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Abstract

Magnetic resonance imaging (MRI) provides a powerful set of tools with which to investigate 

biological tissues noninvasively and in vivo. Tissues are heterogeneous in nature; an imaging voxel 

contains an ensemble of different cells and extracellular matrix components. A long-standing 

challenge has been to infer the content of and interactions among these microscopic tissue 

components within a macroscopic imaging voxel. Spatially resolved multidimensional relaxation–

diffusion correlation (REDCO) spectroscopy holds the potential to deliver such microdynamic 

information. However, to date, vast data requirements have mostly relegated these type of 

measurements to nuclear magnetic resonance applications and prevented them from being widely 

and successfully used in conjunction with imaging. By using a novel data acquisition and 

processing strategy in this study, spatially resolved REDCO could be performed in reasonable 

scanning times with excellent prospects for clinical applications. This new MR imaging 

framework—which we term “magnetic resonance microdynamic imaging (MRMI)”—permits the 

simultaneous noninvasive and model-free quantification of multiple subcellular, cellular, and 

interstitial tissue microenvironments within a voxel. MRMI is demonstrated with a fixed spinal 

cord specimen, enabling the quantification of microscopic tissue components with unprecedented 

specificity. Tissue components, such as axons, neuronal and glial soma, and myelin were identified 

on the basis of their multispectral signature within individual imaging voxels. These tissue 

elements could then be composed into images and be correlated with immunohistochemistry 

findings. MRMI provides novel image contrasts of tissue components and a new family of 

microdynamic biomarkers that could lead to new diagnostic imaging approaches to probe 

biological tissue alterations accompanied by pathological or developmental changes.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) provides a means to investigate biological 

tissue microstructure, organization, and architecture (Johansen-Berg and Behrens, 2013). 

These techniques are sensitive to features of the net displacement distribution of water 

molecules within the sample (Stejskal and Tanner, 1965), providing powerful tools to 

explore microscopic domains quantitatively (Price, 2009). In conjunction with tissue models, 

dMRI experiments can be used to infer macroscopic (Basser et al., 1994, 2000) and 

microscopic (Burcaw et al., 2015; Szczepankiewicz et al., 2015; Benjamini et al., 2016) 

structural features, on the basis of the type and scale of physical barriers that are present in 

heterogeneous biological tissue.

MRI can also be sensitized to features of the local chemical environment and various 

dynamic relaxation processes, known as longitudinal and transverse relaxation, 

characterized by relaxation times, T1 and T2, respectively. Methods have been developed 

that do not assign a single, average relaxation time to each voxel but rather measure the 

distribution of the relaxation times within the volume (Whittall and MacKay, 1989; 

Kleinberg and Horsfield, 1990). This approach provides a one-dimensional (1D) distribution 

of T1, T2 or the apparent diffusivity, D, and it therefore implies a multicomponental tissue 

structure. These methods are usually referred to as nuclear magnetic resonance (NMR) 

relaxometry and are mainly used to characterize soil, rock, soft matter porous media 

(Whittall and MacKay, 1989; Kleinberg and Horsfield, 1990; Fordham et al., 1995), and ex 
vivo biological tissue (Beaulieu et al., 1998; Peled et al., 1999; MacKay et al., 2006).

Combining multidimensional MR contrast mechanisms, e.g., D-T2, would provide novel and 

complementary information about dynamic molecular processes and microscopic physical 

and chemical environments within tissue. To date, these multidimensional relaxation–

diffusion correlation (REDCO) spectroscopy experiments have been primarily relegated to 

applications involving NMR studies in homogeneous samples (Silva et al., 2002; Galvosas 

and Callaghan, 2010; Bernin and Topgaard, 2013; Song et al., 2016). However, apart from a 

few studies (Zhang and Blümich (2014); Tax et al. (2017); Kim et al. (2017)), these methods 

have not been widely used in MRI applications owing to the vast amount of scan time and 

acquired MR data required to reconstruct a single multidimensional spectrum.

