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Abstract

Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife 

populations are often highly fragmented by human infrastructure, and isolated populations may 

adapt in response to local urban pressures. However, relatively few studies have identified genomic 

signatures of adaptation in urban animals. We used a landscape genomics approach to examine 

signatures of selection in urban populations of white-footed mice (Peromyscus leucopus) in New 

York City. We analyzed 154,770 SNPs identified from transcriptome data from 48 P. leucopus 
individuals from three urban and three rural populations, and used outlier tests to identify evidence 

of urban adaptation. We accounted for demography by simulating a neutral SNP dataset under an 

inferred demographic history as a null model for outlier analysis. We also tested whether candidate 

genes were associated with environmental variables related to urbanization. In total, we detected 

381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of 

the candidate genes were involved in metabolic processes, and have well-established roles in 

metabolizing lipids and carbohydrates. Our results indicate that white-footed mice in NYC are 

adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of 

outlier loci suggest selection is acting on metabolic pathways in urban populations, likely related 

to novel diets in cities that differ from diets in less disturbed areas.
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INTRODUCTION

Urban habitats are one of the fastest growing and most rapidly changing environments 

around the world. While urbanization has been traditionally viewed as a driver of declining 

habitat quality in and around cities, there is growing interest in the idea that urban areas 

represent novel environments with unique selective pressures (Donihue & Lambert 2015). 

The recently developed but burgeoning field of urban evolutionary biology aims to 

determine how urbanization leads to evolutionary change through mutation, genetic drift, 

gene flow, and natural selection in urban populations.

The ecological changes that occur within cities are likely to have many evolutionary 

implications. Human infrastructure causes habitat loss and fragmentation and changes 

resource availability, novel species interactions occur because human movements and 

commerce introduce a diverse array of nonnative species, and human activity increases 

exposure to chemical, light, and noise pollution (McKinney 2002; Chace & Walsh 2004; 

Shochat et al. 2006; Sih et al. 2011). These changes lead to unique pressures in novel urban 

habitats that may rapidly drive evolutionary change over short timescales. Increased genetic 

drift in relatively isolated urban populations, genetic differentiation between populations 

with restricted gene flow from urban infrastructure, or allele frequency shifts due to local 

urban adaptation, are all likely outcomes of evolution in cities (Munshi-South 2012; Merilä 

& Hendry 2014; Donihue & Lambert 2015).

Urban populations are potentially excellent systems for examining how species respond to 

anthropogenic environmental change, what genes and traits are involved, and how quickly 

populations locally adapt to changing environments. Local adaptation is a common 

phenomenon in nature (Stinchcombe & Hoekstra 2008; Bonin 2008; Linnen et al. 2009; 

Hohenlohe et al. 2010a; Turner et al. 2010; Ellison et al. 2011; De Wit & Palumbi 2013), 

and often results from the operation of selection on standing genetic variation as opposed to 

novel mutations over relatively short time scales (Barrett & Schluter 2008; Stapley et al. 
2010). Additionally, the quantitative traits involved in local adaptation may involve many 

genes of small effect working to produce the desired phenotype (Orr 2005; Rockman 2012), 

and these ecologically relevant but non-conspicuous phenotypes are predicted to be those 

most involved in urban adaptation (Sih et al. 2011). However, traits with relatively simple 

genetic architecture may also be under selection in urban environments (Thompson et al. 
2016). Investigating the genetic basis of local adaptation has provided insight into a variety 

of evolutionary processes including speciation, maintenance of genetic diversity, range 

expansion, and species responses to changing environments (Savolainen et al. 2013; Tiffin & 

Ross-Ibarra 2014), and holds great promise for understanding adaptive evolution in response 

to urbanization.

Landscape genomics has recently produced a number of approaches for studying local 

adaptation. This field is defined by the spatially explicit study of genomic variation (Sork et 
al. 2013) that seeks to identify environmental variables influencing adaptive genomic 

variation (Rellstab et al. 2015). Landscape genomics, and more specifically genotype-by-

environment analyses (GEA), can successfully identify associations between urban 

environmental variables and allele frequencies that indicate adaptation to local urban 
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conditions. These approaches can also help to untangle the interactions between neutral 

demographic processes and selection (Rellstab et al. 2017). Urban populations are 

influenced by both genetic drift through founder effects and barriers to gene flow, and 

selection acting on genetic variation linked to increased fitness in urban settings.

A small but growing number of studies have documented how populations may locally adapt 

to urban selective pressures through changes in allele frequencies and/or undergo directional 

shifts in phenotypic traits. Yeh (2004) reported that sexually-selected tail coloration in 

Juncos (Junco hyemalis) was rapidly evolving in urban populations compared to rural ones. 

European Blackbirds (Turdus merula) exhibit evidence of selection on genes underlying 

anxiety behavior in newly established populations across multiple cities (Partecke et al. 
2006; Mueller et al. 2013). Cheptou et al. (2008) reported that a weed (Crepis sancta) in 

urban vegetation plots surrounded by paved surfaces showed heritable changes in seed 

morphology and dispersal. Reduced snow cover in urban areas leads to colder minimum 

ground temperatures and Thompson et al. (2016) found parallel adaptive evolution in urban 

white clover (Trifolium repens) populations that had increased freezing tolerance. Several 

studies have also found likely adaptive genetic and morphological changes in urban mammal 

populations. Suggestive of urban adaptation, a specific mitochondrial genotype rose to 

fixation in white-footed mice (Peromyscus leucopus) populations in Chicago along with 

morphological changes to skull shape after urbanization (Pergams & Lacy 2008). In urban 

areas of Italy, Kuhl’s pipistrelle (Pipistrellus kuhlii) bat populations had significantly larger 

bodies and longer skulls than natural populations, suggesting urban adaption to a novel diet 

introduced when artificial illumination attracted an increased number of large hard-bodied 

moths (Tomassini et al. 2014).

