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THALAMOCORTICAL PROCESSING IN VISION
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Abstract

Visual information reaches the cerebral cortex through a major thalamocortical pathway that
connects the Lateral Geniculate Nucleus (LGN) of the thalamus with the primary visual area of the
cortex (area V1). In humans, ~3.4 million afferents from the LGN are distributed within a V1
surface of ~2,400 mm2, an afferent number that is reduced by half in the macaque and by more
than two orders of magnitude in the mouse. Thalamocortical afferents are sorted in visual cortex
based on the spatial position of their receptive fields to form a map of visual space. The visual
resolution within this map is strongly correlated with total number of thalamic afferents that V1
receives and the area available to sort them. The ~20,000 afferents of the mouse are only sorted by
spatial position because they have to cover a large visual field (~300 degrees) within just 4 mm?2 of
V1 area. By contrast, the ~500,000 afferents of the cat are also sorted by eye input and light/dark
polarity because they cover a smaller visual field (~200 degrees) within a much larger V1 area (~
400 mm?), a sorting principle that is likely to apply also to macaques and humans. The increased
precision of thalamic sorting allows building multiple copies of the V1 visual map for left/right
eyes and light/dark polarities, which become interlaced to keep neurons representing the same
visual point close together. In turn, this interlaced arrangement makes cortical neurons with
different preferences for stimulus orientation to rotate around single cortical points forming a
pinwheel pattern that allows more efficient processing of objects and visual textures.
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The ability to resolve image detail is an important visual function that animals use to guide
their behaviors and survive in their environments. Visual acuity can be maximized by
increasing the size of the eye to enlarge the images that are projected on the photoreceptor
array. The eye size of vertebrates increases with body size and its axial length can range
from just 1 mm in the American toad to 107 mm in the blue whale (Hughes 1977; Howland,
Merola et al. 2004). Eye size also increases with other factors such as maximum running
speed probably to fulfill an important visual function, which is to avoid collisions when
moving (Hughes 1977; Heard-Booth and Kirk 2012). When comparing animals with similar
size, the fast cheetah (110 Km/h) has the eyes with the largest axial length among carnivores
(37 mm) while the flightless penguins have the smallest among birds (21 mm). In primates,

Jose-Manuel Alonso, State University of New York, College of Optometry, Department of Biological and Visual Sciences, 33 West,
42nd street, 17th floor, New York, NY 10036, jalonso@sunyopt.edu.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Mazade and Alonso Page 2

the fastest monkey (patas monkey, 55 Km/h) has eyes with axial lengths (22.5 mm) that are
comparable to much bigger primates such as gorillas (22.5 mm) and humans (25 mm)
(Howland, Merola et al. 2004; Heard-Booth and Kirk 2012).

Cortical visual acuity

Among animals with similar eye size, visual acuity increases as a function of photoreceptor
density and the number of axons from retinal ganglion cells leaving the optic nerve.
Moreover, as the diameter of the optic nerve increases, the volume of the visual thalamus
and primary visual cortex also becomes larger. Data from seven different mammals indicate
that the primary visual cortex increases by roughly 800 mm? for every million of LGN
neurons (Figure 1, top left). The relation is ~400 mm? for ~0.5 million in cats, ~1,200 mm?
for ~1.5 million in macaques, and ~2,400 mm? for ~3 million in humans (Table 1). Cortical
visual acuity for central vision also increases with the number of LGN neurons (Figure 1 top
right, ~2 cpd for one million), the size of the V1 area (Figure 1 bottom left, ~2 cpd for 1,000
mm?2) and the horizontal extent of the binocular visual field (Figure 1 bottom right, ~2 cpd
for 50%). The relation between cortical visual acuity and binocular vision is consistent with
ecological studies demonstrating a tendency for active predators with frontal eyes to have
higher visual acuity than herbivores with lateral eyes (Meilleux and Kirk 2014).