A few studies have demonstrated integration of two-dimensional (2D) D-T2 or T1–T2 

spectroscopy with imaging of biological tissue. Does and Gore resolved three components 

within a region of interest (ROI) in peripheral nerve using a T1–T2 correlation experiment 

that included 512 acquisitions (Does and Gore, 2002). A compressed sensing approach for 

reducing the data requirements for such a type of experiment was recently suggested and 

demonstrated on a spinal cord sample (Bai et al., 2015), in which an ROI-based analysis 

resulted in two peaks in the T1–T2 white matter (WM) spectrum. With that method, a 

maximal acceleration factor of 3.5 was achieved, reducing the number of acquisitions from 

1,800 to 450, which is still infeasible for clinical MRI applications. A recent spatially 

resolved REDCO study reported one distinct D-T2 peak in the WM region and a different 

distinct peak in the gray matter (GM) region of a spinal cord specimen (Kim et al., 2017). 

These results, specifically the monocompartmental tissue structure in WM, contradict many 
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previous studies (e.g., Ronen et al. (2006); Peled et al. (1999); MacKay et al. (2006)) and 

may be due to the very small number of acquisitions, 28, used to reconstruct the D-T2 

spectra, or to the use of spatial regularization.

Data acquisition and processing strategies prevent spatially resolved REDCO spectroscopy 

to achieve its full potential, and particularly its expected high sensitivity and specificity to 

different microenvironments within biological tissue. To overcome this bottleneck we 

recently proposed the marginal distributions constrained optimization (MADCO) framework 

for accelerated multidimensional MRI (Benjamini and Basser, 2016). The concept in this 

approach is to use the more accessible 1D information (i.e., the marginal distributions) to 

enforce physical constraints on the multidimensional distribution, resulting in a dramatic 

reduction in the number of data samples required and a concomitant reduction in MRI 

acquisition times (Benjamini and Basser, 2016, 2017).

Most of the recent microstructure imaging methods proposed in the past decade (e.g., Assaf 

and Basser (2005); Alexander et al. (2010); Zhang et al. (2012)) also invoke parametric 

tissue models that are based on an assumed tissue microstructure and may not faithfully 

reflect the underlying “ground truth.” We therefore believe that the high level of complexity 

and variability of biological tissue requires a departure from this current trend of model-

based MRI methods. Here, by using MADCO, we introduce a new MR imaging framework–

which we term magnetic resonance microdynamic imaging (MRMI)—that permits the 

simultaneous noninvasive quantification of multiple cellular, interstitial, and subcellular 

tissue components within tissue. This unique information is obtained without imposing a 
priori tissue models, and in a clinically or biologically feasible time period. The term 

“microdynamic” captures both physical and chemical aspects of the multidimensional 

acquisition, and the way the suggested framework integrates this information to resolve 

microenvironments. While diffusion is indeed a dynamic process, the diffusion MR 

measurement in this study is not time dependent, and therefore provides only a snapshot in 

time regarding the physical microstructural environment. In contrast, the relaxation 

measurements are time dependent, and provide information that is directly related to 

molecular energy transfer, which is inherently dynamic. Although it can be used to 

investigate other types of biological tissue (e.g., muscle Harrison et al. (1995)), we chose to 

apply MRMI on a spinal cord specimen because its microstructure and organization are well 

known and highly ordered.

2. Materials and Methods

2.1. Specimen preparation

The animal used in this study was housed and treated at the Uniformed Services University 

of the Health Sciences (USUHS) according to national guidelines and institutional oversight. 

As part of standard necropsy for an unrelated study, a healthy adult male ferret was 

euthanized and underwent transcardial perfusion with ice-cold 0.1M phosphate buffered 

saline (PBS, pH 7.4, Quality Biological) followed by 4% paraformaldehyde (PFA, Santa 

Cruz Biotechnology, in PBS 0.1M pH 7.4) at USUHS, according to standard methods. For 

the present study, the spinal cord tissue was extracted by careful surgical dissection. A 

cervical portion of the spinal cord was then transferred to a PBS-filled container for 7 days 
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to ensure any residual PFA was removed from the tissue. The sample was then immersed in 

perfluoropolyether (Fomblin LC/8, Solvay Solexis, Italy) and inserted into a 5 mm Shigemi 

tube (Shigemi Inc., Japan) with a glass plunger matched to the susceptibility of water. The 

tube was placed and oriented along the direction of the main magnetic field in a 5 mm 

birdcage radio frequency (RF) coil.

