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Abstract

Determining the discrepancy between chronological and physiological age of patients is central to 

preventative and personalized care. Electronic medical records (EMR) provide rich information 

about the patient physiological state, but it is unclear whether such information can be predictive 

of chronological age. Here we present a deep learning model the uses vital signs and lab tests 

contained within the EMR of Mount Sinai Health System (MSHS) to predict chronological age. 

The model is trained on 377,686 EMR from patients of ages 18–85 years old. The discrepancy 

between the predicted and recorded chronological age is then used as a proxy to estimate 

physiological age. Overall, the model can predict the chronological age of patients with a standard 

deviation error of ~7 years. The ages of the youngest and oldest patients were more accurately 

predicted, while patients of ages ranging between 40 and 60 years were the least accurately 

predicted. Patients with the largest discrepancy between their physiological and chronological age 

were further inspected. The patients predicted to be significantly older than their chronological age 

have higher systolic blood pressure, higher cholesterol, damaged liver, and anemia. In contrast, 

patients predicted to be younger than their chronological age have lower blood pressure and 

shorter stature among other indicators; both groups display lower weight than the population 
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average. Using information from ~10,000 patients from the entire cohort who have been also 

profiled with SNP arrays, genome-wide association study (GWAS) uncover several novel genetic 

variants associated with aging. In particular, significant variants were mapped to genes known to 

be associated with inflammation, hypertension, lipid metabolism, height, and increased lifespan in 

mice. Several genes with missense mutations were identified as novel candidate aging genes. In 

conclusion, we demonstrate how EMR data can be used to assess overall health via a scale that is 

based on deviation from the patient’s predicted chronological age.

Graphical Abstract

1. Introduction

While there is strong correlation between physiological age and chronological age, it is well 

established that these can be different in individuals [1]. Physiological age is a useful metric 

because it reflects the general health status of a patient; however, estimating physiological 

age is not trivial [2]. Multiple efforts have been made to estimate physiological age by 

combining physiological indicators such as physical activity level, mental health, nutrition, 

and medications [1–8]. The aging process is characterized by a variety of physiological and 

molecular changes at the cell and tissue levels [9]. At the tissue level, anemia, osteoporosis, 

and decrease in muscle fiber are induced due to the exhaustion of the somatic stem cell pool. 

At the cellular level, among other mechanisms, aging induces the loss of proteostasis, 

mitochondrial dysfunction, and altered intercellular communication that induces 

inflammation. Genetic variations and changes in gene expression have been studied in the 

context of aging. Genome-wide association studies (GWAS) and gene knockout studies have 

uncovered genetic variants and genes that are associated with extended lifespan in humans 

and model organisms, such as yeast, fly, worm, and mice. Several manually curated 

resources list genes associated with aging; for example, GenAge [10] and LongevityMap 

[11]. In addition, gene expression analysis of human tissues across individuals of different 

age, generated by the GTEx project [12], was utilized for identifying age-associated genes in 
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different tissues [13]. Another study examined the correlation between the transcription level 

of genes, and chronological age, to determine a “transcriptomic age” [14]. Similarly, it was 

demonstrated that DNA methylation is highly predictive of chronological age [15].

At the same time, data from electronic medical record (EMR), including disease diagnoses 

and biomedical trait values, can be used for characterizing the human phenotype. However, 

associating human phenotypes from EMR data is challenging because of data 

incompleteness and data inaccuracy [16]. To overcome some of these challenges, the 

Electronic MEdical Records and GEnomics (eMERGE) network [17] has developed and 

validated many EMR-phenotyping algorithms stored in the Phenotype Knowledgebase 

(PheKB) [18]. Many of these algorithms are rule-based. These algorithms operate on diverse 

types of EMR data, including diagnoses, procedures, medications, vital signs, laboratory 

tests, as well as clinical notes processed by natural language processing (NLP) algorithms 

[19]. Recently, a growing number of statistical methods, employing supervised and 

unsupervised machine learning approaches, have been proposed for various EMR-

phenotyping tasks such as identifying cohorts with certain diseases and predicting patient 

survival [20]. Computationally, traditional linear statistical models do not scale well to very 

large datasets with missing values such as EMR data which contain millions of data points. 

With advent algorithms that employ deep learning, through nonlinear transformations, it is 

now possible to better handle data incompleteness, inaccuracy, and scalability to learn from 

millions of EMR. For instance, DeepPatient uses denoising Autoencoder (dAE) to perform 

unsupervised feature extraction from EMR [21]. Most relevant to the work presented here is 

a study that implemented a Least Angle Regression (LARS) model to predict the age of 

adolescents using 39 biomarkers from a blood test [5]. The model identified alkaline 

phosphatase and creatinine levels as the most predictive biomarkers for both male and 

female age; hematocrit and mean-cell-volume levels were found to be the most predictive 

markers for males, whereas total serum globulin was the most predictive marker for females.

