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To the Editors

We take this opportunity to clarify the meaning of the statistics reported in our study
examining reliability of fMRI measures of brain activation during a working memory task
(Forsyth et al., 2014) and to consider their implications for statistical power in single-site
versus multisite designs.

In our report, we used a variance components framework and an application of
generalizability theory (Shavelson and Webb, 1991) to probe the robustness of such
measures in a multisite context. In our study, eight human subjects were scanned twice on
successive days at each of eight sites. Given this design, the proportion of variance due to
person from the variance components analysis (shown in Figure 5 in Forsyth et al., 2014)
represents the reliability one can expect in a typical multisite study where each subject is
scanned only once on the scanner available at the site in which they were recruited. We wish
to make explicit that in applying generalizability theory, we estimated reliability by
calculating generalizability and dependability coefficients (Shavelson and Webb, 1991) for a
study design corresponding to the design of the full traveling subject study. Given this, these
estimates reflect the reliability in relative and absolute measurement, respectively, that one
can expect when every subject is scanned twice on each of eight different scanners. The
corresponding generalizability and dependability coefficients (shown in Table 5 in Forsyth et
al., 2014) were generally quite large, as would be expected when each subject’s
measurement is based on the aggregation of sixteen scan sessions. Thus, the coefficients
reported apply to the reliability of the measures from the reliability study itself, that is, for
task-induced brain activations resulting from analysis of the eight traveling subjects’ fMRI
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data considered in aggregate across their sixteen scan sessions. Clearly, however, such a
design is highly unlikely outside of a reliability study context, and so the reported
generalizability and dependability coefficients are of limited applicability, a point that
should have been made explicitly in the original paper. As shown in the table below, when
using generalizability theory to model the reliability one can expect when a given subject is
assessed on one occasion on a scanner drawn randomly from the set of all available
scanners, the generalizability and dependability coefficients are more modest and, in the
case of the dependability coefficients, identical to the percentages of variance attributable to
person from the variance components analyses (as reported in Figure 5 of Forsyth et al.,
2014). Indeed, under these assumptions, these two reliability formulations are
mathematically equivalent.

Shown explicitly, if af,., o2 and o2 correspond to the variance component estimates for the

- - - . 2 2 ‘
main effects of person, site, and day, respectively; o, 0,4, and o2, correspond to the
variance component estimates for the two-way interactions between person and site, person

and day, and site and day, respectively; and Ufmd,e corresponds to the variance component
estimate for the residual due to the person x site x day interaction and random error, when

the number of sites described by n’s and the number of days described by ":1 in the D-
coefficient equation are both set to one, as in the actual NAPLS study where subjects are
scanned at one site on one day, (rather than eight and two, respectively, as in the traveling
subject study design), the D-coefficients become equivalent to the proportion of variance due
to subject divided by the proportion of variance due to all sources of measurement and error.

Equation 6.17, with expansion of one term as in Equation 6.4, from (Shavelson and Webb,
1991):
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Indeed, by varying the values for number of sites ( n;) and number of scanning occasions or

days (n’d), one can use the variance components calculated in the travelling subjects study to
estimate how the reliability of the fMRI measurements would change if each subject were

scanned on a given number of scanners (n;) and/or across a given number of occasions or

days ( n;l). In computing the coefficients reported in the table, the error terms are divided by
one, to model the situation in which each subject is scanned once on a single scanner drawn
randomly from the pool of available scanners.

The practical implication of less than perfect reliability of measurement is attenuation of
effect size and reduction of statistical power (Cohen, 1988). Multisite neuroimaging studies
are an increasingly popular option for studying rare conditions, as they provide an efficient
means to obtain sample sizes large enough to detect group differences. However, when
utilizing multisite studies for this purpose, a key question is how much statistical power is
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sacrificed by the introduction of variance due to site-related factors when moving from a
single site to a multisite study design, and what sample sizes are necessary to offset the
reduction in power due to attenuation of measurement reliability. One way to answer this
question is to compare the reliability of the person effect given a multisite design in which
individuals are scanned once at a given scanner and data are pooled across sites, to the
reliability of the person effect at individual sites, averaged across the sites that would be
involved in the multisite design. Utilizing the reliability estimates for the single site versus
multisite design, one can then estimate the sample sizes needed to achieve sufficient
statistical power by correcting the effect size for measurement reliability (i.e., ES” = ES x
Vr, where ES” is the corrected effect size, ES is the effect size under the assumption of
perfect measurement, and r is the estimated reliability of measurement; (Cohen, 1988)). As
shown in the table below, for some ROIs, such as left dorsolateral prefrontal cortex
(DLPFC), the average within-site intraclass correlation coefficients (i.e., representing single
site reliability estimates for each of the eight NAPLS sites, averaged across sites) are larger
than the corresponding multisite generalizability coefficients, but for other ROIs, such as left
and right superior parietal cortex (SP), the difference in single versus multisite reliability is
negligible. As shown in the figure, when accounting for differential reliability in left
DPLFC, although higher levels of power are achieved with smaller sample sizes in the
single-site compared with multisite context, multisite studies achieve acceptable levels of
power (=0.8) with moderate to large effect sizes (ES =0.5) beginning at sample sizes of
approximately 125 subjects. These results accord well with the results reported in our
original study analyzing single-session scans from 154 healthy subjects, each drawn from
one of the eight scanning sites, which observed robust activation in key working memory
nodes (e.g., DLPFC, SP, and anterior cingulate, supplementary motor, and inferior temporal
cortices) whether using image-based-meta-analysis or mixed effects modeling with site as a
covariate (Forsyth et al., 2014).

Whether the reliability coefficients for working memory-related activation reported here will
generalize to other task designs or samples with demographic features different from those
of the participants in this study is not known. It is also important to note that the 95%
confidence intervals (Zhou et al., 2011) for these coefficients are quite wide, which is to be
expected given the small sample size (N=8). Given this wide interval, the power estimates
shown in the figure could be under or overestimated considerably; see (Doros and Lew,
2010) for an approach to power calculation that accounts for the confidence interval around
the reliability estimate. Nevertheless, it is encouraging that although the observed estimates
are consistent with modest reliability, the differences in the estimates for multisite versus
single-site studies (and the corresponding trade-off in terms of power) are also modest,
indicating that the multisite format is a relatively efficient means to increase the number of
subjects included in fMRI studies.
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Figure.
Statistical power as a function of sample size across multiple effect sizes (Cohen’s d for one

group all correct trials versus rest contrast) for left dorsolateral prefrontal cortex (A) and left
superior parietal cortex (B). The red lines represent power for multisite studies while the
blue lines represent power for single-site studies, with nominal effect sizes adjusted
downward for observed reliabilities in the multisite and single-site contexts, respectively. For
DLPFC, although higher levels of power are achieved with smaller sample sizes in the
single-site compared with multisite context, multisite studies achieve acceptable levels of
power (= 0.8) with moderate to large effect sizes (ES = 0.5) beginning at sample sizes of
approximately 125 subjects. For PC, where there is no difference between multisite versus
single site reliability (and therefore the red and blue lines overlap), power is adequate to
detect moderate to large effect sizes (ES = 0.5) beginning at sample sizes of approximately
50 subjects in either the single or multi-side study context.
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