Few studies in urban evolutionary biology have been able to measure phenotypic changes, 

definitively link them to genetic changes, and establish fitness benefits to demonstrate 

evolutionary adaptation. One exception are urban killifish (Fundulus heteroclitus), where 

selective pressure from polychlorinated biphenyls (PCBs) has led to the evolution of PCB 

tolerance in urban populations (Whitehead et al. 2010; Reid et al. 2016). Adaptation to PCB 

pollution was also reported in tomcod (Microgadus tomcod) in the Hudson River through a 

deletion that similarly increases tolerance to PCBs (Wirgin et al. 2011). Urban adaptation 

has also been confirmed in the well-known peppered moth (Biston betularia) system. Recent 

evidence suggests that the industrial melanism trait in this species is linked to an insertion of 

a transposable element in the cortex gene in the early 1800s that spread throughout the 

population in response to industrial airborne pollution (Hof et al. 2016). The study of 

additional systems will likely identify a complex array of adaptive evolutionary responses in 

cities (Whitehead et al. 2017).

Here we examined signatures of selection in isolated urban populations of white-footed 

mice, Peromyscus leucopus, in New York City (NYC) using a landscape genomics 

approach. Peromyscus spp. (Rodentia, Cricetidae) are a group of abundant small mammals 

found across much of North and Central America. They live in a diverse array of habitats 

that exposes them to a variety of selective pressures, and thus multiple Peromyscus spp. have 

become model systems for studies examining ecology, evolution, and physiology in natural 

populations (Munshi-South & Richardson 2017). There is also evidence that Peromyscus 
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spp. readily adapt to environmental change (Storz et al. 2007, 2009, 2010; Mullen & 

Hoekstra 2008; Linnen et al. 2009; Weber et al. 2013; Natarajan et al. 2013; Munshi-South 

& Richardson 2017), making them good subjects for the study of local adaptation. White-

footed mice are one of the few native mammals that thrive in extremely small, fragmented 

urban forests in North America (Pergams & Lacy 2008; Rogic et al. 2013; Munshi-South & 

Nagy 2014), and tend to be found at higher densities in urban vs. rural patches due to a thick 

understory providing abundant food resources and exclusion of major predators and 

competitors (Rytwinski & Fahrig 2007). Increased density may also be due to limited P. 
leucopus dispersal between urban sites. Munshi-South (2012) found barriers to dispersal 

between isolated NYC parks, with migrants only moving through significantly vegetated 

corridors throughout the city. There is also substantial genetic structure between NYC parks 

as measured by microsatellites (Munshi-South & Kharchenko 2010), genome-wide SNPs 

(Munshi-South et al. 2016) and demographic modeling (Harris et al. 2016). We have also 

previously identified signatures of selection in urban populations of NYC white-footed mice 

(Harris et al. 2013), though we used smaller datasets and more limited approaches than 

presented here.

In the current study, we examined SNPs generated from individual transcriptome sequencing 

for P. leucopus from three urban sites in NYC and three rural sites from the surrounding 

area. We generated a large SNP dataset and produced estimates of nucleotide diversity (π, 

Tajima 1983), Tajima’s D (Tajima 1989), and FST (Wright 1951) to generate per-site 

estimates and identify loci that deviate from neutral expectations. We then used a variety of 

genome scan methods and outlier tests to identify genes subject to selection in an urban 

setting. Our approach identified population differentiation, shifts in allele frequencies, and 

associations between alleles and environmental variables. However, neutral demographic 

processes such as population bottlenecks can produce signatures of genetic variation similar 

to those produced by selection (Oleksyk et al. 2010; Li et al. 2012). We accounted for this 

possibility by incorporating a simulated neutral SNP dataset from an inferred demographic 

history (Harris et al. 2016) directly into our null model for identifying outliers (Excoffier et 
al. 2009; Gutenkunst et al. 2009; Li et al. 2012; Vitti et al. 2013; Lotterhos & Whitlock 

2015).

The three specific aims of this study were the following: 1. identify candidate genes 

exhibiting signatures of selection in NYC populations of white-footed mice using a variety 

of genome scan methods and outlier tests; 2. distinguish genetic outliers resulting from 

selection rather than demography by incorporating demographic histories of white-footed 

mice in NYC into null models of genome scans; and 3. identify genes that are statistically 

associated with environmental variables representative of urbanization using landscape 

genomic approaches.

MATERIALS AND METHODS

Sampling, library preparation, and transcriptome assembly

We trapped and collected white-footed mice from 2010 – 2012. For full details on sampling, 

transcriptome sequencing, assembly and SNP calling, see Harris et al. 2013, 2015. In brief, 

we randomly chose eight adult white-footed mice (equal numbers of males and females) 
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from each of six sampling locations (N = 48 total) representative of urban and rural habitats 

and with minimal within-site genetic structure (Fig. 1) (Harris et al. 2013, 2015). Three 

sampling sites were within NYC parks: Central Park in Manhattan (CP), New York 

Botanical Gardens in the Bronx (NYBG), and Flushing Meadows—Willow Lake in Queens 

(FM). These sites represented urban habitats surrounded by high levels of impervious 

surface cover and high human population density, as previously quantified in Munshi-South 

et al. (2016). The remaining three sites occurred ~100 km outside of NYC in rural, 

undisturbed habitat representative of natural environments for P. leucopus. High Point State 

Park is in the Kittatinny Mountains in New Jersey (HIP), Clarence Fahnestock State Park is 

located in the Hudson Highlands in New York (CFP), and Brookhaven and Wildwood State 

Parks occur on the northeastern end of Long Island, New York (BHWWP). Total RNA was 

extracted separately from livers stored in RNA later for each of the 48 mice, treated with 

DNase, enriched through ribosomal RNA depletion, fragmented, reverse transcribed, 

amplified and tagged with a unique barcode, and sequenced in four lanes of one SOLiD 

5500XL run (Harris et al. 2015). We called SNPs with the Genome Analysis Toolkit (GATK 

version 2.8) pipeline using a Bayesian genotype likelihood model (DePristo et al. 2011). In 

order to call a SNP, we required it to occur in at least five individuals, have a nucleotide 

quality (q-score) ≥ 30, exhibit no strand bias (FS ≥ 35), and to come from only uniquely 

mapped reads. We also required SNPs to have an overall depth ≥ 10X and ≤ 350X (to 

account for paralogous sequences), a minor allele frequency (MAF) ≥ 0.025, and removed 

SNPs where every individual was heterozygous.

