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Abstract

Purpose—Existing summary statistics based upon optical coherence tomography (OCT) scans 

and/or visual fields (VF) are suboptimal for distinguishing between healthy and glaucomatous 

eyes in the clinic. This study evaluates the extent to which a hybrid deep learning method 

(HDLM), combined with a single wide-field OCT protocol, can distinguish eyes previously 

classified as either healthy suspects or mild glaucoma.

Patients and Methods—102 eyes from 102 patients, with or suspected open-angle glaucoma, 

had previously been classified by two glaucoma experts as either glaucomatous (57 eyes) or 

healthy/suspects (45 eyes). The HDLM had access only to information from a single, wide-field 

(9×12mm) swept-source OCT scan per patient. Convolutional neural networks were used to 

extract rich features from maps derived from these scans. Random forest classifier was used to 

train a model based on these features to predict the existence of glaucomatous damage. The 

algorithm was compared against traditional OCT and VF metrics.

Results—The accuracy of the HDLM ranged from 63.7% to 93.1% depending upon the input 

map. The RNFL probability map had the best accuracy (93.1%), with 4 false positives, and 3 false 

negatives. In comparison, the accuracy of the OCT and 24-2 and 10-2 VF metrics ranged from 

66.7% to 87.3%. The OCT quadrants analysis had the best accuracy (87.3%) of the metrics, with 4 

FP and 9 FN.
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Conclusion—The HDLM protocol outperforms standard OCT and VF clinical metrics in 

distinguishing healthy suspect eyes from eyes with early glaucoma. It should be possible to further 

improve this algorithm and with improvement it might be useful for screening

Introduction

The detection of glaucoma, especially in the early stages of the disease, can present a 

challenge for clinicians who care for glaucoma patients. We recently argued that a single 

wide-field optical coherence tomography (OCT) scan has the information needed to 

distinguish healthy suspect eyes from eyes with early glaucoma.1 In particular, two 

glaucoma specialists placed 102 eyes into two groups (glaucoma or probably glaucoma 

versus healthy or probably healthy) based upon information from the patients’ charts, 24-2 

and 10-2 visual fields (VFs), and OCT scans. Using only a single-page report that 

summarized the results from a single wide-field OCT scan, the senior author (DCH) 

correctly identified 100 of these eyes for an accuracy of 98%. This result was surprising 

because many of these eyes were particularly challenging. Specifically, they all had 24-2 

VFs with mean deviations (MD) better than -6dB and an abnormal and/or anomalous disc 

referred to a tertiary care glaucoma specialist.

However, there are at least two reasons for tempering the enthusiasm for this finding. First, it 

remains to be seen if others can do as well as the OCT specialist in that study, who had many 

years of experience with glaucomatous damage seen on OCT scans. Further, even if we 

assume others can be trained to do as well, the amount of training needed remains to be 

determined.

In this study, we explore the extent to which these two limitations can be overcome with a 

machine learning method. In particular, we evaluate the extent to which a computer vision 

based hybrid deep learning method (HDLM), using the single wide-field OCT protocol, can 

distinguish healthy from abnormal eyes in the same group of 102 eyes previously classified 

as either healthy suspects or mild glaucoma.

Methods

Patients

102 eyes from 102 patients with a diagnosis of glaucoma or glaucoma suspect, 

gonioscopically open angles, a 24-2 VF MD better than −6 dB, and a spherical refractive 

error between ±6° were included. In addition to the 24-2 VF, all patients were also tested 

with the 10-2 test pattern (Humphrey Field Analyzer; Carl Zeiss Meditec, Inc, Dublin, CA) 

within <6 months of the 24-2 test. Written, informed consent was obtained from all 

participants. Procedures followed the tenets of the Declaration of Helsinki, and the protocol 

was approved by the institutional review boards of Columbia University and the New York 

Eye and Ear Infirmary of Mount Sinai.