Here we present a predictive model of chronological age utilizing deep learning applied to 

the Mount Sinai Health System (MSHS) EMR data. Physiological measurements, including 

vital signs and lab tests from the EMR, were used as features to train the model. The 

predictive model performs well to predict the age of most patients, but for some patients the 

predictor makes a significantly large error. These outliers define two unique cohorts: those 

patients that display significant discrepancy between their predicted age and their 

chronological age, either predicted to be much younger than their chronological age, or 

much older. By investigating the unique features of these two cohorts, we confirmed known, 

and discovered novel, clinical characteristics and medicines associated with aging. 

Furthermore, we performed GWAS analysis on these cohorts comparing them to the rest of 

the population to identify genetic variants that correlate with both accelerated and delayed 

aging phenotypes.

2. Data and Methods

2.1. EMR data preprocessing

The MSHS-EMR data used for this project contain over 4 million de-identified patient 

records spanning from 1980 to March 2015, covering 85 unique vital signs and 2,968 unique 
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lab test variables. Age in years was calculated for all patients based on year of birth. Rare 

vital signs and lab test variables that appeared in less than 5 EMR were removed, resulting in 

30 vital signs and 1,891 lab tests for subsequent analyses. We only included patients with at 

least 10 visits and excluded patients with no vital signs or lab tests, resulting in 456,748 

patients. Further filtering retaining only adults, ages 18 to 100 years, resulted in a final set of 

385,918 individual patients. The median was used to aggregate vital signs and lab tests from 

multiple visits. Chronological age at the time of the latest clinical visit was used for age 

prediction for each patient. Missing data across all feature set variables were first filled with 

the population average, and then z-score transformed.

2.2. Predictive model for aging

We implemented an artificial neural network (ANN) regression model that implements a 

feed-forward neural network architecture consisting of three hidden layers, each containing 

1,000 sigmoid activation units. There was a 40% dropout probability between each layer. 

During training of the ANN, weights were initialized using the method developed by Glorot 

and Bengio [22]. The model was trained for 20 epochs with mini-batch size of 128 using 

Adam as an optimizer [23]. Training samples were shuffled before each epoch. 10-fold 

cross-validation (CV) was applied to train and evaluate the performance of the model. Mean 

absolute error (MAE) of the discrepancy between the predicted age and the real age in years 

was used to evaluate performance. We implemented the ANN model using Keras [24] with 

Theano [25].

2.3. Identifying cohorts with significant discrepancy between predicted and chronological 
age

To identify patients with significantly older or younger predicted age compared with their 

chronological age, we first filtered out patients older than 85, leading to 377,686 patients 

with ages between 18 and 85. Then, Z-test was performed to quantify the error between the 

predicted age and chronological age, with the null hypothesis that the error is 0. Patients that 

are significantly older (group O) or younger (group Y) than their chorological age are called 

if the error is significantly smaller or larger than 0 with a p-value < 0.05.

2.4. EMR-wide association analyses

To perform the EMR-wide association analyses, rare features from the patients’ diagnoses, 

including procedures), medicines, lab tests, and vital signs characterizing fewer than 500 

patients were excluded. Patients were associated with diagnoses or medicines from their 

EMR regardless of the time of encounter. To standardize nomenclature, we used the 

International Classification of Disease (ICD)-9 code as the diagnostic and procedure 

representation, and generic names for medicines. The Fisher exact test was performed for 

evaluating each discrete feature, including diagnosis, procedure and medicine, to test 

whether those are enriched within the younger/older groups versus the entire patient 

population. For continuous variables, such as those from lab tests and vital signs, the 

Wilcoxon rank sum test was applied. Multiple hypothesis testing correction was performed 

with the Benjamini-Hochberg procedure [26].
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2.5. Genome-wide association study (GWAS)

The Charles Bronfman Institute of Personalized Medicine Mount Sinai BioMe biobank is 

comprised of over 32,000 patients who also have records in the MSHS-EMR. For this study, 

we included a subset of 9,897 individuals. These patients have been genotyped using the 

Illumina Human Omni Express Exome Bead-8 BeadChip v1.1, which has 866,864 markers 

per sample. The analysis included first performing phasing of the genotype data using 

SHAPEIT2 (r644) [27] and imputing using IMPUTE2 v2.3 [28] with chunk size of 5Mb. 

For the imputation reference panel, the 1000 Genomes Project Phase 3 data was used. Next, 

quality control (QC) steps were applied to filter the genetic data for the subsequent analyses. 

