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Abstract

Metzincins are key molecules in the degradation of the extracellular matrix and play an important 

role in cellular processes such as cell migration, adhesion, and cell fusion of malignant tumors, 

including cutaneous melanoma (CM). We hypothesized that genetic variants of the metzincin 

metallopeptidase family genes would be associated with CM-specific survival (CMSS). To test this 

hypothesis, we first performed Cox proportional hazards regression analysis to evaluate the 

associations between genetic variants of 75 metzincin metallopeptidase family genes and CMSS 

using the dataset from the genome-wide association study (GWAS) from The University of Texas 

MD Anderson cancer Center (MDACC) which included 858 non-Hispanic white patients with 

CM, and then validated in the dataset from the Harvard GWAS study which had 409 non-Hispanic 
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white patients with invasive CM. Four independent SNPs (MMP16 rs10090371 C>A, ADAMTS3 
rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as predictors 

of CMSS, with a variant-allele attributed hazards ratio (HR) of 1.73 (1.32–2.29, 9.68E-05), 1.46 

(1.15–1.85, 0.002), 1.68 (1.31–2.14, 3.32E-05) and 0.67 (0.51–0.87, 0.003), respectively, in the 

meta-analysis of these two GWAS studies. Combined analysis of risk genotypes of these four 

SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes 

increased (Ptrend < 0.001). An improvement was observed in the prediction model [area under the 

curve (AUC) = 81.4% to 78.6%], when these risk genotypes were added to the model containing 

non-genotyping variables. Our findings suggest that these genetic variants may be promising 

prognostic biomarkers for CMSS.
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INTRODUCTION

Cutaneous melanoma (CM) is the fifth most common cancer in the United States, and its 

incidence rate is increasing by 3% annually [1]. Early diagnosis, immunomodulation (e.g., 

anti-CTLA4) and targeted therapy (e.g., BRAF and MEK inhibitors) have made 

breakthrough improvements in prognosis of advanced-stage CM patients [2,3]. The five-year 

(2006–2012) survival rate of CM is estimated to be about 91.5% based on data from the 

Surveillance, Epidemiology, and End Results (SEER) program.

CM is a complex disease that originates from melanocytes primarily found in the skin, risk 

of developing melanoma is influenced by both environmental and host factors. For example, 

ultraviolet (UV) exposure, an important environmental factor, has been recognized as an 

independent risk factor for CM [4], which not only increases CM risk but also leads to tumor 

progression by affecting molecular signaling pathways and inhibiting immune reactions [4]. 

Host factors such as color of the skin, hair, and eyes, as well as genetic variants, have also 

been identified to be involved in CM development and progression [4]. In distinction to 

somatic mutations, germline variants with a low penetrance have a high frequency in the 

general population. In recent years, large-scale genome-wide association studies (GWASs) 

have identified a number of genetic variants as risk factors of many complex diseases, 

including CM [5]. Several single-nucleotide polymorphisms (SNPs) (such as rs7526389, 

rs1539188, rs1049481 and rs2974755) have been found to be independent predictors of CM 

prognosis [6]. However, GWASs may have identified many of the most statistically 

significant SNPs but also may have missed biologically functional and mechanistically 

important genetic variants that do not rank among the top SNPs. Recently, hypothesis-driven 

and pathway-based (or gene set-based) approaches have been effectively used to search for 

novel functional genetic variants that are associated with risk and prognosis of CM [7]. For 

example, PIWIL4 rs7933369 and rs508485 and DCP1A rs11551405 in the PIWI-piRNA 

pathway [8] and VDBP rs12512631 and RXRA rs7850212 in the vitamin D pathway [9] 

were found to be associated with CM prognosis. Investigations of functional genes and 
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SNPs have provided additional evidence for the biological mechanisms underlying observed 

associations with CM prognosis [10–12].