The 102 eyes were part of a previous study,1 which started with 130 eyes. In that study, two 

glaucoma specialists judged each eye as healthy (H); probably healthy (PH); forced-choice 

healthy (FC-H); glaucomatous (G); probably G (PG); forced-choice G (FC-G) based upon 
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24-2 and 10-2 VFs, fundus photos, patient chart information, and a single-page OCT report,2 

which included an OCT specialist’s interpretation as indicated in ref 1. The forced-choice 

categories were used if the specialists were not sure, but had to guess. For a reference 

standard in this study, the 57 eyes judged G or PG by both glaucoma specialists were 

considered “glaucomatous”, and the 45 eyes judged H or PH by both were considered 

“healthy”. Note: 28 of the original 130 eyes in ref. 1 were not included in that study or this 

one. Of these, the two glaucoma specialists did not agree on 23 eyes, while the other 5 had 

optic neuropathies.1

Optical Coherence Tomography

All patients were scanned using a swept-source OCT (DRI OCT-1 Atlantis, Topcon, Inc, 

Tokyo, Japan) and a wide-field cube scan protocol (12 × 9 mm, 256 horizontal B-scans with 

512 A scans each), which included the macular and disc regions. The thicknesses of the 

retinal nerve fiber layer (RNFL) and retinal ganglion cell plus inner plexiform layer (RGC+) 

were determined by using the OCT instrument’s software (v9.30beta). Figure 1 shows the 

region of the retina covered (A), along with a representative b-scan (B) with the RGC+ and 

RNFL borders indicated. Based upon the software’s segmentation of these borders thickness 

maps were created as standard 3-color channel images for both RGC+ (C) and RNFL (D).

Based upon these thickness data and machine normals, we also produced probability maps 

rendered in 3-color channel images. In the case of the RNFL probability map (Fig. 1F), it 

included the entire scan region, while in the case of the RGC+ probability map (Fig. 1E), it 

was restricted to a 6x6mm region centered on the fovea. Further, en face projection images 

(also in 3-color channel) were generated for each patient by averaging pixels vertically in a 

50 μm slab beneath the inner limiting membrane (Fig. 1G) as described in a previous study. 3

Convolutional Neural Networks

Unlike standard deep neural networks which update the weights of nodes (or “neurons”) 

through learning, convolutional neural networks (CNN) learn kernels, or filters, to convolve 

across inputs in order to extract features from 3-D tensors, specifically images (width × 

height × three color channels) and pass them to the next layer. Images fed-forward through 

multiple convolutional layers and are reduced to abstract features. Thus, nodes in the first 

convolutional layer are tuned to basic features of an image, such as edge gradients in various 

directions or color blobs of different hue combinations. The second convolutional layer takes 

the weights of these basic features and further convolves them into more complex 

representations. Depending on the design of the network, other layers in the network exist 

between the convolutional layers: A rectified linear units (ReLU) layer, which applies a 

fixed activation function and a pooling layer, which down-samples the spatial dimensions of 

data passing through the network to reduce number of parameters. Finally, towards the end 

of the model, there are fully-connected layers, which together, resemble traditional neural 

networks and perform the bulk of the classification computing on information coming from 

the convolutional layers. The organization and placement of these different layers can vary 

among different CNN models.
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Model Design

In this study we argue for the use of a pre-trained CNN model for feature extraction and a 

random forest model for classification. The weights of the nodes (what we refer to as 

features) in the fully connected layers of the neural network are used as input for the random 

forest.

In particular, feature extraction was performed with the Caffe4 deep learning framework on a 

high performance compute cluster running CentOS. Processing was done on two GPUs 

(Titan X, NVIDIA Inc., Santa Clara, CA) connected in parallel under a subnode (Xeon E7, 

Intel Inc., Santa Clara, CA). The pre-trained model used was AlexNet5 due to its well-

studied performance and simplicity of structure. Further, AlexNet was the winning model of 

the ILSVRC2012 classification task, a community benchmark for computer vision 

algorithms.6

For each subject, 6 images in lossless png format were used as input for the CNN: (1) RGC+ 

thickness map (Fig. 1C); (2) RNFL thickness map (Fig. 1D), (3) RGC+ probability map 

(Fig. 1E); (4) RFNL probability map (Fig. 1F), (5) en face projection (Fig. 1G). A sixth 

image, a combination of (2, 3, and 4) was also evaluated. This “combined” image was 

constructed by replacing the red-channel of the image with RNFL probability values, the 

green-channel with RGC+ probability values, and the blue-channel with normalized RNFL 

thickness values. Because AlexNet was trained on natural images, all color channels are 

assumed to be considered equally by the network. The ordering of maps in the color 

channels may minimally affect performance. A vertically flipped copy of each image type 

was also fed into the CNN in order to increase the training efficacy for the learning step. 