Variants that had low imputation scores were removed, specifically any sites with INFO 

scores <0.3 from IMPUTE2. Then filtered variants that were rare, specifically minor allele 

frequency (MAF) <0.01, were removed. To determine the effect of genotype on the aging 

phenotype of interest, an additive, linear mixed model GWAS was performed with genotype 

set as either 0, 1, or 2 referring to the number of variant alleles using the Efficient Mixed-

Model Association eXpedited software (EMMAX; beta version, March 7,2010) [29]. Due to 

high levels of cryptic relatedness within the population, a kinship matrix was incorporated 

into the mixed model. Specifically, the procedures outlined by Kang et al. [29] were 

followed to calculate an n x n matrix of pairwise genetic relatedness. The entries in the 

matrix were corrected for age and sex. Due to the high racial diversity of the cohort, 

principal component analysis (PCA) was utilized for dimensionality reduction of the genetic 

data to obtain a metric for genetic ancestry to include as covariates in the model. Several QC 

steps were performed on the genotype data before generating principal components (PC): 

rare variants (MAF <0.01), thinned linkage disequilibrium (r2 of 0.3), as well as human 

leukocyte antigen and lactase genetic regions were filtered out. The data was further cleaned 

for site and individual level missingness (threshold of 95%). PCA was performed with these 

cleaned data by using the EIGENSOFT smartpca tool [30, 31], training the space on the 

individuals with European ancestry from Utah (CEU); Yoruba in Ibidan, Nigeria (YRI); and 

Han Chinese in Beijing, China (CHB), which were used as European, African, and East 

Asian ancestry reference panels from the 1000 Genomes Project, respectively.

2.6. Enrichment analyses of SNPs

SNPs with suggestive significant associations (p-value < 5e−6) were annotated to genes 

using the R package VariantAnnotation [32], with intergenic SNPs excluded. The direction 

of effect for the SNPs that were enriched in either population was determined by the sign of 

the BETA values. Enrichment analysis was performed with Enrichr [33, 34]. MetaXcan [35] 

was also used to analyze the GWAS results using the transcriptome prediction models 

generated from the GTEx resource [12].

3. Results

3.1. Descriptive statistics of physiological variables and their relation to chronological age

The MSHS patient cohort analyzed for this study contains ~60% women and ~40% men, 

with 41% Caucasians, 16.9% African Americans, 5.4% Hispanics, 3.9% Asians, and 19.5% 

unclassified (Table 1, first column). We first performed correlation analysis to identify vital 

signs and lab tests that are correlated with chronological age across the entire cohort. Such 
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correlation analysis was applied to the entire cohort as well as to gender-specific groups. 

Among all the vital signs, pulse pressure, which is the difference between systolic blood 

pressure and diastolic blood pressure, and systolic blood pressure, show the strongest 

positive correlation with chronological age for both genders (Fig 1A). Interestingly, we also 

observed positive correlation between diastolic blood pressure in males but not in females 

(Fig 1A). In order to more accurately interpret those correlations, we plotted the trends of 

blood pressure over chronological age across the entire cohort using the locally weighted 

scatterplot smoothing (LOWESS) algorithm [36]. We find that both pulse pressure and 

systolic blood pressure almost monotonically increase with age in both genders, whereas 

diastolic blood pressure appears to increase with age, similarly to systolic blood pressure, 

but begins to decrease around age 50 (Fig 1B–D). Blood pressure generally increases with 

age due to increased arterial wall stiffening. However, the decrease in diastolic blood 

pressure around age 50 may be explained by the effect of blood pressure medications. It is 

well known that systolic blood pressure is less affected by antihypertensive medications. The 

correlation analysis also identifies lab tests that are highly positively correlated with age, 

these include urea nitrogen, glucose, hemoglobin A1C, PROTIME/INR; whereas lab tests 

that are most negatively correlated with age are glomerular filtration rate (GFR) estimate, 

albumin, total protein, red blood cell count and hematocrit (Fig. 2A). Urea nitrogen and GFR 

estimate are both measures of renal function (Fig. 2B–C). Glucose and hemoglobin A1C 

(Fig. 2D–E) are both markers of glucose intolerance and diabetes mellitus, and their positive 

correlation with age suggests gradual increase in glucose intolerance and higher risk to 

develop diabetes with age. PROTIME/INR are tests measuring blood clotting ability; their 

increase with age (Fig. 2F) is likely due to the use of anticoagulation medications to treat 

diseases such as stroke and atrial fibrillation. Hematocrit and red blood cell count both 

reflect the level of red blood cells in the blood; their decrease with age (Fig 2G) is likely due 

decrease in oxygen demand in males as they age. Interestingly, in females, hematocrit is 

much lower, and it decreases until around age 40, most probably because of blood dilution 

during pregnancy. Albumin, the main protein component of the blood, and total protein 

decrease in levels with age (Fig 2H–I) is likely due to a decrease in nutritional status in older 

patients.