Metzincin metallopeptidase family members, including matrixins, adamlysins, astacins, and 

pappalysins, are calcium-dependent zinc-containing endopepdidases that have proteolytic 

activities and play an important role in degradation of the extracellular matrix and some 

protein complexes. It has been reported that metzincin family genes play an important role 

in several cancer-progression-related processes, including cell migration, adhesion, and cell 

fusion of malignant diseases [13–17]. For example, matrix metalloproteinase 9 (MMP9) has 

been reported to be associated with cancer invasiveness and metastasis, and inhibitors 

against MMP9 represent a promising strategy for anti-melanoma therapy [18]. MMP12 
expression has been reported to be increased in CM and related to tumor invasion and 

metastasis [19]. Moreover, high expression of the disintegrin and metalloproteinase domain-

containing protein 10 (ADAM10) was found to be related to melanoma metastasis [20]. The 

disintegrin-metalloproteinases with thrombospondin domains (ADAMTS) genes have been 

suggested to act as tumor suppressors in various cancers, including melanoma, and 

ADAMTS18 mutations can promote cell growth, migration, and metastasis of melanoma 

[21]. In addition, other metzincin family members, including astacins and pappalysins, have 

also been reported to be associated with tumorigenesis [22,23].

To date, there are no reported studies using large-scale GWAS datasets to investigate the role 

of genetic variants of genes in the metzincin metallopeptidase family in melanoma survival. 

We hypothesize that genetic variants of the metzincin metallopeptidase family genes would 

be associated with CM-specific survival (CMSS).

MATERIALS AND METHODS

Study populations

The discovery dataset included 858 non-Hispanic white patients with CM from a previously 

published GWAS study at The University of Texas MD Anderson Cancer Center (MDACC), 

who were recruited between March 1993 and August 2008 [24]. The GWAS database of 

genotypes and phenotypes, including patient age, sex, primary tumor Breslow thickness, 

metastasis, ulceration, mitotic rate and survival outcome, were available at the dbGaP 

(accession: phs000187.v1.p1) [25]. In this study, genomic DNA extracted from the blood 

samples was genotyped with Illumina HumanOmni-Quad_v1_0_B array. Genome-wide 

imputation (imputation quality r2 ≥ 0.8) was conducted with the MACH software based on 

the 1000 Genomes CEU population (March 2010 release) [26].

The replication dataset included 409 non-Hispanic white patients with invasive CM in the 

two cohorts of Nurses’ Health Study (NHS) and Health Professionals Follow-up Study 

(HPFS) from Harvard University, from which the information of age, sex, survival outcome 

and genotype data were available. Genotyping was performed using the Illumina 

HumanHap610 array. Genome-wide imputation (imputation quality r2 ≥ 0.8) was also 

performed using the MACH software based on the 1000 Genomes Project CEU population 

(March 2012 release) [27,28].
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All individuals in the two datasets participated in these studies after providing a written 

informed consent under an Institutional Review Board-approved protocol.

Gene and SNP extraction

The metzincin metallopeptidase family genes were selected from the HUGO gene family 

website (http://www.genenames.org/cgi-bin/genefamilies/set/901). Genotyped and imputed 

SNPs of the metzincin metallopeptidase family genes were selected to be analyzed with the 

following quality control criteria: (1) a genotyping rate ≥ 95%, (2) a minor allelic frequency 

(MAF) ≥ 0.05, and (3) Hardy-Weinberg equilibrium (HWE) P value ≥ 1×10−5.

Statistical analysis

CMSS was considered the major end-point in in the present study, which was defined as the 

date from the diagnosis of malignant CM to the time of CM-related death or the time of the 

last follow-up. In the MDACC dataset, Cox proportional hazards regression analysis was 

performed with adjustment for age, sex, Breslow thickness, metastasis, ulceration and 

mitotic rate (in an additive genetic model). We estimated the associations between SNPs in 

the metzincin metallopeptidase family genes and CMSS by calculating hazards ratio (HR) 

and its 95% confidence interval (CI) using the GenABEL package of R software. In the 