Note that this step is based around the notion of vertical invariancy and not the assumption 

that the data is symmetrical about the x-axis - such data augmentations for image 

classification tasks have been shown to significantly improve prediction accuracy 

previously.7

The final three layers of AlexNet (fc6, fc7, and fc8) are one-dimensional fully connected 

layers. Layers fc6 and fc7 have 4096 features each and fc8, which normally serves as an 

output classifier, has 1000 features, one for each of the 1000 classes in the ImageNet 

database8 that AlexNet was trained on. In our case, instead of using the probability-based 

class predictions in the final output layer, we used the associated weights to evaluate if they 

contain information about glaucomatous damage inferred from the OCT-based images. 

Finally, the three arrays of features for each of the 6 types of images were used for training 

and testing.

Random Forest Classifier

To classify patients into “healthy” and “glaucomatous” we trained a random forest (RF) 

classifier, based on the feature vector from the CNN. The model was evaluated for each of 

the 6 image types by conducting leave-one-out cross-validation. Random forests9,10 are 

ensemble classifiers based on decision trees that are grown by bootstrapping the training 

dataset and randomly selecting feature subsets at each split node. Each tree makes a 

prediction for an input sample based on its construction during training and the decision 
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with the most votes (trees) is the predicted classification label. In our case, the labels were 

“healthy” and “glaucomatous.” Our final model consisted of 200 trees, which were trained 

in parallel on a compute cluster. Because there can be variance in the results of random 

forest, this method was repeated 50 times.

Evaluation of Performance

The statistical analysis was conducted in R11 (version 3.1.1). Modifications were made in 

both the CNN and RF code base. For the CNN, a comparison of the three fully connected 

layers and a combination of all three was done on each image type to assess the layer with 

the best performing features. In each case, layer fc6 yielded the best area under the curve of 

receiver operating characteristic curve (AROC) based on the probability of trees which voted 

“Glaucomatous” for each subject (see Table 1 for the average AROC across 50 trials). From 

here on, we will only discuss results based upon this layer.

Because of the stochastic properties of RFs, the structure of the trees is different with each 

training run. Thus, the RF model was trained and tested 50 times, and the false-positive (FP) 

and false-negative (FN) of each iteration were averaged to estimate the generalization 

performance.

Choosing an optimal number of trees in a forest lowers computation time and avoids over 

and under-fitting on the model. Figure 2 shows the convergence of the out-of-bag error (i.e., 

a generalization of error created within the training set) as the forest grows in one iteration. 

The error rate converge around 100 trees. Finally, the number of correct and incorrect 

predictions were evaluated for a FP / FN analysis.

OCT and VF Metrics

To benchmark the performance of the HDLM, conventional clinical metrics based upon 

OCT scans of the disc and 24-2 and 10-2 VFs were obtained.

OCT—Based upon the wide-field scan, the instrument’s software (9.30beta (Atlantis) and 

v1.16beta (IMAGEnet6), Topcon Inc, Tokyo, Japan) obtained the RNFL thickness along a 

3.4 mm diameter circle. From these circumpapillary (cp) RNFL thickness data, the software 

calculated the 3 most commonly used OCT metrics: total cpRNFL thickness (T); thickness 

within each of the 4 quadrants around the disc (Q); and thickness within each of the 12 clock 

hours around the disc (CH). For Q, an eye with one or more quadrants falling below the 5% 

confidence limit (CI) was considered abnormal. For CH, an eye was considered abnormal if 

one of more clock hours fell below the 1% CI or two or more contiguous clock hours fell 

below the 5% CI. For T, an eye was considered abnormal if the total cpRNFL thickness fell 

below 96μm, chosen for best accuracy.