Summary statistics

SNP information was stored in a VCF (variant call format) file and summary statistics were 

calculated using vcftools 0.1.12b (Danecek et al. 2011). We calculated per-site nucleotide 

diversity (π), Tajima’s D, and FST. We also calculated the statistics for each contig (per-site 

statistic summed across all SNPs per contig divided by total sites) and calculated the average 

estimate for each population, including all pairwise population comparisons for FST.

Scans for positive selection based on population differentiation

We used the FST based analysis implemented in BayeScan v. 2.1 (Foll & Gaggiotti 2008) to 

compare all six population-specific allele frequencies with global averages and identify 

outlier SNPs. BayeScan identifies loci that exhibit divergence between groups that is 

stronger than would be expected under neutral genetic processes. Based on a set of neutral 

allele frequencies under a Dirichlet distribution, BayeScan uses a Bayesian model to 

estimate the probability that a given locus has been subject to selection. To generate more 

realistic allele frequency distributions, we used BayeScan for independent coalescent 

simulations of SNP datasets based on a neutral demographic history inferred by Harris et al. 
(2016) specifically for each P. leucopus population. Using the coalescent-based fastsimcoal2 

software (Excoffier et al. 2013), we generated 100 sets of 100,000 SNPs each for every 

population in this study from a three population isolation-with-migration model using 

parameter estimates for divergence time, effective population size, migration rate, and 

population size change previously inferred in Harris et al. (2016). In short, the model 

represented a deep split between an ancestral population into Long Island, NY and the 

mainland (including Manhattan) 29,440 generations before present (GBP). A third 
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population (representing the sampling sites in this study) later became isolated 746 GBP. 

Urban populations were also modeled to include a population size change event at the time 

of divergence. BayeScan was run independently on each of the 100 simulated datasets from 

fastsimcoal2 using default parameters to generate a null distribution of BayeScan statistics.

BayeScan was then run on the observed SNP dataset using default parameters. We 

performed several different analyses including a global analysis, one with two populations 

representing urban and rural groups, and finally analyses on all sampling site pairwise 

comparisons. We retained outlier SNPs with a q-value ≤ 0.1 (leading to a FDR of ≤ 0.1) and 

with a posterior odds probability from BayeScan higher than for any value calculated from 

the simulated dataset. BayeScan also calculates alpha (α), a locus specific Fst coefficient, 

where a positive value suggests diversifying selection and a negative value suggests 

balancing or purifying selection. There were no SNPs with negative α values.

For comparison to BayeScan results, we used a related method, BayPass (Gautier 2015), that 

identifies loci subject to selection based on allele frequency patterns that deviate from 

neutral expectations. We ran BayPass using default parameters under the auxillary covariate 

(AUX) model, and simulated pseudo-observed datasets (PODs) under the Inference Model 

in Baypass as suggested by Gautier (2015) to calibrate neutral distributions for XtX. 

BayPass uses the XtX statistic to identify adaptive divergence. SNPs with XtX estimates 

greater than the 95% threshold determined from PODs were identified as resulting from 

adaptive divergence.

Analysis for selective sweeps

We also identified outlier regions when the observed SFS showed an excess of low 

frequency and high frequency minor alleles, a signal indicative of a recent selective sweep. 

The composite likelihood ratio (CLR) statistic is used to identify regions where the observed 

SFS matches the expected SFS generated from a selective sweep (Kim & Stephan 2002; 

Nielsen et al. 2005; Pavlidis et al. 2010). We calculated the CLR along sliding windows 

across the transcriptome using the software program SweeD (Pavlidis et al. 2013). SweeD is 

an extension of Sweepfinder (Nielsen et al. 2005) that is optimized for large next generation 

sequencing (NGS) datasets. We lacked a genome to provide high-quality linkage 

information so SweeD was run separately for each population and on individual contigs. We 

used default parameters except for using a sliding window size of 200 bp and use of a folded 

SFS, as we lacked an outgroup to infer ancestral alleles. The window within each contig 

with the highest CLR score is considered the likely location of a selective sweep. Similar to 

the method used for BayeScan, statistical significance was established from a null 

distribution generated by running SweeD on SNP datasets simulated under the inferred 

demographic history for P. leucopus populations (Harris et al. 2016). SweeD does not 

inherently identify outlier regions. The CLR is computed using a selective sweep model on 

the observed data and then compared to a neutral model calibrated with a simulated 

background SFS. As before, we used 100 datasets with 100,000 SNPs each, simulated under 

the inferred neutral demographic history for white-footed mice in NYC. The CLR was 

calculated using SweeD for all simulated datasets. We identified outlier contigs if their CLR 
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value was greater than any produced in neutral simulations. We also required outliers to fall 

within the top 0.01% of the CLR distribution for the observed SNPs.

Genotype-environment association tests for environmental selection

We used the GEA approach of LFMM: Latent Factor Mixed Models (Frichot et al. 2013) to 

associate our full SNP dataset with potential environmental selection pressures. LFMM 

examines associations between environmental and genetic variation while accounting for the 

neutral genetic background and structure between populations (Frichot et al. 2013). We 

tested three environmental variables associated with urbanization: 1) percent impervious 

surface (i.e. surfaces such as roads, rooftops, and other human infrastructure that do not 

absorb water calculated from USGS National Land Cover Data) within a 2 km (the 

approximate lifetime dispersal distance of white-footed mice) buffer around each sampling 

site’s GPS coordinate, 2) human density within a two-kilometer buffer around each sampling 

site’s GPS coordinate (calculated from US Census blocks), and 3) categorization of each site 

as urban, within NYC limits, or rural, undeveloped state park outside city limits (Coded as 0 

or 1 in LFMM). Calculations were made in ArcGIS v10.1 (ESRI, Redlands, CA, USA) and 

were previously reported in Munshi-South et al. (2016). This previous analysis found that 

variables 1–2 were significantly associated with genome-wide variation in P. leucopus 
populations in the NYC metropolitan area. LFMM requires the user to define the number of 

latent factors, K, that describe population structure in the dataset. To identify the appropriate 

number of K latent factors, we performed a genetic PCA followed by a Tracy-Widom test to 

find the number of eigenvalues with P values ≤ 0.01 (Patterson et al. 2006; Frichot & 

François 2015). Based on this approach, we ran LFMM with default parameters except for K 

= 6, number of MCMC cycles = 100,000, and burn-in = 50,000. Using author 

recommendations, we calculated the median |z|- score from 10 replicate runs and then 

readjusted the p values. LFMM uses |z|- scores to report the probability of a SNP’s 

association with an environmental variable. Again, we controlled for FDR by using a q-

value threshold of ≤ 0.1.