Harvard dataset, only age and sex were available for adjustment in the further Cox 

regression analysis. The false-positive report probability (FPRP) method with a cut-off value 

of 0.20 was used for multiple testing corrections [29]. FPRP was chosen because many 

imputed SNPs were in linkage disequilibrium (LD) among all the SNPs under investigation, 

and also it is calculated based on three factors, including the observed P value, the prior 

probability of a true association of the tested genetic variant with a disease, and the 

statistical power of the test. In the present study, we assigned a prior probability of 0.10 to 

detect an HR of 2.0 for an association with variant genotypes or minor alleles of the SNPs 

with P ≤ 0.05. Then, we performed the multivariable stepwise Cox regression analysis 

including clinical variables and validated SNPs to select the independent representative 

SNPs in the MDACC dataset, and a meta-analysis was followed to combine the results 

between the MDACC and Harvard studies using PLINK 1.07. A fixed-effects model was 

used when no heterogeneity was found between two studies (Q-test P-value > 0.10 and I2 < 

50.0%); otherwise, a random-effects model was applied. Kaplan-Meier curve and log-rank 

test were used to estimate the effects of risk genotypes on the cumulative probability of 

CMSS. Furthermore, we summarized and combined the risk genotypes to assess associations 

between the number of risk genotypes and CMSS. The heterogeneity test of associations 

between subgroups of each clinical variable was conducted by using the Chi-square-based 

Q-test in stratified analyses, and P < 0.05 was considered significant for differences between 

the subgroups of each clinical variable. A time-dependent receiver operating characteristic 

(ROC) analysis was performed to calculate area under curve (AUC) of SNPs and clinical 

variables by using "survAUC" package of R software in the MDACC dataset [30]. In 

addition, Haploview v4.2 [31] was used to construct a Manhattan plot, and LocusZoom [32] 

was used to produce regional association plots. All statistical analyses were performed with 

SAS software (version 9.4; SAS Institute, Cary, NC, USA), if not specified otherwise.
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RESULTS

Gene and SNP extraction

Seventy-eight metzincin metallopeptidase family genes were selected from the HUGO gene 

family website (http://www.genenames.org/cgi-bin/genefamilies/set/901) (Supplementary 

Table 1). Three pseudogenes (ADAM1B, ADAM24P and ADAM3B) were excluded from 

the gene list. After quality checks, 13,850 SNPs of 75 genes (i.e., 2,145 genotyped and 

11,705 imputed SNPs) were extracted from the imputed MDACC GWAS dataset for further 

survival analysis.

Associations between SNPs in the metzincin metallopeptidase family genes and CMSS in 
the MDACC dataset

We present the workflow of the analyses in Figure 1. The basic characteristics of the 

MDACC and Harvard studies were described previously [24,33] (Supplementary Table 2). 

We first performed Cox regression analysis with adjustment for age, sex, Breslow’s 

thickness, metastasis, ulceration and mitotic rate to evaluate associations between 13,850 

SNPs of the metzincin metallopeptidase family genes and CMSS in single locus analysis. 

Among these SNPs, 570 SNPs were significantly associated with CMSS at P ≤ 0.05 in an 

additive genetic model. We then conducted multiple testing corrections for these 570 SNPs, 

and 322 SNPs with FPRP ≤ 0.20 were selected for validation in another independent dataset 

of the Harvard study (Supplementary Figure 1).

Replication of the significant SNPs in the Harvard dataset

We validated the 322 SNPs by using the Harvard dataset. After Cox regression analysis with 

the adjustment for age and sex, eight SNPs remained significantly associated with CMSS at 

P ≤ 0.05 in an additive genetic model, including four SNPs (rs10090371, rs62525943, 

rs12674820, and rs7013966) in MMP16, two SNPs (rs788933 and rs788935) in ADAMTS3, 

one SNP (rs10882807) in TLL2, and one SNP (rs3918251) in MMP9 (Table 1).

Independent representative SNPs

We then performed a stepwise Cox regression analysis of selected clinical variables from the 

MDACC dataset plus the eight validated SNPs to identify independent predictors of CMSS 

from the eight validated SNPs (Table 2). Four SNPs rs10090371, rs788935, rs10882807 and 

rs3918251 remained significant in the final model and thus were selected as independent 

representative SNPs for further analysis. All genotyped and imputed SNPs are shown in the 

regional association plots with an expansion of 250 KB in the flanks of the gene region, in 

which the selected four independent representative SNPs, as shown on the top of the plots, 

are labeled in purple (Supplementary Figure 2).