As the number of LGN neurons increases, the number of V1 neurons also increases but the
relation is not linear (Stevens 2001). V1 becomes larger than what would be expected from
an equal expansion of thalamus and visual cortex. This overexpansion of area V1 makes the
density of LGN axons per mm? of cortical area to be lower in animals with larger V1 areas.
The density is ~4 times lower for the ~1.3 million afferents of macaques (1,093 axons per
mm?2) and the ~3.4 million afferents of humans (1,417 axons per mm?2) than the ~20,000
LGN afferents of the mouse (5,000 axons per mm?) as shown in Table 1. The close relation
between V1 size and LGN afferent number could explain why cortical visual acuity is better
related with the number of LGN afferents (R2= 0.98, Figure 1) than the retinal area (R?=
0.70), number of retinal ganglion cells (R?= 0.54), or even the peak density of retinal
ganglion cells (R2= 0.67), as can be verified by comparing the values from Tables 1 and 2.
For example, cortical visual acuity is ~4 times higher in cats than rabbits (Table 2) but their
retinal areas are similar (498 mm? in rabbits versus 500 mm? in cats, Table 1) and the
number of retinal ganglion cells is actually ~2 times higher in rabbits (Table 1). Such
discrepancies between retinal resources and visual cortical acuity are likely to be less
pronounced among animals of the same species. For example, Spanish wildcats, Felis
silvestris tartessia, have higher central cone densities, higher peak density of retinal ganglion
cells, more axons in the optic nerve, and more LGN neurons than domestic cats of similar
weights (Williams, Cavada et al. 1993) and, since cortical visual acuity is strongly correlated
with the number of LGN afferents (R2=0.98, Figure 1), Spanish wildcats should also have
higher cortical visual acuity than domestic cats. Therefore, while the number of retinal
ganglion cells is a good predictor of cortical visual acuity when comparing animals that are
closely related, the number of LGN afferents is a better predictor when comparing species
with different visual needs such as rabbits and cats. The mismatch between cortical visual
acuity and retinal ganglion cell number is likely explained by differences in visual behavior.
Although rabbits have more retinal ganglion cells than cats, most of these cells are likely to
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serve other functions than visual acuity, such as generating quick reflexes to run away from
moving targets that abruptly enter their extensive visual field (Table 2) or avoiding collisions
when running at fast speeds away from predators. Cats have fewer retinal ganglion cells than
rabbits but more of them project to the LGN (Wassle and Illing 1980; Vaney, Peichl et al.
1981), which explains why the LGN volume is ~3 times larger (Table 1) and the cortical
visual acuity ~4 times higher in cats than rabbits (Table 2).

While the extent of the rabbit visual field is enormous and approaches 360 degrees ((Hughes
1971), Table 2), animals that need to hunt for prey (or search for small fruits) compromise
the size of their visual fields to enhance binocular vision and visual acuity. This evolutionary
process explains the strong correlation between cortical visual acuity and binocular field size
(Figure 1) and why the ratio between V1 size and visual field size is two orders of
magnitude larger in macaques (5.95 mm#/deg) than mice (0.01 mm?2/deg, Table 2). Because
LGN central receptive fields are much larger in mice (6.5 deg., Table 2) than macaques (0.09
deg. in parafovea and even smaller in fovea), tiling a horizontal line across the mouse visual
field can be done with just 49 LGN receptive fields but it requires 2,222 LGN parafoveal
receptive fields in the macaque (Table 2, Figure 2a). Similarly, a horizontal line across the
binocular field requires just 6 LGN receptive fields in the mouse but 1,556 in the macaque
(Table 2). Interestingly, cortical visual acuity is slightly better correlated with the number of
receptive fields required to tile a horizontal line in the binocular field (Table 2, R2 = 0.87,
power law with 1.27 exponent) than the tiling for the entire visual field (R%= 0.74, power
law with 0.79 exponent), which highlights once more the intimate relation between
binocular vision and cortical visual acuity.