24-2 VF—The following metrics were used: mean deviation (MD) with P ≤5%; pattern 

standard deviation (PSD) with P≤5%; a glaucoma hemifield test (GHT) outside normal 

limits; and a cluster criteria (CC) of 3 neighboring points at 5, 5, and 1% or 5, 2, and 2% 

probability or worse within a hemifield on total deviation (TD) or pattern deviation (PD) 
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plots, with only one point allowed on the edge of the 24-2 VF test pattern. In addition, the 

criteria used in the OHTS, an abnormal GHT or PSD, was also considered.

10-2 VF—The following metrics were used: mean deviation (MD) with P ≤5%; PSD with P 
≤5%; and a cluster criteria (CC) of 3 neighboring points at 5, 5, and 1% or 5, 2, and 2% 

probability or worse within a hemifield on TD or PD plots.

The accuracy of the best performing HDLM was compared to each conventional clinical 

metric using a one-sample test with reported confidence intervals.

Results

Each trial of the RF model produced slightly different result because decision trees grow 

based upon random bootstrapping of training data. An assessment of the effects on accuracy 

by the stochastic properties of RF is shown in Figure 3. The small symbols are the results 

from individual runs for 50 trials of each of the six image types. The boundaries of the box 

show the 25% and 75% quartiles, and the whiskers show the maximum and minimum 

values. There was low variability in classification error. RNFL probability yielded the 

highest average accuracy and the least variability, 92.4 ± 0.57%, the en face projections 

yielded the lowest average accuracy and the greatest variability, 65.7 ± 1.53%. Figure 4 

shows the ROC of one randomly chosen trial.

Table 2 shows the results of the FP/FN analysis as modal values across trials. The RNFL 

probability had the best modal accuracy, 93.1% and average accuracy, 92.6%; it missed 7 

eyes with 3 FN and 4 FP.

A comparison to conventional OCT and VF metrics

The RNFL probability did better than any of the typically used metrics derived from OCT 

disc scans (Table 3), 24-2 (Table 4) or 10-2 (Table 5) VFs. For the OCT metrics, the 

quadrants (Q) had the best accuracy, 87.3%. However, it missed 13 eyes (9 FN and 4 FP), 

nearly twice as many as the HDLM with RNFL probability images. The VF metrics 

performed more poorly than the OCT (Tables 4 and 5). The best metric (PSD or GHT) for 

the 24-2 VFs had an accuracy of 80.4% with a total of 20 misses. The MD, PSD or cluster 

criteria of the 10-2 VFs had a similar accuracy, 80.4%. A significant increase in performance 

was seen versus all metrics when using RNFL Probabbilty HDLM (p < .001).

An analysis of FP and FN

To better understand why the HDLM with the RNFL probability map missed 8 eyes, the 

single page reports available to the OCT specialist were analyzed. Of the 4 healthy eyes 

misclassified as abnormal by the HDLM, all had what appeared to be arcuate defects on the 

RNFL probability plot. Figure 5A shows the report available to the OCT specialist for one of 

these eyes. The specialist rated this eye as “healthy” and was not misled by the apparent 

arcuate defect (black arrow) on the RNFL probability map (panel 3), which is shown in VF 

view. That is, the region indicated by the black arrow in panel 3 is in the superior disc in 

panel 2. The specialist attributed this abnormal region in the RNFL probability map to the 

placement of the major superior blood vessels (white arrow in Figure 5A, panel 1). The 
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vertical red line on the peripapillary RNFL thickness plot (panel 2) represents the average 

location of the major blood vessels from a group of healthy individuals.12 In this case, the 

superior temporal blood vessels are situated more temporal than the average location (red 

arrow and red vertical line in panel 2). Because the thickest portion of the superior arcuate 

bundle tends to follow the major superior temporal blood vessels, the peak of the RNFL 

thickness plot is shifted. Thus, the RNFL thickness appears abnormally thin, and falls in the 

abnormal region (black arrow) on the RNFL probability plot (panel 3). The OCT specialist 

recognized this and classified this eye as “healthy”. Similar RNFL defects are seen in the 3 

other misclassified normal patients (Figure 5B–D).