2.2. MRI data acquisition

MRI data were collected on a 7 T Bruker wide-bore vertical magnet with an AVANCE III 

MRI spectrometer equipped with a Micro2.5 microimaging probe and three GREAT60 

gradient amplifiers, which have a nominal peak current of 60 A per channel. This 

configuration can produce a maximum nominal gradient strength of 24.65 mT/m/A along 

each of the three orthogonal directions. MRI data were acquired with an inversion recovery 

spin-echo diffusion-weighted (DW) echo planar imaging (IR–DWI–EPI) sequence, with an 

adiabatic 180° inversion pulse applied before the standard spin-echo DW sequence, and with 

a DWI–EPI sequence. The sample temperature was set at 16.8°C. For a DW experiment, the 

spin magnetization decays according to the diffusivity, D, due to the DW parameter, b. For a 

T1-weighted measurement, the spin magnetization returns to thermodynamic equilibrium, 

followed by an IR experiment with the inversion period, τ1, as the governing experimental 

parameter. Finally, the echo time, τ2, governs the decay due to T2.

The three 1D distributions of T1, T2, and D, were estimated, respectively, with the following 

data acquisition protocols: A 1D T1-weighted data set (b = 0, τ2 = 10.7 ms) with 12 

logarithmically sampled τ1 values ranging from 20 to 3000 ms by using an IR–DWI–EPI 

sequence; a 1D T2-weighted data set (b = 0) with 20 logarithmically sampled τ2 values 

ranging from 10.7 to 150 ms by using a DWI–EPI sequence; and a 1D DW data set (τ2 = 

10.7 ms) with 20 linearly sampled b-values ranging from 0 to 25068 s/mm2 by using a 

DWI–EPI sequence. In all DW acquisitions, the diffusion encoding direction was set 

perpendicular to the main axis of the spinal cord. Other acquisition parameters were 

diffusion gradient duration and separation of δ = 4 ms and Δ = 15 ms, respectively.

The three 2D distributions of D-T1, D-T2, and T1–T2, were estimated, respectively, with the 

following data acquisition protocols (in conjunction with the a priori obtained 1D 

distributions as constrains): A 2D D-T1-weighted data set with 12 sampled combinations of 

inversion times and b-values within the above 1D acquisition range by using an IR–DWI–

EPI sequence; a 2D D-T2-weighted data set with 12 sampled combinations of echo times 

and b-values within the above 1D acquisition range by using an DWI–EPI sequence; a 2D 

T1–T2-weighted data set with 12 sampled combinations of inversion and echo times within 

the above 1D acquisition range by using an IR-EPI sequence.

For all types of acquisitions, TR = inversion time + 4 s. A single 2.5 mm axial slice with a 

matrix size of 64 × 64 and inplane resolution of 101×101 μm2, was acquired with 2 averages 

and 8 segments. Each image took 1 min to acquire, leading to 52 min for the 1D spectra and 

36 min for the 2D spectra, for a total of 88 min. Signal-to-noise ratio (SNR) was defined as 

the ratio between the average signal intensity within a tissue ROI, and the standard deviation 

of the signal intensity within a background (i.e., no sample) ROI. The highest SNR image 

(i.e., the least amount of diffusion and relaxation decay, with b = 0 and τ2 = 10.7 ms) had an 
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SNR of 80 and 103 for WM and GM, and the lowest SNR image had an SNR of 20 and 19.7 

for WM and GM, respectively.

2.3. Immunohistochemistry

After completion of MRI scans, the ferret spinal cord was sent to FD Neurotechnologies Inc.

(Columbia, MD) for histopathological staining. It was then cryoprotected with 0.1 M 

phosphate buffer (pH 7.4) containing 20% sucrose for 72 h. After rapid freezing in 

isopentane, pre-cooled to −70°C with dry ice, the frozen tissue was stored in a freezer at 

−80°C before sectioning. Serial sections (40 μm) were cut transversely through the spinal 

cord with a cryostat. Sections were then stained with FD cresyl violet solution (FD 

Neurotechnologies Inc., Columbia, MD). Other sections were processed with primary 

antibodies markers for astrocytes (Rat anti-GFAP antibody, 1:10000; Invitrogen, 13-0300), 

microglia (rabbit anti-Iba1 antibody, 1:2000;Wako, 019-19741), myelin oligodendrocyte 

glycoprotein (mouse anti-MOG antibody, 1:250; Sigma, SAB1406138), and pan-

neurofilaments (rabbit anti-pan neurofilaments, 1:500; Biomol, NA1297), following 

standard procedures.