To obtain a global view of the correlations between physiological measurements and 

chronological age, we performed unsupervised hierarchical clustering on the LOWESS 

smoothened trends of the most common physiological measurements across all patients. 

This clustering method uncovers different modes of trends that cluster different 

physiological measurements with similar trends (Fig 3). Specifically, we observe a cluster of 

nutritional status markers, which includes: total protein, albumin, calcium, total iron binding 

capacity (TIBC), and platelets. These nutritional markers generally decrease with age. 

Another cluster of variables has a bell shape curve that generally increase with age before 

50–60, and then decrease with age after that inflection point. This cluster contains variables 

are related to body mass index (BMI), including weight, height, diastolic blood pressure, 

cholesterol, low density/high density lipoprotein (LDL/HDL) ratio, triglycerides, and 

glutamyl transferanse (gamma GT). Higher values for these measurements are known to 

increase risk for cardiovascular disease. We speculate that their decrease after 50–60 could 

be the result of decreased BMI, which is due to survival bias which stems from premature 
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mortality of obese patients [37]. There is also a cluster of variables that monotonically 

increase with age. These include: mean corpuscular volume, PROTIME/INR, urea nitrogen, 

creatinine, pulse pressure, ferritin, glucose, hemoglobin A1C, and systolic blood pressure. 

Variables in this cluster represent diverse mechanisms such as decreased renal function, 

attributed to urea nitrogen, and creatinine; increased glucose intolerance, attributed to 

increase in glucose and hemoglobin A1C levels; and increased inflammation, which is 

reflected in an increase in ferritin. We also examined the trends of all physiological variables 

across gender. While most variables highly correlate between males and females, there are a 

few notable exceptions (Fig S1). These differences could be attributed to pregnancy, for 

example, monocytes, neutrophils, and white blood cell; or signs of menopause, for example, 

calcium and vitamin D. Females are usually treated with calcium and vitamin D during 

menopause to prevent osteoporosis.

3.2. Leveraging physiological measurements to predict chronological age

Next, to leverage on the observation that physiological variables trend predictively with age, 

we performed regression analysis to evaluate how the combination of those measured 

variables can be applied to predict chronological age. To achieve this, we first compared the 

performance of different regression models including: Random Forest (RF), Elastic Nets, 

and deep artificial neural networks (ANN). We found that ANN yield the best performance 

with increase of sample size compared to RF and Elastic Nets (Fig S2A). The training time 

for ANN is also much shorter than RF (Fig S2B).

We therefore used the ANN deep learning regression model for the prediction task. Training 

the regressor was achieved using 90% of the records, while 10% was used for cross 

validation. The results show that a combination of the vital signs and lab tests is more 

predictive of chronological age than using each data type alone (Fig. S3). The final regressor 

was trained through 50 epochs and achieved a mean absolute error of 7.58 years (Fig. S4). 

Comparing chronological age with predicted age, we observe that the regression model 

accurately predicts the age for the vast majority of patients, whereas patients with 

chronological age between 40 and 55 are less accurately predicted (Fig 4, S5A). 

Speculatively, this might be due to the assertion that during this age range, genetic and 

environmental factors are most influential. In other words, chronological and physiological 

age is least predictive during this period of life. From observing the boundaries of the 

prediction error (blue line in Fig S5A), we find that a segment of patients below 40, in 

general, are predicted to be older, and a segment of patients above 60, in general, are 

predicted to be younger. The absolute prediction error (green line in Fig S5A) brings out the 

absolute prediction accuracy of the model across the entire age range, with high error for 

patients above 85. This is likely due to having less EMR data after that age. We also observe 

that the prediction error is not correlated to the length of the medical record history for 

patients (Fig. S5B), suggesting that the length of medical history has little influence on the 

performance and behavior of the regressor.

3.3. Cohorts with discordant physiological and chronological age

To further explore the results from the regressor, we identified the cohorts of patients at the 

margins (Fig 4); those patients who display the largest error between their real chronological 
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age and the age predicted by the model. Of these, 11,712 were placed in a group of predicted 

age significantly older than their real age (group O), and 10,611 were placed in a group of 

predicted age significantly younger than their real age (group Y) (Fig. S6). To rule out the 

possibility that patients from those two groups are merely due to poor prediction 

performance of the regression model, we performed the Hotelling’s T-squared test, a 

multivariate generalization of Welch’s t-test, to compare whether the physiological 

measurements for patients in group O and group Y are different from those patients without 

significant differences between their predicted age and their chronological age (group N) 

(Fig S7). As expected, we found that members of group O are similar to older members of 

group N, and members of group Y are similar to younger members of N (Fig S7). 