Of the 3 abnormal eyes misclassified as normal by the HDLM, 2 had clear macular damage 

as seen on RGC+ thickness and probability plots. Figure 6A shows the RNFL probability 

map for one of these eyes. The HDLM with the RNFL probability map classified this eye as 

healthy, even though there were signs of abnormal RNFL thickness on the RNFL probability 

plot (black arrows). However, the report specialist could clearly see that there was damage to 

the macula on the RGC+ plots (black arrows in Figure 6B). The third eye showed an arcuate 

defect in the superior VF/inferior retina on the RNFL probability and thickness plots. 

Although the changes on this map were subtle, the specialist was able to confirm them by 

examining the en-face and RNFL thickness images, where the red arrow shows the arcuate 

defect (Figure 6C).

Discussion

We tested the hypothesis that a HDLM, using the single wide-field OCT protocol, can 

distinguish healthy from abnormal eyes in a group of 102 eyes previously classified by 

specialists. When using the RNFL probability map, the HDLM had an average accuracy of 

93.3%; it misclassified 7 eyes. In comparison, the best OCT metric missed 13 eyes and the 

best 24-2 and 10-2 VF metrics missed 20 eyes.

While the HDLM did well, it missed 5 more eyes than did the OCT specialist in our 

previous study. In that study, the specialist had available only a one-page report based upon 

only the same single wide-field ssOCT scan. An analysis of the 7 misclassified eyes suggests 

ways to improve the HDLM. In particular, it might be possible to avoid FP due to blood 

vessel locations if our group of healthy controls was larger and the information about blood 

vessels included in the HDLM. When training a network, specific neurons can learn to tune 

to blood vessel positions as a parameter, creating a feature which includes the information 

during learning. This is one of the benefits of using a model trained for the task at hand, 

rather than the pre-trained model used here.

Similarly, avoiding FN due to local damage restricted to the macula, which is very easy to 

spot on the RGC+ maps, but easy to miss on the RNFL plots (Fig. 5A), is feasible by 

creating a custom CNN structure to take in multiple inputs in parallel. Combining RGC+ 

and RNFL probability images did not yield superior results to the RNFL probability alone 

when using the pre-trained model. However, when assessing RGC+ on the combined 

fc6+fc7+fc8 feature vectors, performance based on AROC was comparable to RNFL 

probability on fc6. This means the CNN is sensitive to the empirical information in RGC+ 
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images. Given a novel method to combine RNFL and RGC+ information, it is feasible to 

increase classification performance.

Note that the CNN learns to differentiate regions of RNFL thinning (depicted in red in 

probability maps) from other regions of red due to individual variation, segmentation errors, 

or noise. Because noise is scattered throughout all images, and damage in arcuate regions 

only exists in glaucomatous eyes, the RF learns to differentiate between features from the 

CNN that represent those two cases. This is a benefit from traditional image processing 

methods which require a priori mathematical representation of damage in probabilities, 

clusters, shapes, or intensities, before being able to detect it. Often, when using these 

techniques, it can be hard to differentiate noise from significant data.

The approach here is substantially different from other studies that have used machine 

learning or supervised learning with OCT data. Several studies have employed progression 

of patterns13 and unsupervised Gaussian mixture-models14,15 on VF data. OCT has not been 

utilized to its full extent when training model machine learning based on OCT information. 

For example, a study which used Bayesian machine learning classifiers trained with 

combined structural (OCT) and functional (VF) data performed with an AROC of 0.869. 

OCT alone, however, performed worse with an AROC of 0.817.16 It is important to note that 

in the methodology, the high resolution and data rich OCT was subsampled into 32 discrete 

measurements of thickness, which may hinder the performance of structure-only classifiers. 

Reductions in data complexity, at least as extreme as this, for easier analysis are common in 

the literature.17–19 To fully take advantage of the power of OCT, it is important to analyze as 

much information from the data as possible.

For most machine learning models it is crucial to have a class balanced dataset to prevent 

skewed results due to a dominating class in the training set. For example, a study that 

classified between glaucomatous and healthy eyes using random forest performed with an 

AROC of 0.79.20 This result was slightly underwhelming when taking into account that over 

60% of the data was glaucomatous. This means that a classifier performing by chance would 

produce an AROC of ~0.60. In this work we have overcome the problem by balancing the 

training and test set to produce an unbiased estimate of the generalization performance of 

the model.