BayPass also includes an environmental analysis, so for comparison to LFMM we used the 

GEA test implemented in the BayPass AUX model that identifies genetic markers associated 

with population-specific covariates (Gautier 2015). For population covariates, we used the 

same environmental variables used in LFMM: site classification (i.e. urban or rural) as a 

binary covariate, human density, and impervious surface. We used the AUX model and again 

simulated pseudo-observed datasets (PODs) under the Inference Model to calibrate neutral 

distributions for Bayes Factors (BFs). BayPass uses BFs to associate SNPs with population 

specific covariates. SNPs with BF estimates greater than the 95% threshold determined from 

PODs were considered to be associated with population covariates. We further filtered 

associations by setting a cutoff for BF ≥ 20.

Functional annotation of candidate genes

We used the gene annotation pipeline in Blast2GO (Conesa et al. 2005; Götz et al. 2008) to 

identify sequences from the NCBI non-redundant protein database that were homologous to 

our outlier contigs identified above. We then retrieved associated gene ontology (GO) terms. 

Blast2GO retrieves GO terms associated with BLASTX hits and uses the KEGG database to 
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describe biochemical pathways linking different enzymes (Ogata et al. 1999; Kanehisa et al. 
2014). For downstream enrichment analyses, we also used the Ensembl gene annotation 

system (Aken et al. 2016) to find homologous Mus musculus genes for each P. leucopus 
contig. We further interpreted the outlier gene lists using g:Profiler (Reimand et al. 2016) to 

identify gene ontology terms enriched in our outlier gene list compared to the fully 

annotated Mus musculus genome. We used the g:Profiler webserver and identified enriched 

terms associated with outlier genes using default parameters and the Benjamini–Hochberg 

correction for multiple comparisons with an adjusted p-value < 0.05. Finally, we used 

REViGO to cluster GO terms and summarize them in a subset of terms based on semantic 

similarity measures (Supek et al. 2011).

RESULTS

Genetic diversity statistics

In total, we identified 154,770 SNPs for investigating patterns of genetic variation and 

performing tests of selection. Urban populations had a 50% decrease in nucleotide diversity 

compared to the rural populations, but mean Tajima’s D values for rural parks were 

consistently higher than for urban parks (Table 1). The average nucleotide diversity for all 

three rural populations was 0.224 ± 0.034 SE, while the average for urban populations was 

only 0.112 ± 0.019 SE. The average Tajima’s D within populations did not show substantial 

differences between populations (Table 1). For all populations, Tajima’s D was slightly 

positive. Average pairwise FST were the lowest between rural populations (0.018 ± 0.364 

SE, CFP – HIP Table S1) and highest between urban populations (0.110 ± 0.520 SE, CP – 

FM Table S1). These FST values were similar to FST estimated using genome-wide SNP 

datasets (Munshi-South et al. 2016).

Outlier detection and environmental associations

We used BayeScan to identify 39 outlier SNPs exhibiting patterns of divergent selection 

between urban and rural populations (Fig. 2A, Table S2). There were no SNPs that exhibited 

signatures of balancing selection. FST values for outlier SNPs ranged from 0.21 – 0.33. 

BayeScan identified zero outlier SNPs in the simulated neutral dataset, and accordingly the 

39 outlier SNPs from the observed data had q-values that were smaller than the most 

extreme values for the simulated data (q-value ≤ 0.6). We ran a similar test looking for 

patterns of divergence using BayPass. This analysis identified 56 SNPs that showed 

evidence of divergent selection (Table S2). We used PODs to estimate a null distribution and 

outlier SNPs had XtX values ≥ 8.35 (top 5% of the null distribution). There were 11 SNPs 

associated with diversifying selection in both the BayeScan and BayPass analyses.

To identify signatures of selective sweeps, we used the CLR statistic implemented in 

SweeD. We found that CLR scores in the top 5% of the simulated distribution were 

generally 2–3X lower than values in the top 5% of the observed dataset. We ran SweeD on 

observed SNPs within individual contigs and identified outliers by filtering for a CLR score 

≥ 3.53 (the maximum CLR from simulated data). We also chose regions that fell within the 

top 0.01% of the observed distribution (Fig. 2B); all outliers had CLR scores ≥ 4.97. SweeD 

identified regions with SFS patterns that fit a selective sweep model in 45 contigs within 
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urban populations (Table S2). There was no overlap between outlier SNPs identified by 

SweeD and BayeScan/BayPass.

There were 131 SNPs associated with at least one of three environmental variables tested 

using LFMM (Fig. 3A, Table S2). There was zero overlap with outliers identified from 

BayeScan and only one SNP that overlapped between SweeD and LFMM. Three SNPs 

identified in BayPass as outliers showing signatures of diversifying selection were also 

associated with environmental covariates in LFMM (Table S2). All three SNPs were within 

genes associated with human density around sampling sites and one was associated with all 

three environmental covariates. In an analysis similar to LFMM, we used BayPass to also 

associate environmental variables, called population covariates, with allele frequencies. 

There were 143 SNPs associated with at least one of the three environmental covariates 

tested using BayPass (Table S2). From these 143, five overlapped with those showing 

signatures of divergent selection in BayPass and eleven overlapped with outliers in 

BayeScan.