Survival analyses of the four independent SNPs and CMSS in MDACC and Harvard studies

We performed survival analysis with different genetic models for each independent SNP. As 

shown in Table 1, we found that under an additive genetic model, MMP16 rs10090371 A, 

ADAMTS3 rs788935 C and TLL2 rs10882807 C variant alleles were associated with an 

increased death risk of CM, with a variant-allele attributed HR of 1.70 (95% CI = 1.19–2.43, 
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P = 0.003), 1.41 (95% CI = 1.05–1.89, P = 0.023) and 1.63 (95% CI = 1.19–2.22, P = 0.002) 

in the MDACC study and 1.79 (95% CI = 1.15–2.79, P = 0.010), 1.55 (95% CI = 1.03–2.33, 

P = 0.034) and 1.76 (95% CI = 1.18–2.63, P = 0.005) in the Harvard study and 1.73 (95% CI 

= 1.32–2.29, P = 9.68E-05), 1.46 (95% CI = 1.15–1.85, P = 0.002) and 1.68 (95% CI = 

1.31–2.14, P = 3.32E-05) in a meta-analysis of the two studies. In addition, the MMP9 
rs3918251 G allele was associated with a decreased death risk of CM, with a variant-allele 

attributed HR of 0.69 (95% CI = 0.50–0.95, P = 0.025) in the MDACC study and 0.63 (95% 

CI = 0.40–1.00, P = 0.050) in the Harvard study and 0.67 (95% CI = 0.51–0.87, P = 0.003) 

in a meta-analysis of the two studies. The univariate and multivariate Cox regression 

analyses with different genotype models (codominant/dominant/additive) of each 

representative SNP are presented in Table 3.

Combined genotype analyses of the four independent representative SNPs

We combined the risk genotypes of rs10090371 CA+AA, rs788935 TC+CC, rs10882807 TC

+CC and rs3918251 AA into a genetic score to assess the joint effect of the four independent 

SNPs on CMSS. We first combined groups of 0 and 1 risk genotypes into one group, 

because of their small number of subjects, and categorized all other patients into four groups 

(i.e., 0 to 4 genetic scores, Table 3). Results suggested a risk-genotype dose-response in the 

effect on CMSS associated with the genetic score (Ptrend < 0.001 in both MDACC and 

Harvard studies) after adjustments (Table 3). We further dichotomized the patients into a 

low-score risk group (0–2 risk genotypes) and a high-score risk group (3–4 risk genotypes). 

A similar result was observed that the high-score risk group had an increased risk of death 

with an HR of 3.55 (95% CI = 2.30–5.50, P < 0.001) in the MDACC study and an HR of 

2.77 (95% CI = 1.56–4.90, P < 0.001) in the Harvard study, compared with the low-score 

risk group. Kaplan-Meier curves were also provided to illustrate the association between the 

number of risk genotypes and CMSS (Figure 2A–D).

Stratified analyses for the effect of combined risk genotypes on CMSS

We then conducted stratified analyses to evaluate whether the combined effect of risk 

genotypes as defined by the genetic score on CMSS was modified by clinical characteristics, 

including age, sex, metastasis, Breslow thickness, ulceration and mitotic rate in the MDACC 

dataset and age and sex in the Harvard dataset. In the MDACC dataset, we found that a high-

score risk genotypes was associated with an increased risk of CM death with HR of 2.19 in 

the non-metastasis group, and 6.38 in the regional or distant metastasis group, and 

heterogeneity was observed between these two subgroups (P = 0.018) (Supplementary Table 

3). No heterogeneity was found in the subgroups of the Harvard dataset.