Interestingly, group O has significantly fewer women (p-value=6.9e−175), whereas members 

of group Y has significantly more Caucasians (p-value = 6.4e−52) and fewer African 

Americans (p-value=2.0e−19) (Table 1). It was previously suggested that women age slower 

than men [38], whereas some of these other differences might be explained by the 

demographics associated with economic disparity within the Mount Sinai’s patient cohort. 

The majority cohort population of the MSHS data that was analyzed originates from three 

different New York City neighborhoods with sharp demographic differences. The cohort 

contains patients from the Upper East Side which has a majority of Caucasian population, 

East Harlem which has a majority of Hispanic population, and Central Harlem with a 

majority of African American population. These unique diverse populations may confound 

the analysis results.

3.4. Characterization of groups O and Y using EMR-wide association study

Next, we aimed to characterize the O and Y groups by comparing them with group N. We 

performed Wilcoxon rank sum tests to compare vital signs (Table S1) and lab tests (Table 

S2) between the different groups of patients. In Table S1 we only included frequent vital 

signs that are profiled in at least 10% of the patients. We also performed Fisher exact tests to 

identify diagnosis codes and procedures (Table S3), as well as prescribed medicines (Table 

S4) that are enriched in groups O and Y compared to N.

The significant findings with interpretations for patients in group O are tabulated below:

• Increased prevalence of hypertension and cardiovascular disorders: patients 

of both genders in this group have significantly higher systolic blood pressure 

and pulse pressure. Consistently, they are disproportionally diagnosed with 

hypertension. The enrichment of diagnoses such as internal hemorrhoids, 

lumbago, which is a painful condition affecting the lower spine, and sciatica, 

which is pain along the lower back projected to the legs, also implies a sedentary 

lifestyle, which is a known risk factor for hypertension. The observed high levels 

of PROTIME/INR/APTT lab tests are consistent with the prescription of the 

anticoagulant drug alteplase, as well as the diagnosis with hyperlipidemia and 

carotid artery stenosis, which indicate that patients are likely prescribed 

preventive treatment for cardiovascular diseases such as myocardial infarction 

and atrial fibrillation. The top enriched prescribed drugs also include cholesterol 

lowering drugs including ezetimibe and pravastatin. Interestingly, the levels of 

cholesterol and triglycerides in group O are lower compared to group N, which 
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suggest that these are effects of cholesterol lowering medicines. Another possible 

explanation is that cholesterol levels are driven by BMI (Fig 3), and patients in 

group O have significantly lower BMI compared to group N. Patients in group O 

are also more likely to be prescribed sildenafil, vasodilator and tadalafil, all of 

which are indicated for erectile dysfunction and high blood pressure in the lungs.

• Increased chronic inflammation: the decrease of lymphocytes and proliferation 

of inflammatory cells including neutrophils and monocytes are signs of age-

related chronic inflammation [39]. The higher level of ferritin also suggests 

increased inflammatory processes. The chronic inflammation possibly leads to 

the enrichment of chronic obstructive pulmonary disease (COPD) including 

emphysema chronic obstructive asthma and obstructive chronic bronchitis, as 

well as enriched prescription of treatment with steroids such as fluticasone/

salmeterol and hydrocortisone.

• Possibility of chronic anemia: patients in group O also have significantly lower 

blood test readouts including lower red blood cells, platelets, hemoglobin, 

hematocrit and serum iron, all of which suggest chronic anemia. High levels of 

Vitamin B12 and ferritin are also observed in this group. This is seemingly 

contradictory to the indicators of anemia, but could be a related physiological 

mechanisms to compensate for the loss of red blood cells.

• Poor nutritional status: multiple lines of evidence from physiological 

measurements and prescribed medicines also suggest that patients in group O 

suffer from decreased nutritional status. Many of the physiological variables in 

the nutritional status clusters identified (Fig 3), such as BMI, albumin, calcium, 

total iron binding capacity (TIBC) and hemoglobin, have significantly lower 

values compared to patients in group N of the same chronological age range. The 

lack of nutrition probably leads to the enrichment of dietary supplements 

prescribed such as calcium carbonate/Vitamin D3 and multivitamins.

• Decreased kidney function: the significant differences in many lab tests related 

to kidney function, including increased urea nitrogen, creatinine, and uric acid, 

as well as decreased GFR estimate, indicate that patients in the O group have 

decreased kidney function. Consistent with these observations, we also found 

that patients in this group are significantly enriched for kidney transplant 

procedure, as well as prescription of immunosuppressants usually used before 

and after organ transplantation such as mycophenolate mofetil, 

methylprednisolone and mercaptopurine.