Across all tests, SNPs identified as outliers or associated with environmental variables were 

found in 381 contigs. We filtered this list down to a subset of 19 contigs (Table 2) that are 

the most likely candidates for directional selection due to urban selective pressures. We 

required these filtered candidate contigs to show a signature of diversifying selection 

between urban and rural populations (BayScan or BayPass) or a signature of a selective 

sweep (SweeD), and they had to be associated with an environmental variable (human 

density around parks, impervious surface) as identified in GEA tests (LFMM or BayPass).

Functional annotation

The full contig sequences containing outlier SNPs were obtained from the P. leucopus 
transcriptome (Harris et al. 2015) and used for functional annotation and analysis. We first 

tested the full set of 381 contigs identified by all outlier tests for overrepresented GO terms 

using g:Profiler. There were 260 overrepresented GO terms from the full outlier list (Table 

S3). We summarized this list using REViGO into 23 representative terms. The top 

representative term was lipid metabolism, followed by organic substance catabolism (Table 

S4). The list also includes lipid homeostasis and immune system processes.

We also looked for overrepresentation in the gene annotations associated with the filtered 

subset of 19 outliers and found related results (Table 3). There were 15 contigs homologous 

to known genes with functional annotation. Metabolic pathways were the most 

overrepresented group of gene ontology terms, and there were two biological functions 

associated with the most overrepresented GO terms from the full list. These included non-

alcoholic fatty liver disease and regulation of protein kinase b (AKT) signaling.

DISCUSSION

In this study, we investigated patterns of divergent positive selection between urban and rural 

populations of P. leucopus, and identified significant associations between outlier SNPs and 

environmental variables relevant to urbanization. The majority of candidate loci were 

annotated with GO terms that are significantly associated with dietary metabolism, 
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particularly breakdown of lipids and carbohydrates. We discuss what these findings mean for 

organisms inhabiting novel urban ecosystems, and more generally for understanding the 

ecological processes and time frame of local adaptation in changing environments.

Our previous study investigated non-synonymous polymorphisms in pooled transcriptome 

samples and we reported evidence for positive selection in genes dealing with metabolism, 

immunity, and methylation in NYC white-footed mice (Harris et al. 2013). This current 

study supports the phenotypic traits likely under selection in urban environments, identifying 

outlier genes that play major roles in metabolism, and to a lesser extent, immunity, but few 

outlier genes were identified in both the current and previous studies. The dataset analyzed 

here was much larger, included more sampling sites, and changed the inclusion criteria for 

outlier genes by using analyses that identify more recent signatures of selection, as opposed 

to longer-term evolutionary changes in non-synonymous substitutions. However, it is 

important to note that our study is still relatively small, including only six populations and 

eight individuals from each population. Increasing the number of individuals and sampling 

sites, especially including multiple cities as replicates, would likely greatly improve the 

associations found between environmental variables and allele frequencies (Lotterhos & 

Whitlock 2015). The latter approach may be unlikely, however, with each urban setting 

presenting a unique set of selective pressures leading to local adaptive responses, as shown 

with coat coloration in beach mice (Peromyscus polionotus) (Hoekstra et al. 2006) and 

climate related adaptation in the flowering plant (Arabidopsis halleri) (Rellstab et al. 2017). 

Despite potential issues with sample size, we did find two of the eleven previously identified 

candidate genes (Harris et al. 2013) to be direct matches to outliers in this current analysis 

(Serine protease inhibitor a3c and Solute carrier organic anion transporter 1A5), and two 

other genes were from the same gene families or involved in the same biological processes. 

One gene, an aldo-keto-reductase protein, is part of the same gene family as the aflatoxin 

reductase gene (Contig 10636-348) identified in this study. The aldo-keto reductase gene 

family comprises a large group of essential enzymes for metabolizing natural and foreign 

substances (Hyndman et al. 2003). The other is a cytochrome P450 (CYPA1A) gene 

involved in metabolism of drugs and lipids. Peromyscus directly express CYPA1A and 

Hsp90 (outlier from current SweeD analysis) when exposed to environmental toxins 

(Settachan 2001).

Population genomics summary statistics

Before performing outlier tests, we initially calculated per-site nucleotide diversity and 

Tajima’s D. The Tajima’s D statistic was calculated per contig for each population. We 

found nucleotide diversity to be lower in all urban population compared to rural populations, 

supporting previous work that found a negative association between genome-wide SNP 

diversity and urbanization. That study included the six populations studied here and an 

additional 18 populations distributed along an urban-to-rural gradient (Munshi-South et al. 
2016). While loss of genetic variation will reduce evolutionary potential and decrease the 

probability of local adaptation, selection may still act if adequate variation is present and 

genetic drift is not too strong (Donihue & Lambert 2015; Munshi-South et al. 2016). 

Tajima’s D is often used to identify signatures of selection, comparing observed to expected 

heterozygosity. For all our populations, Tajima’s D skewed positive, possibly explained by 
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balancing selection. While balancing selection has been found to maintain variation in 

immune loci in fragmented urban population of bobcats (Lynx rufus) (Serieys et al. 2015), it 

is difficult to distinguish whether demography or selection drives Tajima’s D values in many 

cases (MacManes & Eisen 2014). We have estimated the complex demographic history for 

P. leucopus populations in NYC (Harris et al. 2016), suggesting Tajima’s D may not be the 

best tool for identifying selection in this system. Outlier tests are more robust to demography 

and we explicitly accounted for the specific demographic history of P. leucopus in the null 

models used during analysis of our genome scan methods.