ROC curve and time-dependent AUC estimators in the MDACC study

We used the estimates for the ROC curve and the time-dependent AUC in the MDACC study 

to assess the improvement in prediction accuracy when including the four independent SNPs 

in the presence of other host and clinical variables (i.e., age, sex, metastasis, Breslow 

thickness, ulceration and mitotic rate). From the ROC curve, we found that the combination 

of clinical variables and risk genotypes enhanced the prediction effect of five-year CMSS, 

compared with the group of clinical variables only (AUC = 81.4% to 78.6%), and the time-

dependent AUC curve showed this effect from the beginning to the end of the follow-up time 
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(Figure 2E–F). We did not evaluate ROC curve and time-dependent AUC estimators in the 

Harvard dataset, because clinical variables other than age and sex were unavailable.

eQTL analyses

We further analyzed the associations between the four independent SNPs and levels of the 

corresponding gene mRNA expression (i.e., expression quantitative trait loci analysis, eQTL 

analysis) using the data from the GTEx Portal (http://www.gtexportal.org/home/), which has 

the data for MMP16 rs10090371 in thyroid tissue, its moderate LD SNP rs12674820 in 

MMP16 (r2 = 0.44) in adipose (subcutaneous) tissue and TLL2 rs10882807 in skin tissue. 

As shown in Supplementary Figure 3A–C, MMP16 rs10090371 A, MMP16 rs12674820 G 

and TLL2 rs10882807 C alleles were associated with an increase in the corresponding gene 

mRNA expression levels with P values of 2.00E-05, 6.50E-10 and 1.30E-07, respectively. 

Because there were no expression data for the other two SNPs (ADAMTS3 rs788935 and 

MMP9 rs3918251) in the GTEx Portal, we further explored the potential function for these 

two SNPs by using the ENCODE project data. As shown in Supplementary Figure 3D–E, 

ADAMTS3 rs788935 is located at the intron region that shows H3K4Me1 enrichment, and 

MMP9 rs3918251 is also located at the intron region that is a DNase I hypersensitive area.

DISCUSSION

Metzincins are considered key molecules in degradation of the extracellular matrix and play 

an important role in a variety of biological processes and pathological disorders, such as 

asthma, rheumatoid arthritis and cancer [34], including CM. The alterations of the metzincin 

metallopeptidase family genes in CM development and progression have been previously 

reported [18–21].

In the present study, we performed survival analysis for genetic variants in 75 metzincin 

metallopeptidase family genes and CMSS using the available MDACC and Harvard GWAS 

datasets. Four independent representative SNPs (MMP16 rs10090371 C>A, ADAMTS3 
rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as 

predictors of CMSS. Specifically, rs10090371A, rs788935C and rs10882807C alleles were 

associated with a poor CMSS, and the rs3918251G allele was associated with a favorite 

outcome of CM. When we considered these four risk genotypes together, we also found that 

there was a risk-genotype dose-response in the effect on CMSS associated with the genetic 

score combining the four risk genotypes (rs10090371 CA+AA, rs788935 TC+CC, 

rs10882807 TC+CC and rs3918251 AA). These four independent SNPs highlighted the 

roles of four genes (MMP16, ADAMTS3, TLL2 and MMP9) in CM patient survival.

MMP16, located at 8q21.3, encodes an enzyme called matrix metalloproteinase 16, which is 

a family member of matrix metalloproteinases (MMPs). Like the other MMPs, MMP16 is 

also associated with cancer cell proliferation, invasion and metastasis [35]. It is suggested 

that MMP16 contributes to a poor prognosis in gastric cancer by promoting tumor cell 

proliferation and invasion [35]. Other studies have reported that MMP16 was associated with 

the migration and invasion of glioma and pancreatic cancer [36,37]. Therefore, targeting 

MMP16 may be a feasible approach for inhibiting the progression of several cancers. 

Furthermore, MMP16 has been proposed to influence cell-cell adhesion and lymphatic 
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invasion in melanoma [38]. Taken together, MMP16 may be considered to act as an 

oncogene and contribute to poor prognosis in multiple cancers, including CM. In the present 

study, the rs10090371 AA variant genotype was associated with an decreased CMSS, 

compared with the CC genotype, and the AA genotype was also associated with an 

increased MMP16 mRNA expression in thyroid tissue, although we did not have the data for 

skin or cutaneous tissue from the GTEx portal, another SNP rs12674820 in moderate LD (r2 

= 0.44) with rs10090371 was associated with increased MMP16 mRNA expression in 

subcutaneous tissue, which was consistent with the result of rs10090371 in thyroid tissue. 