Overexpansion of the V1 thalamocortical network

Although the reduction in LGN receptive field size from mice to macaques is remarkable,
the overexpansion of area V1 is even more pronounced. The ratio between V1 size and LGN
receptive field size is almost one order of magnitude larger in the macaque (0.54 mm?2/RF)
than in the mouse (0.08 mm?/RF, Table 2) and, because the average area of an LGN axon
patch is similar (mice: 0.24 mm?2, macaques: 0.23 mm?, averaging all axons in mouse and
parvocellular/magnocellular axons in macaques), the axon patches of LGN afferents with
overlapping receptive fields must overlap in mouse cortex but can be horizontally segregated
in macaque cortex (Table 3). Similarly, nearly all LGN afferents with overlapping receptive
fields project to the same cortical point in rabbits (>90%, (Stoelzel, Bereshpolova et al.
2008)) but at least 40% project to different cortical points in cats ((Jin, Weng et al. 2008; Jin,
Wang et al. 2011).

Our understanding of the horizontal organization of the thalamocortical axon patches in
cortex is still very limited in great part because reconstructions from single LGN axons are
scarce. However, available measurements from macaques (Blasdel and Lund 1983), cats
(Freund, Martin et al. 1985; Humphrey, Sur et al. 1985a; Humphrey, Sur et al. 1985b), tree
shrews (Fitzpatrick and Raczkowski 1990; Raczkowski and Fitzpatrick 1990), and mice
(Antonini, Fagiolini et al. 1999) allow some rough estimates of axon patch coverage and
spacing (Table 3). These data indicate that just 17 non-overlapping LGN-axon-patches are
enough to tile a line across area V1 in mice but 5,170 are needed to tile a line across area V1
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in macaques (Table 3, Figure 2b). Consequently, the largest horizontal separation between
two LGN axon patches with overlapping receptive fields is less than one axon patch in mice
but ~2 axon patches in tree shrews, cats, and macaques (Table 3, Figure 2c).

Based on these estimates, we propose that frequent separating gaps between axon patches of
LGN afferents with overlapping receptive fields are a unique feature of animals with high
visual acuity and have important consequences for the organization of visual cortical maps.
In mice, area V1 is not large enough to allow many horizontal gaps between thalamic axon
patches with overlapping receptive fields (Table 3) and the density of thalamic afferents is
very high (5,000 axons/mm2, Table 1). In contrast, area V1 in macaques and cats can
accommodate many thalamic afferents with overlapping receptive fields that do not have
overlapped patches in cortex (Table 3) and the density of thalamic afferents is ~5 times
lower than in mice (Table 1). The separating gaps between LGN axon patches with
overlapping receptive fields allow sorting the thalamic afferents within the cortex by
functional properties that are not just spatial position but also eye input and dark/light
polarity. We argue that this more precise thalamic sorting causes a major reorganization of
the visual cortical map.

Pinwheel cortical maps for stimulus orientation

The spacing between thalamic axon patches with overlapping receptive fields is large
enough in primates, carnivores, and scandentia (~2 axon patches, Table 3) to allow
clustering afferents of the same type within different cortical domains (e.g. by eye input and
contrast polarity). As demonstrated by recent results (Kremkow, Jin et al. 2016; Lee, Huang
et al. 2016), these thalamic clusters tend to rotate around each other probably to minimize
the amount of wiring and cortical volume needed to represent each visual point (Mitchison
1991; Cajal 1995; Chklovskii, Schikorski et al. 2002). For example, changes in orientation
preference within a horizontal track of cat visual cortex are associated with modest changes
in receptive field position for one contrast polarity (OFF in Figure 3, top row of receptive
fields) and a rotation in receptive field position for the opposite polarity (ON in Figure 3,
middle row of receptive fields). In this example, the OFF receptive fields anchor the spatial
position represented at the cortical domain while the ON receptive fields rotate with the
changes in orientation preference (Figure 3, bottom row of receptive fields).

It remains unknown if such ON-OFF rotation in receptive field position is due to the mosaic
organization of ON and OFF ganglion cells in the retina (Wassle, Boycott et al. 1981;
Soodak 1987; Paik and Ringach 2011) or the stronger correlated firing between ON and
OFF thalamic afferents (Goodhill 1993; Miller 1994; Goodhill and Lowel 1995; Nakagama,
Saito et al. 2000). However, it is now clear that the ON-OFF receptive field rotation is
closely related (Kremkow, Jin et al. 2016; Lee, Huang et al. 2016) to the pinwheel
organization of cortical orientation maps (Figure 4, (Figure 4, (Bonhoeffer and Grinvald
1991; Blasdel 1992; Bosking, Zhang et al. 1997; Ohki, Chung et al. 2006)), and that such
pinwheel organization allows a more efficient processing of visual textures in animals with
high visual acuity (Goris, Simoncelli et al. 2015; Koch, Jin et al. 2016). Therefore, given
different orientations represented on the cortical surface the close relationship between
visual acuity, ON-OFF receptive field position and the pinwheel organization of cortical
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orientation preference, we would like to propose that pinwheel orientation maps originate
when area V1 expands enough to generate high visual acuity and thalamic clustering by eye
input and ON-OFF polarity.