Signatures of selection in urban populations from genome-wide scans

Over the past decade, genome scans have become feasible methods to detect and disentangle 

neutral and adaptive evolutionary processes for non-model organisms (De Villemereuil et al. 
2014; Hoban et al. 2016). One method, BayeScan (Foll & Gaggiotti 2008), calculates the 

posterior probability that a site is under the influence of selection by testing models with and 

without selection. While BayeScan is relatively robust to confounding demographic 

processes (Pérez-Figueroa et al. 2010; De Villemereuil et al. 2014), population bottlenecks, 

hierarchical structure, recent migration, or variable times to most-recent-common-ancestor 

(MRCA) between populations can artificially inflate FST values (Hermisson 2009; Lotterhos 

& Whitlock 2014) and may still impact BayeScan (Savolainen et al. 2013; Lotterhos & 

Whitlock 2014). We minimized false positives by incorporating population structure and a 

specific demographic history for P. leucopus in NYC directly into the null distribution of FST 

(Harris et al. 2016). We only included outliers if their posterior probability was greater than 

probabilities calculated from these simulations. The outliers from BayeScan comprised 

0.024% of the total number of loci analyzed from our RNASeq dataset, and 0.036% of the 

total loci using BayPass. These percentages are in line with candidates uncovered from a 

similar study (0.05%) that looked at high and low altitude populations of the plant Senecio 
chrysanthemifolius (Chapman et al. 2013). Many studies find higher percentages of outlier 

loci using BayeScan; for example, 4.5% in the American pika across its range in British 

Columbia (Henry & Russello 2013), and 5.7% in Atlantic herring across their range 

(Limborg et al. 2012). Our lower overall percentage of outliers may be due to differences in 

species or datasets between studies (false positive rate, power, sampling, genome size and 

composition are all variables that influence numbers of SNPs), or alternatively because of 

relatively recent isolation or moderate to weak selection in urban populations.

SweeD, another genome scan approach, examines patterns within a population’s SFS rather 

than allelic differentiation between populations. The main footprint that selective sweeps 

leave on the SFS is an excess of low- and high-frequency variants (Nielsen 2005). The 

SweepFinder method (Nielsen et al. 2005), recently upgraded to the NGS compatible 

SweeD (Pavlidis et al. 2013), uses a CLR test based on the ratio between the likelihood of a 

neutral and selective sweep hypothesis. As above, the weakness of hitchhiking methods is 

the confounding influence certain demographic processes have on the SFS (Hermisson 

2009). However, building a robustly inferred demographic history into the null model 

substantially reduces false positive rates (Pavlidis et al. 2013). We included the P. leucopus 
demographic history into our analysis, and found 0.019% of the sequenced loci to contain 

SFS patterns indicative of selective sweeps. This rate is in line with other studies that 
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reported that 0.5% of regions in domesticated rice (Wang et al. 2014), 0.02% of loci in black 

cottonwood (Zhou et al. 2014), and 0.02% of the gorilla genome (McManus et al. 2014) 

show evidence of selective sweeps or hitchhiking.

Several studies have shown that identifying outliers with multiple tests and diverse 

theoretical approaches is the best way to reduce false positives in genome outlier analyses 

(Nielsen 2005; Grossman et al. 2010; Hohenlohe et al. 2010b). We required candidate genes 

to show a signature of diversifying selection or a signature of a selective sweep, and they had 

to be associated with an environmental variable. We found several outliers identified in both 

BayeScan and BayPass (Table S2), however, there was no overlap between BayeScan/

BayPass and SweeD outliers. This discrepancy is likely due to the different selection 

scenarios underlying each test, i.e. divergent local selection versus population-wide positive 

selection in the form of selective sweeps (Hermisson 2009). FST based methods respond to 

allelic divergence relatively quickly, while models for selective sweeps typically require 

nearly-fixed derived alleles (Hohenlohe et al. 2010b). Given the recent history of 

urbanization in NYC, many selective sweeps may be ongoing or otherwise incomplete. 

Selection may also be acting on standing genetic variation in the form of soft sweeps 

(Hermisson & Pennings 2005) that are not readily identified by SweeD.

Environmental associations strengthen evidence of local adaptation to urbanization

GEA tests are a growing class of methods that identify loci that are associated with 

environmental factors (Joost et al. 2007; Coop et al. 2010; Frichot et al. 2013), and by 

accounting for underlying correlation structure of allele frequencies, may often be more 

powerful than traditional outlier tests (Savolainen et al. 2013). GEA tests come from the 

field of landscape genomics which incorporates tools from landscape genetics and 

population genomics to examine the effects of demography, migration, and selection, and 

ultimately identify local adaptation (Sork et al. 2013; Rellstab et al. 2015). Here we used 

LFMM (Frichot et al. 2013) and the AUX covariate model from BayPass on the full SNP 

dataset with environmental metrics of urbanization. LFMM performs better than other 

methods in the presence of hierarchical structure and when polygenic selection is acting on 

many loci with small effect (De Villemereuil et al. 2014). Hierarchical structure in our 

dataset includes urban and rural differentiation (Harris et al. 2015; Harris et al. 2016), 

patterns of geographic structure between mainland mice and Long Island, NY (Harris et al. 
2016), and population structure between individual urban parks (Munshi-South & 

Kharchenko 2010). Simulations also suggest that LFMM is superior when sample size is 

less than 10 individuals per population, there is no pattern of IBD, and the study compares 

environmentally divergent habitats (Lotterhos & Whitlock 2015). We sampled eight white-

footed mice per population, found no evidence of IBD (Munshi-South et al. 2016), and 

sampled environmentally divergent rural and urban locations.

Using GEA tests implemented in BayPass and LFMM, we found that 17 (12 %) and 4 

(2.8 %) outliers, respectively, were significantly associated with one or more urbanization 

variables. These results are lower than other studies combining genome scans and GEA 

tests. Limborg et al. (2012) found 62.5% of the outliers identified in BayeScan were 

correlated with temperature or salinity in Atlantic herring, and 26.3% of genome scan 
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outliers were associated with temperature or latitude in a tree species (De Kort et al. 2014). 