Therefore, it appears likely that SNPs in this region may influence gene function by 

mediating mRNA expression levels in multiple tissue types.

ADAMTS3, located at 4q13.3, encodes an enzyme called ADAM metallopeptidase with 

thrombospondin type 1 motif 3. As one of adamlysins family genes, ADAMTS3 also 

participates in various cellular processes, including extracellular matrix degradation, 

cleavage of proteoglycans, inhibition of angiogenesis, gonadal development and 

organogenesis [39]. One study reported that ADAMTS3 was downregulated in breast cancer 

[39]. To date, there is no report about the role of ADAMTS3 in melanoma. In the present 

study, we found an association between the ADAMTS3 rs788935 and CM prognosis. 

According to the ENCODE project data from UCSC, rs788935 is located at the intron region 

of ADAMTS3, which demonstrates considerable levels of H3K4Me1 enrichment that is 

accessible to transcription factors to enhance transcriptional activity. Therefore, it appears 

likely that SNPs in this region may influence gene expression by mediating the 

transcriptional activity.

TLL2, located at 10q24.1, encodes a protein called tolloid-like protein 2, which is an 

astacin-like zinc-dependent metalloprotease and is a subfamily member of the metzincin 

family. In the present study, this is the first report of an association between the TLL2 
rs10882807CC variant genotype and CM survival, and likely this genotype increases TLL2 
mRNA expression in a variant allele dose-response manner in skin tissue. Therefore, we 

propose that TLL2 may function as an oncogene to influence the melanoma progression. We 

acknowledge that additional functional studies are needed to validate our findings.

MMP9, located at 20q13.12, encodes an enzyme called matrix metallopeptidase 9 that also 

belongs to the MMPs family. MMP9 has been reported to be associated with the 

development and progression of many cancers. For example, one study reported that 

upregulating of MMP9 expression promoted hepatocellular carcinoma cell migration and 

invasion [40]. Another study suggested that increased MMP9 expression was associated with 

gastric cancer cell invasion [41]. In addition, MMP9 activity has been reported to be 

correlated with prognosis of other cancers, including cancers of the lung [42], colorectum 

[43], esophagus [44] and breast [45]. Importantly, transcript levels of MMP9 were also 

observed to be increased in melanoma tumors, compared with that of melanocyte controls 

[46]. Additionally, it has been reported that MMP9 silencing inhibited mouse melanoma cell 

invasion and migration both in vitro and in vivo, suggesting that MMP9 might have 

promising applications for target therapy of CM [47]. Taken together, these data suggest that 

MMP9 acts as an oncogene contributing to poor prognosis across multiple cancers, 

including CM. In the present study, we found that the rs3918251 GG variant genotype was a 
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protective factor for CMSS. According to the ENCODE project data from UCSC, rs3918251 

is located at the DNase I hypersensitive area, where has lost the condensed structure, 

exposing the DNA and making it accessible to DNase I and transcription factors, plausibly 

influencing transcriptional activity. However, stronger functional evidence is needed to 

unravel the biological mechanisms underlying the observed association with CM survival.

There are some limitations in the present study. First, the MDACC study included clinical 

variables such as age, sex, primary tumor Breslow thickness, regional/distant metastasis, 

ulceration and mitotic rate for adjustment, but the Harvard study included only age and sex. 

Furthermore, additional potentially important clinical variables were not available for 

inclusion, such as performance status, nutritional status, tumor somatic mutation data, and 

details regarding treatment and response. Second, the study patients by design were all non-

Hispanic whites, therefore, our findings cannot be generalized to the general populations, 

and validations in other ethnic groups are needed. Third, the GTEx portal and other 

biological function prediction websites are limited in their ability to definitively evaluate the 

function of the SNPs identified. More functional evidence is needed, and potential biological 

mechanisms should be explored by using the accessible melanoma tissues.

