarded the population groupings, and partitioned species’
adaptive and neutral loci into separate matrices. We applied NMDS [imple-
mented in the vegan R package (44)] using Gower distances [via the cluster
R package (45)] to derive continuous variables that described the main gra-
dients of adaptive and neutral genetic variation separately for each species
(SI Appendix, Table S1). To ensure that the ordinations described a sufficient
amount of the genetic variation, we ran successive scaling analyses with
increasing dimensionality until a sufficient stress value was obtained (max-
imum stress value ≤ 0.25; 100 random starts for each analysis). Since each
grid cell had multiple samples per species, we averaged the ordinated values
for conspecifics in the same grid cell.

Thus, we constructed an adaptive (if detected) and neutral genetic
space for each species. For a given species, each planning unit in which it
occurred was associated with a multidimensional point in the species’ adap-
tive genetic space (if adaptive genetic variation was detected) and another
multidimensional point in the species’ neutral genetic space. Planning units
that were closer together in these genetic spaces were occupied by individ-
uals with more comparable AFLP data. By spreading out conservation effort
across these genetic spaces, and, in turn, selecting planning units occupied
by individuals with increasingly different polymorphisms, prioritizations can
secure more genetic variation.

Prioritization Method. We used the raptr R package to generate solutions
(12). This toolkit can identify the cheapest set of planning units required to
preserve both a target proportion of the species’ geographic range (using
amount-based targets) and a target proportion of intraspecific variation
(using space-based targets). We used the environmental and geographic sur-
rogate spaces, and the adaptive (if detected) and neutral genetic spaces,
to generate and evaluate solutions. Solutions associated with negative
values—because they secured very little genetic variation—were replaced
with zeros to facilitate statistical analysis. We solved all reserve selection
problems to within 10% of optimality (using Gurobi; version 7.0.2).

Computational and Statistical Analyses. Our first aim was to determine
whether the environmental and geographic variables correlate with the
spatial patterns of adaptive and neutral genetic variation. To achieve this,
for each species, we created dissimilarity matrices using Euclidean distances
and the data in the surrogate and genetic spaces. These matrices showed
differences between the planning units occupied by the species in terms of
the units’ (i) geographic position, (ii) environmental characteristics, and (iii)
adaptive (if detected) and (iv) neutral genetic characteristics of the individ-
uals inside them.

We fitted maximum likelihood population effects (MLPE) models using
maximum likelihood to investigate correlations between the dissimilar-
ity matrices [using the lme4 R package (46)]. These models use random
effects to accommodate the structure of dissimilarity matrices. For each
species, we fitted an MLPE model to the species’ dissimilarity matrices
based on geographic position and neutral genetic variation. If adaptive
loci were detected, we also fitted an MLPE model to the species’ dis-
similarity matrices describing environmental and adaptive genetic varia-
tion. All data variables were z-transformed to improve convergence. To
test whether the surrogates explained the genetic variation, we compared
each model to its null model using a χ2 test, and applied Bonferroni
corrections.

Our second aim was to determine whether the environmental and geo-
graphic variables were effective surrogates for adaptive and neutral genetic
variation. For each species, we generated 20,000 prioritizations by randomly
selecting different combinations of planning units that the species occu-
pied. For half of these random prioritizations, we calculated the proportion
of geographic variation and neutral genetic variation they secured, and, for
the other half, we calculated the proportion of environmental variation and
adaptive genetic variation they secured. These calculations were performed
using the raptr R package.

We fitted two full generalized linear models with logit link functions. The
first model was fit to the proportion of adaptive genetic variation secured
in a prioritization using the proportion of environmental variation also
secured in the prioritization. The second model was fit to the proportion
of neutral genetic variation secured in a prioritization using the proportion
of geographic variation also secured in the prioritization. Additionally, both
models contained a variable indicating the species for which the prioriti-
zations were generated, and an interaction term. They were subjected to
backward stepwise term deletion routines to assess term significance. Post
hoc analyses were conducted to assess trends for each species using Bonfer-
roni corrections [using the multcomp R package (47)]. To assess the perfor-
mance of the surrogates, we refit these models separately for each species
and computed the Cragg and Uhler’s pseudo R2 value [using the pscl R
package (48)].

Our third aim was to determine whether surrogate-based targets
improved representation of genetic variation in prioritizations. As previ-
ously mentioned, we generated prioritizations using different combinations
of targets and conservation planning scenarios. We used 20% amount-based
targets for each species in all prioritizations to secure an adequate pro-
portion of the species’ distributions. Based on the results from our pre-
vious analysis, we used 97.5% surrogate-based targets and 90% genetic-
based targets. We generated a single solution for each target/scenario
combination, except for the “single-species (equal costs) with amount-based
targets” combination, for which we generated 1,000 replicates because
it had many optimal solutions. We computed the proportion of adaptive
(if present) and neutral genetic variation secured for each species in the
prioritizations.

We fitted generalized linear mixed-effects models with logit link func-
tions to evaluate the prioritizations (using the lme4 R package). We fitted
a full model to the proportion of genetic variation secured in a given pri-
oritization. This model contained categorical variables indicating the tar-
gets (amount only, amount and surrogate targets, or amount and genetic
targets), the planning scenario (single species, multispecies, or multispecies
with cost), the type of genetic variation measured (adaptive or neutral), and
all interactions between them. Data for same species were accommodated
using a random intercept term. The full model was subjected to a backward
stepwise term deletion routine to assess significance. A post hoc analysis
was conducted using Tukey contrasts with Bonferroni corrections (using the
multcomp R package).
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