The lower overlap found in our study is likely due to the difficult nature in quantifying 

urbanization. Percent impervious surface, human population density, or binary classification 

as urban versus rural may not capture the specific, causative selection pressures acting on 

white-footed mouse populations (See Table S5 for environmental data). We used these 

metrics as general proxies for changing ecological processes in urbanized habitats. The 

percent of impervious surface around a park is likely representative of habitat fragmentation, 

as urban infrastructure changes the net primary productivity due to increasing percentages of 

impervious surface or artificial landscapes, parks and yards (Shochat et al. 2006). This 

fragmentation then leads to changing species interactions as migration is impeded or 

organisms are forced into smaller areas (Shochat et al. 2006). The percent human density 

surrounding an urban park can serve as a proxy for the multitude of ecological changes 

humans impose on their surrounding environment. Urbanization and increasing human 

density change the types and availability of resources in the altered habitat (McKinney 2002; 

Sih et al. 2011). Finally, classifying our sites as urban or rural can generally capture the main 

differences in urban and natural sites. For example, pollution is a major consequence of 

urbanization (Donihue & Lambert 2015), and urban areas often include increased chemical, 

noise, or light pollution (Sih et al. 2011).

Between divergent allele frequencies, a skewed SFS, environmental associations, and 

overrepresented GO terms, we find several overlapping lines of evidence that support rapid 

divergent selection in white-footed mice. Our results support the growing body of evidence 

(Donihue & Lambert 2015) that finds urbanization directly impacts the ecology and 

evolution of species. However, to fully support the hypothesis that organisms adapt to urban 

habitats, it is still necessary to link genetic changes to measurable phenotypic differences 

and measure direct fitness benefits. Past urban evolutionary studies often focus solely on 

phenotypic (Yeh 2004; Partecke et al. 2006; Cheptou et al. 2008; Thompson et al. 2016) or 

genetic (Wandeler et al. 2003; Noël & Lapointe 2010; Mueller et al. 2013; Lourenco et al. 
2017) differences between populations in and outside of cities. However, researchers are 

beginning to examine both the genotype and phenotype in parallel instances of urban 

evolution (Whitehead et al. 2010; Wirgin et al. 2011; Hof et al. 2016), which is key to 

understanding how urbanization affects the evolution of species. In the future, the gene 

annotations for our predicted outlier genes can help determine which phenotypic traits to 

measure in urban P. leucopus populations.

Functional roles of candidate genes: quality of urban diet?

The model rodents Mus musculus, Rattus norvegicus, and Cricetulus griseus all have deeply 

sequenced, assembled and annotated reference genomes. These resources allowed us to 

annotate 89.5% of outlier loci with high quality functional information. Urban P. leucopus 
exhibited signatures of positive selection in genes with GO terms overrepresented for 

organismal metabolic processes, specifically digestion and metabolism of lipids and 

carbohydrates.

Mitochondrial genes identified as outliers (Table S2) were largely responsible for the 

overrepresentation of metabolic process. While we can only speculate until further 
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physiological studies are conducted, our evidence suggests that the evolution of 

mitochondrial and metabolic processes has been important to the success of P. leucopus 
living in NYC’s urban forests. Mitochondrial genes have often been used to describe neutral 

population variation, but researchers have found ample evidence of selection acting on the 

mitochondrial genome (Oliveira et al. 2008; Balloux 2010). For example, specific 

mitochondrial haplotypes are associated with more efficient thermogenesis and higher 

fitness in over-wintering shrews (Fontanillas et al. 2005). Pergams & Lacy (2007) found 

complete mitochondrial haplotype replacement in contemporary P. leucopus in Chicago 

compared to haplotypes sequenced from museum skins collected before urbanization. The 

agent of selection is not clear, but Munshi-South and Nagy (2014) also identified signatures 

of selection (or alternatively population expansion) in mitochondrial D-loop haplotypes from 

contemporary P. leucopus in NYC. Many mitochondrial functions are affected by the same 

environmental variables that change in response to urbanization, such as temperature 

(Balloux 2010), reduced migration (Lankau & Strauss 2011; Munshi-South 2012), or 

resource availability (Burcelin et al. 2002).

Urban P. leucopus may experience different energy budgets, physiological stressors or diets 

compared to rural counterparts. We found a substantial number of candidate genes with 

functions related to the metabolism and transport of lipids and carbohydrates, and the most 

common overrepresented GO terms involved lipid metabolism and homeostasis (Table S4). 

In the full outlier analysis, two genes are particularly interesting as targets of diet-mediated 

selection. The first gene, FADS1, is a fatty acid desaturase important for the biosynthesis of 

omega-3 and -6 fatty acids (long-chain polyunsaturated fatty acids, LCPUFA) from plant 

sources. Recent evidence suggests that the FADS gene family has been an important target 

of selection in humans during the transition from hunter-gather to agricultural societies (Ye 

et al. 2017). Alleles linked to upregulated biosynthesis of LCPUFAs (naturally low in plant 

based diets) increased in frequency after the Neolithic Revolution (Ye et al. 2017). We 

aligned our homologous FADS1 contig with human transcripts to identify whether P. 
leucopus had any relevant alleles, but our sequenced populations did not contain SNPs at 

any relevant loci. The full list of outliers also contained APOB-100, which is the primary 

apolipoprotein that binds and transports lipids, including both forms of cholesterol (HDL 

and LDL).

When we investigated only candidate genes that were identified by both an outlier test and 

GEA test, we found similar patterns suggesting P. leucopus in urban environments may be 

adapting to novel food resources. These genes were strongly correlated with environmental 

measures of urbanization, with clearly divergent allele frequencies between urban and rural 

sites (Fig. 3B), suggesting that selection is acting on standing genetic variation in urban 

environments. The most significant overrepresented GO term involved regulation of protein 

kinase B (AKT). AKT is a key molecule in the insulin signaling pathway, important for 

promoting glucose storage and regulating glucose in the bloodstream between fed and 

fasting states (Boucher et al. 2014). Glycine metabolism was also overrepresented; increased 

amounts of glycine may be important for regulating high-fat, high-sugar diets by decreasing 

concentrations of free fatty acids and triglycerides (Wang et al. 2013). Finally, our candidate 

list contained genes significantly associated with non-alcoholic fatty liver disease (NAFLD). 
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NAFLD is a major hallmark of obesity and diabetes and can be induced through increased 

uptake of dietary fatty acids (Fabbrini et al. 2010).