In conclusion, we evaluated associations between genetic variants of 75 metzincin 

metallopeptidase family genes and CMSS using MDACC and Harvard GWAS datasets. We 

identified MMP16 rs10090371 C>A, ADAMTS3 rs788935 T>C, TLL2 rs10882807 T>C 

and MMP9 rs3918251 A>G as possible predictors for CMSS. Additional population 

replications from other ethnic groups and functional validation from mechanistic studies are 

needed to further validate our results. Once validated, our findings may provide promising 

prognostic biomarkers for personalized management and treatment of CM patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HR hazards ratio

CI confidence interval

SEER Surveillance, Epidemiology, and End Results

UV ultraviolet

GWAS genome-wide association studies

SNP single-nucleotide polymorphisms

MDACC MD Anderson Cancer Center

NHS Nurses’ Health Study

HPFS Health Professionals Follow-up Study

MAF minor allelic frequency

HWE Hardy-Weinberg equilibrium

FPRP false-positive report probability

ROC receiver operating characteristic

AUC area under the curve

eQTL expression quantitative trait loci

MMP16 matrix metalloproteinase 16

MMP9 matrix metallopeptidase 9

ADAMTS a disintegrin-metalloproteinases with thrombospondin domains

ADAMTS3 ADAM metallopeptidase with thrombospondin type 1 motif 3

TLL2 tolloid-like protein 2
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Figure 1. 
Research flowchart. SNP, single nucleotide polymorphism; CMSS, cutaneous melanoma-

specific survival; FPRP, false-positive report probability; ROC, receiver operating 

characteristic; GWAS, genome-wide association study.
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Figure 2. 
A–D: Kaplan-Meier survival curves for melanoma patients of combined analysis of four risk 

genotypes in MMP16, ADAMTS3, TLL2, and MMP9 in MDACC and Harvard studies. A. 
Combined analysis of risk genotypes (four groups) in MDACC study; B. Combined analysis 

of risk genotypes (two groups) in MDACC study; C. Combined analysis of risk genotypes 

(four groups) in Harvard study; D. Combined analysis of risk genotypes (two groups) in 

Harvard study. E–F: Receiver operating characteristic (ROC) curve and time-dependent area 

under the ROC curve (AUC) estimation for prediction of melanoma-specific survival using 

MDACC dataset. E. Ten-year melanoma-specific survival rate; F. Time-dependent AUC 
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estimation, based on age, sex, Breslow thickness, regional/distant metastasis, ulceration, 

mitotic rate and the risk genotypes of the four genes.
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Table 2

Independent predictors of CMSS as obtained from the stepwise Cox regression analysis of selected variables 

from the MDACC dataset

Parametera Categoryb Frequency HR (95% CI) P

Age ≤50/>50 371/487 1.02 (1.01–1.04) 0.010

sex Female/Male 362/496 1.29 (0.80–2.07) 0.292

Regional/distant metastasis No/Yes 709/149 4.43 (2.87–6.84) <0.001

Breslow thickness(mm) ≤1/>1 347/511 1.21 (1.15–1.28) <0.001

Ulceration No/Yes 681/155 2.82 (1.83–4.34) <0.001

Mitotic rate (mm2) ≤1/>1 275/583 2.40 (1.17–4.94) 0.017

rs10090371 C>A CC/CA/AA 546/287/25 1.80 (1.26–2.57) 0.001

rs788935 T>C TT/TC/CC 277/434/147 1.53 (1.13–2.06) 0.006

rs10882807 T>C TT/TC/CC 266/418/174 1.63 (1.20–2.22) 0.002

rs3918251 A>G AA/AG/GG 342/394/122 0.67 (0.49–0.92) 0.015

CMSS, cutaneous melanoma-specific survival; MDACC, The University of Texas MD Anderson cancer Center; HR, hazards ratio; CI, confidence 
interval;

a
Stepwise analysis included age, sex, regional/distant metastasis, Breslow thickness, ulceration, mitotic rate and eight SNPs in four genes 

(rs10090371, rs62525943, rs12674820 and rs7013966 in MMP16; rs788933 and rs788935 in ADAMTS3; rs10882807 in TLL2; and rs3918251 in 
MMP9);

b
The “category/” was used as the reference.
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