While this proposal still needs to be rigorously tested, it is consistent with available data.
First, as shown here, pinwheel orientation maps emerge as cortical visual acuity increases
and area V1 becomes larger (Table 2, Figure 2d). Second, pinwheel orientation maps are not
restricted to mammals but include other animals with high visual acuity. For example, barn
owls have similar visual acuity to cats (Orlowski, Harmening et al. 2012) and also have
pinwheel orientation maps in their visual Wulst, the avian brain structure that receives the
bulk of thalamic afferents (Liu and Pettigrew 2003). Third, all animals that have thalamic
afferents sorted by eye input in area V1 (ocular dominance columns) also have pinwheel
orientation maps, and the spacing between ocular dominance and pinwheel centers is
remarkably similar (Table 4). Interestingly, the spacing of both ocular dominance columns
and pinwheel centers is narrowly restricted to a range of about 0.4 to 0.5 mm in most
animals (Table 4), and the thalamic clusters representing a single whisker in the
somatosensory cortex of rodents and lagomorphs are also ~0.5 mm wide (Woolsey and Van
der Loos 1970; Bosman, Houweling et al. 2011), which suggests a common organizing
principle of sensory cortical topography. Moreover, although the thalamic axon spacing is
narrowly constrained to 0.4-0.5 millimeters in most animals, exceptions of larger spacing
(wider ocular dominance columns) are usually associated with larger distance between
pinwheel centers (Table 4). For example, the cat visual cortex has several areas receiving
thalamic input, and the area that has the wider ocular dominance columns, area 18, has also
the larger pinwheel spacing (Table 4). Our proposal also predicts that the direction maps in
the superior colliculus of frogs implanted with a third eye should be organized in a pinwheel
pattern because ocular dominance bands emerge with the arrival of inputs from the third eye
(Constantine-Paton and Law 1978), however, this prediction has not yet been tested.

Pinwheel orientation maps are found in animals with large V1 areas and LGN volumes such
as macaques (1,189 mm2, 77 mm3) and cats (380 mm?, 19.4 mm3) but also in tree shrews,
which have a much smaller LGN volume than rabbits (2.4 mm3 versus 6 mm3, Table 1). In
spite of their small LGN volume, however, tree shrews are more similar to carnivores and
primates than lagomorphs in that they have large binocular fields of vision and low V1
thalamic density. The binocular field of tree shrews is similar to ferrets and two times larger
than rabbits (60 degrees, Table 2), and their V1 thalamic density is lower than in ferrets,
rabbits and mice (1,515 axons/mm?, Table 1). The thalamic axon patches of tree shrews also
have a remarkably small area (0.08 mm?, Table 3), which is almost as small as the
parvocellular axon patches of the macaque (0.07 mm?, (Blasdel and Lund 1983)). The
thalamocortical organization of the tree shrew is very intriguing and, in many aspects, is
radically different from that of primates, carnivores, lagomorphs, and rodents. The thalamic
axon patches of tree shrews are extremely asymmetric in shape; they can spread as much 0.9
mm in the lateral dimension but only 0.14 mm in the anteroposterior dimension
(Raczkowski and Fitzpatrick 1990). They also show a pronounced inter-ocular asymmetry,
with thalamic axons from the ipsilateral eye being 3 times wider in lateral extent (and less
abundant) than axons from the contralateral eye (Raczkowski and Fitzpatrick 1990). Finally,
the thalamic afferents of tree shrews are segregated by eye input and ON-OFF polarity
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through the depth of the middle layers of the cortex instead of horizontally as in carnivores
and primates (Harting, Diamond et al. 1973; Hubel 1975; Norton, Rager et al. 1985).