These candidate genes suggest that white-footed mice in isolated urban parks may be 

evolving in response to food resource differences between urban and rural habitats. This 

finding is corroborated by recent evidence that urban white-footed mice in NYC have 

shorter upper and lower tooth rows than rural mice (Yu et al. 2017). Lower quality food in 

the diet often requires increased chewing and is accompanied with larger occlusal surfaces, 

and subsequently, longer toothrows (Ungar 2010). One prediction is that urban P. leucopus 
consume a diet with a substantially higher fat content than diets of rural populations. The 

typical diet of P. leucopus across its range consists of arthropods, fruits, nuts, various green 

vegetation, and fungus (Wolff et al. 1985). Given that white-footed mice are opportunistic 

generalists, many different food resources could differ between urban and rural habitats. 

Urbanization in NYC has produced relatively small green patches that are surrounded by a 

dense urban matrix, and P. leucopus in NYC may successfully take advantage of invasive 

plant species, different arthropod communities, or increased human food waste in and 

around their urban habitats. Local adaptation in urban populations may allow these mice to 

more efficiently metabolize different types or amounts of lipids and carbohydrates, although 

field studies are needed to examine the link between these genetic changes and diet in NYC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2. 
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Figure 3. 
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Table 1

Summary population genomic statistics (mean ± standard error) for three urban and three rural populations of 

white-footed mice (Peromyscus leucopus) examined in this study.

Population Nucleotide diversity (π) Tajima’s D

Urban

CP 0.131 ±0.001 0.318 ±0.005

FM 0.112 ±0.001 0.301 ±0.006

NYBG 0.092 ±0.001 0.280 ±0.006

Rural

BHwwp 0.198 ±0.001 0.350 ±0.004

CFP 0.211 ±0.001 0.336 ±0.004

HIP 0.263 ±0.001 0.349 ±0.004
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Table 2

Outlier loci (N = 19) identified in at least one test for selection (BayeScan, BayPass, or SweeD) and one GEA 

test (LFMM or BayPass_GEA). SNP shows the position in contig containing the outlier loci. Tests show 

which tests identified the SNP as an outlier: BPG = BayPass_GEA; BPD = BayPass_Diversifying; BS = 

BayeScan; SW = SweeD; LFMM = LFMM.

Contig SNP Ensemble Gene ID Gene Tests

27887-125 142 ENSMUSG00000029440 proteasome 26S subunit, non-ATPase, 9 BPG, BS

3135-709 210 ENSMUSG00000002320 transmembrane 9 superfamily member 1 BPG, BS

37015-34 35 ENSMUSG00000037287 tubulin folding cofactor E-like BS, BPD

5754-511 168 ENSMUSG00000041161 OTU domain containing 3 BPG, BS

7280-442 336 ENSMUSG00000021287 X-ray repair complementing defective repair in CHC3 BPD, LFMM

2260-821 1387 ENSMUSG00000024045 A kinase (PRKA) anchor protein 8 BPG, BS

27691-127 162 NA NA BPG, BS

27707-127 567 ENSMUSG00000106907 autophagy related 2A BPG, BS, BPD

3567-665 756 ENSMUSG00000001700 GRAM domain containing 3 BPG, BS, BPD

10099-359 1465 ENSMUSG00000024066 xanthine dehydrogenase BPG, SW

12107-321 433 NA NA BPG, BS

124-2491 596 ENSMUSG00000064358 cytochrome c oxidase III BPG, SW

12685-311 481 ENSMUSG00000035637 glyoxylate reductase/hydroxypyruvate reductase BPG, BPD

17856-243 2695 ENSMUSG00000021091 serine peptidase inhibitor, clade A, member 3N LFMM, SW

22102-206 245, 1029 ENSMUSG00000045868 GTPase, very large interferon inducible 1 BPG, BPD, LFMM

34737-52 125, 257 NA NA BPG, BPD

35973-42 17 ENSMUSG00000001173 oculocerebrorenal syndrome of Lowe BPG, BS

38397-23 175 NA NA BPG, BS

8088-415 154 ENSMUSG00000002379 NADH dehydrogenase 1 alpha subcomplex 11 BPG, BPD, LFMM
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Table 3

Overrepresented gene ontology (GO) terms from g:Profiler (q-value < 0.05) for the 19 outlier loci from tests 

for both selection and GEA. Associated genes shows which ensemble gene homologs from Table 2 are 

associated with each overrepresented term.

Description Annotation ID P-value Associated Genes

Negative regulation of protein kinase B 
signaling

GO:0051898 0.05 ENSMUSG00000024066, ENSMUSG00000041161

Cytochrome c oxidase, mitochondrial CORUM:538 0.05 ENSMUSG00000064358

Ocrl-Cdc42 complex CORUM:975 0.00914 ENSMUSG00000001173

Glyoxylate and dicarboxylate metabolism KEGG:00630 0.0355 ENSMUSG00000035637

Homologous recombination KEGG:03440 0.0512 ENSMUSG00000021287

Pyruvate metabolism KEGG:00620 0.0464 ENSMUSG00000035637

Oxidative phosphorylation KEGG:00190 0.00791 ENSMUSG00000002379, ENSMUSG00000064358

Alzheimer’s disease KEGG:05010 0.0133 ENSMUSG00000002379, ENSMUSG00000064358

Huntington’s disease KEGG:05016 0.0158 ENSMUSG00000002379, ENSMUSG00000064358

Non-alcoholic fatty liver disease (NAFLD) KEGG:04932 0.0101 ENSMUSG00000002379, ENSMUSG00000064358

Glycine, serine and threonine metabolism KEGG:00260 0.05 ENSMUSG00000035637

Metabolic pathways KEGG:01100 0.0029 ENSMUSG00000001173, ENSMUSG00000002379, 
ENSMUSG00000024066, ENSMUSG00000035637, 
ENSMUSG00000064358

Parkinson’s disease KEGG:05012 0.00899 ENSMUSG00000002379, ENSMUSG00000064358

Autophagy - other KEGG:04136 0.0404 ENSMUSG00000106907

Caffeine metabolism KEGG:00232 0.00742 ENSMUSG00000024066
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