2.4. Microscopy and image processing

Whole spinal cord slides were scanned with a Hamamatsu Nanozoomer (Hamamatsu 

Photonics, Japan) at a magnification of 40, resulting in a 230 nm/pixel resolution. Images of 

all the stained slides were white balanced and converted to monochrome by using Image J 

(NIH, Bethesda, MD). Following standard practice (Fawcett and Scott, 1960), normalized 

image intensities, I, were converted to their corresponding optical density values according 

to

(1)

The MRI and immunohistochemistry (IHC) images were quantitatively compared by first 

subsampling the latter to match the MR image in-plane resolution. A voxelwise correlation 

was allowed across modalities by registering the MR images to the subsampled IHC optical 

density images. An affine transformation based on the Mattes mutual information metric was 

performed by using MATLAB’s Image Processing Toolbox (The Mathworks, Natick, MA).

2.5. MRI data processing

To obtain the 1D or higher dimensional distribution of a particular MR contrast or set of 

contrasts, one must numerically invert the Fredholm integral of the first kind, which is a 

classic ill-conditioned problem (McWhirter and Pike, 1978). The main implication is that 

the data inversion is inherently non-unique (Provencher, 1982; Whittall and MacKay, 1989), 

which may lead to spurious peaks and the split-up of wide peaks to multiple narrow peaks 

(“pearling”) in the reconstructed spectrum (Bernin and Topgaard, 2013). A standard 

approach to solving ill-conditioned problems is to regularize them. When the spectrum is 

expected to be smooth, ℓ2 regularization is appropriate (Fordham et al., 1995). While slightly 

distorted, a regularized problem has (by definition) a unique solution that depends smoothly 
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on the data (Fordham et al., 1995). Furthermore, the solution to the regularized problem 

should be close to one of the infinity of feasible solutions of the original ill-conditioned 

problem. Although ℓ2 regularization helps address the pearling phenomenon, it may also 

artificially broaden intrinsically narrow peaks. Further detail can be found in Appendix A.

All MRI data were processed by using the MADCO framework (Benjamini and Basser, 

2016). Briefly, all T1, T2, and D 1D data sets were processed by using well-established 

algorithms to determine the corresponding 1D distributions (Menon and Allen, 1991; 

Hansen, 1992; Fordham et al., 1995) in each image voxel. With the 1D distributions as 

constraints, the 2D data sets were then processed by using the MADCO framework 

(Benjamini and Basser, 2016), which extended widely used procedures (English et al., 1991; 

Venkataramanan et al., 2002; Song et al., 2002).

As detailed in Appendix A, the MR signal attenuation is modeled with a multiexponential 

function, which should capture the T1, T2, and D decay curves. In this study, a small portion 

of the data was inconsistent with this model. The T2 data contained such slight deviation 

from purely exponential behavior in 58 of the 968 voxels (less than 1.4% of the entire 

dataset), while the rest of the data did not. The abnormal voxels were concentrated around 

the central cerebrospinal fluid (CSF) canal. This deviation might have originated from 

background gradients induced by magnetic susceptibility differences between CSF and 

tissue in that particular region, which was shown to results in such nonexponential behavior 

(van Gelderen et al., 2012). Nevertheless, the 1D T2 spectra resulting from the 

nonexponential decay voxels had similar features compared to spectra obtained from their 

“normal appearing” neighboring voxels. The nonexponential signal decay did not result in 

significantly different T2 spectra, which implies that this abnormality did not affect the 

presented results.

All data processing was performed with in-house code written in MATLAB (The 

Mathworks, Natick, MA). To resolve the 2D spectra subject to the MADCO constraints we 

used CVX, a package for specifying and solving convex programs (Grant and Boyd, 2008; 

CVX Research, 2012).