It is unclear why the thalamocortical pathway of tree shrews is so different. An attractive
hypothesis is that cortical maps are optimized to keep all thalamic axons with overlapping
receptive fields as close as possible within area V1 (Hubel and Wiesel 1977; Durbin and
Mitchison 1990; Swindale, Shoham et al. 2000; Carreira-Perpinan and Goodhill 2002;
Kremkow, Jin et al. 2016), and this optimization requires different compromises in different
animals. Perhaps, because area V1 in tree shrews is so small (66 mm?, Table 1), the best
compromise is to make the thalamic axon patches as restricted as possible, sort them through
the depth of layer 4, and reduce the number of ipsilateral axons while compensating the
reduction by increasing its patch size. Carnivores may reach a different compromise to have
both high visual acuity to search for prey and high-quality vision while running at fast
speeds to hunt (110 Km/h in the cheetah). The best compromise for cats may be to
accommodate thalamic afferents in separate cortical areas, a large one specialized in visual
acuity (area 17: 380 mm2, (Tusa, Palmer et al. 1978)) and a smaller one specialized in
processing fast movement (area 18: 98 mm2, (Tusa, Rosenquist et al. 1979)). Because
running creates motion blur, cats may have a special need for Y thalamic afferents with large
receptive fields and fast response latencies (Cleland, Dubin et al. 1971) that are also
common in other animals including rodents, lagomorphs, scandentia (Sherman, Norton et al.
1975; Swadlow and Weyand 1985; Price and Morgan 1987; Krahe, El-Danaf et al. 2011),
and primates (Schiller and Malpeli 1978; Kaplan and Shapley 1982). However, the receptive
fields of Y afferents projecting to area 18 in cats are 2-3 times larger than those from
afferents projecting to area 17 (Yeh, Stoelzel et al. 2003). Therefore, such Y afferents would
have to cover a huge cortical region if they projected to area 17 (~2 mm#/deg, Table 2) but
can remain more restricted (although still large) within area 18, which is ~4 times smaller
and has a much coarser retinotopic precision (~0.5 mm2/deg). Interestingly, in spite of such
unique cortical specialization, thalamic axon patches are larger in cats than in any other
animal studied to date (Table 3, Figure 2).

Concluding remarks

The thalamocortical pathway plays an important role in building visual cortical maps and
maximizing visual spatial resolution within the cerebral cortex. During evolution, the
expansion of primary visual cortex is associated with an increase in visual acuity, a
reduction in the cortical density of thalamic afferents, and an increase in the cortical
separation between axon patches of thalamic afferents with overlapping receptive fields.
This increased separation allows sorting thalamic afferents within the visual cortex not only
by their spatial position but also by their eye input and contrast polarity (ON or OFF). We
propose that this increased separation between thalamic axon patches, and the resulting
thalamic sorting, leads to a major reorganization of the visual cortical map and allows for the
emergence of a pinwheel pattern in the cortical representation of stimulus orientation. While
this proposal is consistent with available data, anatomical reconstructions from single
thalamic axons remain unfortunately scarce, which limits our ability to build realistic models
of cortical architecture. It is surprising that, in the era of the connectome, we still have to
rely on heroic reconstructions from single thalamic axons obtained more than two decades
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ago with more limited resources. Advancing progress in understanding thalamocortical
processing would greatly benefit from a renewed effort to fully reconstruct the
thalamocortical network, which provides the structural framework for visual function.
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Thalamocortical visual function in different animals: primates, carnivores, scandentia,

1

V1 visual acuity (cpd)
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Page 13

lagomorphs, and rodents. Top. The number of LGN cells is correlated to the size of area V1
(left) and cortical visual acuity (right). Bottom. Cortical visual acuity is also correlated to the
size of area V1 (left, expected from correlations shown at the top), and the horizontal extent

of the binocular field (shown as a percentage of the total horizontal extent of the visual
field). Size of area V1 refers to only one hemisphere. See Table 1 for references.
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Figure 2.