Limitations

The most important limitation of our approach is the use of a pre-trained model. The model 

used here, AlexNet, was trained on the ImageNet database, which is a set of natural images 

including various animals, plants, and common objects. Textures, colors, and patterns seen 

in the OCT images are very different from these natural images and the neurons that have 

learned to tune to the features of natural images may not respond well when presented with 

OCT images. This might lower the power of the features in the learning and prediction step 

during RF training. It warrants investigation whether back-propagating OCT data in a pre-

trained CNN outperforms the proposed setup with separate feature extraction and classifier 

training steps.
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Second, our training set was relatively small. In the future, it is particularly important to 

construct larger datasets for training CNNs from scratch. This will allow for creating an 

independent testing set while retaining a significant amount of data for training.

Third, some may ask why we used AlexNet, as opposed to other more recent models such as 

a pretrained ResNet. This decision was based on model architecture. AlexNet has 3 linear 

layers. The innermost, fc6, contains information directly from the convolutional layers and 

the outermost, fc8, is optimized to perform the classification task of ImageNet. It was our 

expectation that fc6 would perform better in generalized image classification tasks because 

of its close relation to the direct outputs from convolution layers which carry image features. 

ResNet on the other hand, has only one linear layer which is where ImageNet-specific 

classification happens. Indeed, it would be an interesting investigation to see how other 

models perform and we will explore these concepts in future studies.

Fourth, some may also argue that outperforming simple OCT and VF metrics with more 

advanced data analysis techniques is not a difficult goal. Although these metrics may set a 

low bar, they are the ones largely used in practice to diagnose and monitor glaucoma. The 

challenge is creating a metric that is simple or simpler than the metrics currently being used 

in the clinic without expense data resolution. We argue that this HDLM model is easy to 

develop and directly implement into future OCT machines. Such an algorithm may have the 

ability to detect glaucoma or provide the clinician with likelihood ratios that can be used to 

modify the initial suspicion for disease (pre-test probability) into a new probability of 

disease (post-test probability) with greater accuracy.

Finally, some will see our use of expert diagnosis as a potential limitation and would prefer 

to see objective criteria, including evidence of progression, for identifying eyes with 

glaucomatous damage.

In conclusion, HDLM and a single wide-field OCT protocol outperformed standard OCT 

and VF clinical metrics in distinguishing healthy eyes from eyes with early glaucoma. It 

might be possible to further improve the performance of the HDLM by increasing the size of 

the training set and creating a custom HDLM enriched with OCT data, as well as supplying 

the model with information about the location of blood vessels and RGC+ defects.
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Figure 1. 
(A) A fundus photo of a scanned eye with a green box outlining the area scanned by OCT 

and a blue line corresponding to one B-scan (B). An example of an RGC+ thickness map (C) 

and an RNFL thickness map (D), as well as their corresponding probability maps (E and F). 

(G) a 50 μm en face projection image. These images are fed into AlexNet. 4096 features are 

extracted in the output and used as input to train a random forest classifier.
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Figure 2. 
As the number of trees increases, error decreases and converges. Out-of-bounds error (red) 

represents the average misclassification of glaucomatous (blue) and normal (green) images.
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Figure 3. 
Error distribution across trials is shown for each image. The 50 trials for each image are 

shown as the small data points near the boxplots. The width of the box is the 25% to 75% 

quartile range. The whiskers represent minimum and maximum values.
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Figure 4. 
A receiver operating curve (ROC) for one randomly selected trial.
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Figure 5. 
(A) A report for a false positive available to the OCT specialist. Black arrows point towards 

the location of the defect, red arrow points to average blood vessel location, white arrow 

points to location of blood vessels in example. (B – D) show RNFL probability maps of 3 

other imilar examples.
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Figure 6. 
Portions of a report for an example of a false negative. Subtle defects can be seen on the 

RNFL (A,B) and RGC+ (C,D) thickness (B,C) and probability (A,D) maps, as well as the en 
face projection image (E). The red and black arrows point to abnormal regions.
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