• Potential liver damage: the increased levels of multiple liver enzymes, 

including gamma glutamyl transferase, ALT (SGPT), ALK phosphatase, and LD 

(LDH) lactate dehydrogenase suggest liver damage.

In general, patients in group Y have opposite physiological patterns compared to group O 

for many of the physiological measurements, but there are few exceptions. The significant 

findings with interpretations for patients in group Y are tabulated below:
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• Low risk for hypertension and hyperlipidemia: patients in group Y have 

significantly lower blood pressure, BMI, body weight and lipids levels including 

cholesterol and triglycerides, indicating they have lower risk for developing 

hypertension and hyperlipidemia.

• Healthy kidney and liver functions: lab tests that shows significant differences 

also indicate healthy kidney function, such as lower levels of creatinine, urea 

nitrogen, uric acid and higher level of GFR estimate. The healthy liver indicators 

are lower level of liver enzymes in the blood including gamma glutamyl 

transferase and ALT (SGPT). Interestingly, indicators of glucose tolerance, 

including glucose and hemoglobin A1C, also have significantly lower levels 

compared to group N, suggesting lower risk for developing diabetes.

• Healthier nutritional status: as oppose to the observations from group O, 

patients in group Y demonstrate higher levels of positive nutritional status 

indicators such as higher levels of albumin, red blood cells, hematocrit, 

hemoglobin, platelets and calcium.

• Higher risk for venereal diseases: patients in group Y are enriched for 

screening for venereal diseases; female patients are enriched for irregular 

menstrual cycle, abortion, and unwanted pregnancy. Patients in this group are 

also enriched for HPV vaccine and birth control pills for females, suggesting 

members in group Y may be more sexually active and as a result at high risk for 

venereal diseases.

Other enriched diagnoses and medicines for group Y include acute pharyngitis, fluconazole, 

a medication that is used to treat fungal infection, and furosemide, a drug to treat edema and 

swelling. Interestingly, tobacco use is also enriched in group Y. This should be viewed with 

caution because it is well established that tobacco use has a positive correlation with 

mortality [40]. It worth noting that the model does not predict mortality, therefore, although 

more patients are proportionally found within the group Y, tobacco use can still be 

associated with higher mortality.

In summary, both groups have significantly lower BMI, body weight, and lipid levels. 

Despite their young chronological age, the physiological profiles of patients in group O 

resembles profiles of patients that are above 70 (Fig 3), with only few exceptions such as 

high hemoglobin A1C. On the contrary, the physiological profiles of members of group Y 

are more similar to patients younger than 50.

3.5. GWAS identified genes and pathways enriched in groups O and Y

Next, we performed GWAS analysis comparing the O and Y groups to the general 

population. Of the patients whom we analyzed, 10,123 have genomic profiling data available 

from the Charles Bronfman Institute of Personalized Medicine Mount Sinai BioMe 
BioBank. From those, 146 patients belong to the O group, and 197 to the Y group. Using a 

linear mixed model to control for cryptic relatedness, population structure, age, and gender, 

we annotated those SNPs that were identified as significant (Figs. S8 and S9). The 

significance cutoff was set to a p-value of 5e−6. To interpret the functions of those enriched 
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SNPs, we conducted the following analyses. First, we examined coding variants that cause 

missense mutations. We found five genes in the O group and two genes in the Y group that 

harbor significantly enriched missense mutation SNPs (Table 2). Next, we queried gene sets 

created from significant SNPs, and the genes within their proximity that were found in 

intronic and promoter regions. These gene sets were subjected to enrichment analysis with 

Enrichr [33, 34] (Table S5–6). Finally, using the software MetaXcan [35] to summarize the 

GWAS results from the variant level to the gene level using eQTLs generated from GTEx 

[12], we identified significantly up- and down-regulated genes predicted to be aberrantly 

expressed in different tissues (Table S7–10).

Below we summarize the findings and their interpretations for all the variants identified to 

be enriched in group O:

• Altered inflammation-related genes and pathways: out of the five genes found 

to harbor missense mutations in their coding regions, NFAM1 and IL11RA are 

both implicated in inflammatory-related pathways: NFAM1 is a known regulator 

of IL-13 and TNF-alpha, and it is involved in regulating B-cell development 

[41]; whereas IL11RA is a cytokine receptor and a member of the Jak/STAT 

signaling pathway [42]. Moreover, inflammatory pathways such as PI3K-Akt 

signaling, AGE-RAGE signaling, and inflammatory mediator regulation of TRP 

channels are also enriched among the set of genes found in close proximity to the 

enriched SNPs (Table S5). This observation is consistent with the clinical 

indicators that suggest that patients in group O are more likely to suffer from 

chronic-inflammation. It is possible that the identified genetic variants in the 

inflammation-related genes make the patients more prone to premature age-

related chronic inflammation.