Thalamocortical networks underlying the organization of visual cortical maps. a, Number of
non-overlapping LGN receptive fields needed to tile a horizontal line across the visual field
(shown on top left corner of each rectangle, taken from column 7 in Table 2). Only 1/10 of
the horizontal visual field is represented for illustration purposes. b, Number of non-
overlapping LGN-axon-patches needed to tile a horizontal line through area V1 (shown on
top left corner of each rectangle, taken from column 3 in Table 3). Green and orange colors
represent two different afferents. ¢, The largest spacing between two LGN-axon-patches
covering one LGN receptive field in visual cortex (shown on top left corner of each
rectangle, taken from column 5 in Table 3). For simplicity, axon patches are represented as
squares. d, Cortical optimal visual acuity across 11 different species (values obtained from
the references cited below). Colored circles indicate pinwheel orientation maps in visual
cortex. Mouse: (Niell and Stryker 2008). Rat,Gray squirrel,Bush baby,Owl monkey:
(Heimel, Van Hooser et al. 2005). Rabbit: (Zhuang, Stoelzel et al. 2013). Ferret: (Baker,
Thompson et al. 1998). Tree shrew: (Johnson, Van Hooser et al. 2010). Marmoset: (Forte,
Hashemi-Nezhad et al. 2005). Cat: (Movshon, Thompson et al. 1978). Macaque: (De
Valois, Albrecht et al. 1982). VF: visual field. RF: receptive field
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Changes in orientation preference and receptive field position along a horizontal track of cat
visual cortex. From top to bottom, the rows show OFF receptive fields mapped with dark
stimuli (in blue), ON receptive fields mapped with light stimuli (in red), the ON-OFF
receptive field difference (diff.), and the orientation/direction preference measured with
moving bars (circles show the orientation preference predicted from the receptive field
maps). From left to right, the columns show cortical measurements separated by 0.1 mm
from 0 to 1.2 mm distance. The column on the right shows the receptive field average along
the entire horizontal track (top three receptive fields) and the central positions of ON (red
circles) and OFF receptive fields (blue circles). The position of these ON and OFF cortical
receptive fields is determined by the receptive field population of the ON and OFF thalamic
afferents.
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Cortical space (mediolateral)

Cortical space (anteroposterior)

Figure 4.
Pinwheel pattern of the cortical map for stimulus orientation. Colors illustrate the different

orientations represented on the cortical surface (cat area 17, 2 x 2 mm). A square of 0.5 x
0.5 mm is shown centered on a cortical pinwheel.
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Table 4

Cortical spacing for ocular dominance and orientation pinwheels in primates, carnivores, scandentia and
rodents. Column 2 is calculated as the square root of 1/pinwheel density. References for the column on the left
[1] and on the right [2] are provided below. Human: (Adams, Sincich et al. 2007) for [1]; (Yacoub, Harel et al.
2008) for [2]. Macaque: (Adams, Sincich et al. 2007) for [1]; (Obermayer and Blasdel 1993) for [2]. Cat area
17: (Lowel 1994) for [1]; (Bonhoeffer, Kim et al. 1995) for [2]. Cat area 18: (Lowel 1994) for [1];
(Bonhoeffer and Grinvald 1993) for [2]. Owl monkey: (Takahata, Miyashita et al. 2014) for [1]; (Xu, Bosking
et al. 2004) for [2]. Bush baby: (Xu, Bosking et al. 2005) for [1], [2]. Marmoset: (Roe, Fritsches et al. 2005)
for [1]; (Liu and Pettigrew 2003) for [2]. Squirrel monkey: (Adams and Horton 2003) for [1]; (Obermayer and
Blasdel 1997) for [2]. Ferret: (Law, Zahs et al. 1988) for [1]; (Rao, Toth et al. 1997) for [2].

Animal Ocular dominance width (mm) | Pinwheel spacing (mm)
Human 0.84 0.72
Macaque 0.53 0.35
Catarea 17 0.45 0.69
Cat area 18 0.81 0.91
Owl monkey 0.45 0.36
Bush baby 0.53 0.40
Marmoset 0.30 0.46
Squirrel monkey 0.44 0.30
Ferret 0.41 0.43
Average 0.53 0.51
Median 0.45 0.43
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