• Anemia: Another missense mutation that was found to be significantly enriched 

is in the coding region of ZFPM1. ZFPM1 is known to be involved in platelet 

activation and anemia [43]. Our analysis predicts that this SNP in ZFPM1 may 

impair the normal function of ZFPM1 and this abnormality makes patients 

harboring this variant to have increased risk to develop anemia.

• Hypertension, cardiovascular disease and obesity: out of the five significant 

SNPs causing missense mutations, one is located in the coding region of 

PLEKHS1, which might be linked to obesity [44]. Furthermore, the enrichment 

analysis of SNPs in gene proximity also suggest that there is significant overlap 

between these genes and genes previously associated with myocardial infarction, 

blood pressure, and high cholesterol level from GWAS studies collected in 

dbGAP [45] (Table S5). This observation is also consistent with the clinical 

indicators that have over-representation for risk for hypertension and 

cardiovascular disease, indicating that the genetic variants could partially explain 

the increased risk.

• Decrease in unfolded protein response (UPR): from the gene expression level 

association analysis, we found downregulation of genes in adipose tissue, and 
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enrichment for UPR based on Reactome [46] (Table S10). The UPR response is 

one of the hallmarks of the aging process [9].

The variants found to be enriched in group Y and their interpretation are listed below:

• Variants protective against hypertension and obesity: a SNP enriched in 

group Y is found to cause a missense mutation in the gene OSBPL9. OSBPL9 is 

associated with lipid transport and, as a result, it is known to be involved in 

regulating body weight [47]. Moreover, the gene set created from SNPs in 

proximity to genes is also enriched for genes known to be associated with blood 

pressure and BMI based on a gene set library created from dbGAP (Table S6). 

Together, and with the observation that patients in this group have lower blood 

pressure and BMI, these enriched genetic variants could have a protective role 

against hypertension and obesity.

• Suppressed inflammatory response: genes in proximity to significant SNPs 

were found to be enrich for proteoglycans and inflammatory pathways (Table 

S6). Furthermore, we found that inflammation-related Toll-like receptor 

signaling is also downregulated adipose tissue by the SNPs eQTL analysis (Table 

S8).

• Regulation of lifespan-related genes: from the MetaScan analysis, we also 

found two genes, SURF1 and PPARG, predicted to be downregulated in adipose 

tissue by the SNPs enriched for group Y (Table S8). These two genes have been 

shown to extend lifespan in knockout mice. From the list of 189 genes that are 

predicted to be expressed at a lower level in adipose tissue (Table S9), only 63 

have been knocked out in mice, and 3.17% of them have shown to increase 

lifespan. This is a much higher percent compared to the 0.26% for the 27 genes 

that are marked to extend lifespan in MGI out of 10,493 with any listed 

phenotype. Hence, the genes from the list of 189 without knockout mouse 

phenotypes are excellent candidates for future knockout experiments, and if 

successful, these can be potential targets for therapeutic intervention for aging. 

Among these are GPR156, MRGPRX2, CNGA1 and KCND3 which are targets 

of interest for the Illuminating the Druggable Genome Project (https://

commonfund.nih.gov/idg).

4. Discussion

Here we have demonstrated how EMR data can be used to assess the overall health of 

patients by a scale that is based on the deviation from the patient’s predicted chronological 

age; this metric can be considered the patient’s physiological age. We found that a deep 

neural network regression model is both scalable and accurate in predicting age from 

thousands of features and hundreds of thousands of EMR. However, interpreting deep neural 

network is rather challenging. A recent study proposed an approach to interpret deep neural 

network models by annotating hidden units with conceivable semantic concepts by feeding 

the model sets of labeled training samples [48]. Similarly, our deep neural network model 

can potentially be interpreted by aligning the hidden units from the last hidden layer with 

original individual features or combinations of features. By examining the weights of the last 
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hidden layer, one can potentially interpret how the prediction of age is made from the final 

hidden units. Regardless, as it is, the deep learning model that we have constructed can be 

implemented to inform both physicians and patients about the status of the patient 

physiological age as a general indicator of overall health.

Our model identified cohorts of patients with significant deviation between their predicted 

age and their chorological age. EMR-wide association study for those cohorts identified 

physiological measurements that are consistent with existing clinical knowledge about 

parameters that indicate accelerated or delayed aging. Such analysis also identified 

medicines that may affect the aging process. Since there are many potential confounding 

factors that are not included in the model, conclusions should be drawn carefully. For 

example, we used the median to aggregate physiological measurements of patients across 

multiple clinical visits, which removes intra-patient variation. The temporal dynamics of 

physiological aging at the individual level is not captured by our model and could be an 

interesting follow up study. Future studies that include temporal analysis could track the 

progression of patients on a timeline of their predicted aging. Such analyses can potentially 

uncover causality; for example, identifying environmental factors that influence 

physiological aging, which is currently missing from our model. Temporal analysis can also 

identify the aging rate for each patient and warn patients that display accelerated aging. One 

caveat of the analysis is that the patient data used to create the model is mostly from 

individuals who needed medical assistance. Hence, this fact alone is to likely confound the 

study because the general healthy population is not sampled. While the GWAS analysis 

performed has identified novel mutations in genes, and potential regulatory regions near 

genes, that are likely associated with the aging process, the sample size we have utilized is 

relatively small and racially heterogeneous. Further studies with larger cohorts that employ 

deep sequencing, and/or deeper SNP profiling are expected to become available soon. 

Reapplying a similar analysis on a larger cohort would confirm or refine the reported 

observations. Regardless of these shortcomings, our success in predicting age from medical 

signs and lab tests can inform physicians and their patients to assist in promoting healthier 

lifestyle and early detection of human disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Physiological variables recorded in >300,000 electronic medical records 

(EMR) were investigated for their relation to chronological age at the 

population scale.

• An artificial neural network deep learning model was developed to predict 

chronological age from physiological measurements recorded in the EMR.

• Cohorts with discordant predicted physiological and chronological age were 

identified and further analyzed.

• EMR-wide association analyses and gene wide association study (GWAS) 

were performed to clinically and genetically characterize patients with 

discordant physiological age.
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Figure 1. Vital signs and chronological age
(A) Pearson’s correlation coefficients between individual vital signs and chronological age 

across all, female, and male patients in three columns. Vital signs are sorted by descending 

order of their correlation coefficients with all patients. The smoothened trends of pulse 

pressure, systolic blood pressure and diastolic blood pressure across chronological age for 

females (blue) and males (green) are shown in panels B, C and D, respectively. The age 

range of patients used to produce these figures is 18 to 100 years.
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Figure 2. Exploration of lab tests and chronological age
(A) Pearson’s correlation coefficients between individual lab tests and chronological age 

across all, female, and male patients in the three columns. Lab tests are sorted by descending 

order by the correlation coefficients with all patients. (B–I). The smoothened trends of 

representative lab tests across chronological age from female (blue) and male (green) 

patients. The age range of patients used to produce these figures is 18 to 100 years.
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Figure 3. Hierarchical clustering of physiological measurements across chronological age
The trends of physiological measurements across chronological age for all the 385,918 adult 

patients analyzed were derived from applying the locally weighted scatterplot smoothing 

(LOWESS) algorithm. Prior to performing hierarchical clustering, the trends for all 

measurements were z-score transformed. Hierarchical clustering was performed using 

Euclidean distance and average as the linkage function. Physiological measurements with 

similar trends across age are clustered together. The age range of patients used to produce 

these figures is 18 to 100 years.
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Figure 4. Comparison between chronological age and predicted age
The chronological age and predicted age of 10,000 randomly sampled patients are plotted 

against each other in a scatter plot. To show the densities of the data points, kernel density 

estimation (KDE) is applied to overlay contours on top of the scatter plot. The figure also 

visualizes the outliers where there is a large discrepancy between the predicted and 

chronological age. The age range of patients used to produce these figures is 18 to 100 years.
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Table 1
Summary statistics for demographics of the cohorts in this study

N: Normal; Y: Young; O: Old.

Cohorts

Variable All N Y O

Total 385,918 363,235 10,817 11,866

Chronological Age

25% quartile 35.9 36.4 60.0 24.3

median 52.4 52.5 69.0 29.9

75% quartile 66.3 66.2 78.2 37.5

Error (chronological - predicted age)

25% quartile −5.7 −5.2 21.9 −29.2

median 0.0 0.1 24.5 −24.7

75% quartile 5.8 5.4 29.1 −22.0

Gender

Male 40.4% 40.0% 39.6% 53.1%

Female 59.6% 60.0% 60.4% 46.9%

Race

Caucasian (White) 41.0% 40.9% 48.2% 38.5%

African American (Black) 16.9% 17.0% 13.7% 17.2%

Asian 3.9% 3.9% 3.1% 3.9%

Other 19.2% 19.4% 15.0% 19.1%

Hispanic/Latino 5.4% 5.4% 4.7% 6.3%

Native American 0.2% 0.2% 0.3% 0.2%

Pacific Islander 0.1% 0.1% 0.1% 0.1%
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