2.6. Quantifying uncertainty in the spectra

The jackknife technique (Quenouille, 1949) was used to quantify the uncertainty in the 

estimated parameters in the following manner: first, the 1D T1, T2, and D, estimations were 

repeated with one data point being left out in each iteration, resulting in 20 spectra for T2 

and D, and 12 for T1. Then, the 2D spectra, D-T2, T1–T2, and D-T1, were reconstructed 

using MADCO with the “leave-one-out” 1D spectra as constraints, resulting in 400 D-T2 

spectra and 240 T1–T2 and D-T1 spectra. The high dimensionality of the spectra prevents 

direct visualization of the uncertainty, and we therefore adopted a previous approach (Prange 

and Song, 2009) that maps each spectrum into a single number or numbers whose 

uncertainty can then be visualized as histograms. We chose to focus on the tissue 

components apparent volume fractions, which were obtained by integration over the 

corresponding spectral peak (as described in more detail in section 3.5). Those apparent 

volume fractions were obtained from each of the leave-one-out spectra, and their standard 
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deviation was used to indicate the uncertainty in their estimation. This process was repeated 

in each of the image voxels.

3. Results and Discussion

3.1. The MADCO framework

Reexamination of the relationships between the 1D and higher-dimension distributions 

(Benjamini and Basser, 2014) laid the groundwork for addressing the primary issue 

precluding multidimensional REDCO biological and clinical applications in conjunction 

with imaging. Briefly, one can regard the 2D REDCO spectrum as a joint probability 

distribution of two variables, each with its own 1D marginal distribution of the 2D spectrum. 

These 1D and 2D spectra are linked via well-known relationships from probability theory; 

this link is the basis of the MADCO framework for accelerated 2D spectroscopic MRI 

(Benjamini and Basser, 2016).

The children’s board game, Battleship (by Milton Bradley) is helpful in illustrating our 

approach. In this game, two players place toy ships somewhere on a discrete rectangular x-y 
grid representing a body of water. Neither player can see the location of the other player’s 

ships. The goal is to find all the opponent’s ships before he or she finds yours. Each player 

has to devise a search strategy to guess the location of the other player’s ships. A reasonable 

search strategy is for each player to choose random points within the grid from a uniform 

distribution, because players have no a priori information about the location of the 

opponent’s ships. Suppose we modify the rules of the game so that in the first two moves, 

each player can obtain additional information, specifically, (1D) projections of the mass 

distribution of their opponents’ ships along the y and x axes (i.e., columns and rows). The 

search strategy would be quite different: the information provided along each row and each 

column would provide powerful constraints that would enable a player to find most of the 

opponent’s ships within a few moves. This example can help us understand how to design 

experiments to detect and reconstruct multispectral peaks in a REDCO spectrum. It is often 

straightforward and experimentally fast to obtain a robust 1D projection of the 2D spectrum 

along each axis. We can then use these 1D marginal distributions to recover the entire 2D 

relaxation spectrum.

A 1D distribution of a particular MR contrast is obtained by encoding along the contrast’s 

corresponding 1D experimental parameter (e.g., for T2 distribution, we acquire data as a 

function of the experimental parameter, τ2, Fig. 1c). Similarly, 2D distributions of two 

correlated MR contrasts have conventionally required sampling over both corresponding 

experimental parameters, this time over a 2D rectangular grid, resulting in a quadratically 

longer acquisition. A schematic showing the principle of MADCO is given in Fig. 1. In this 

example, D-T2 REDCO distribution from a spinal cord WM region is reconstructed, and 

from it a quantitative tissue component image is obtained. A complete mathematical 

description and implementation of the framework are given in Appendix A.

It is worth noting that the efficiency and acceleration of the MADCO framework increases 

with the number of dimensions. Assume N is the number of dimensions and M is the 

number of acquisitions required in each dimension; then (MN) measurements are required 
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to reconstruct the M-dimensional spectrum by using a conventional approach, while only 

(N × M) measurements are required when MADCO is used. This relation leads to an 

acceleration factor of (M(N−1)/N).

3.2. Identification of tissue microenvironments

Similar microanatomical components share common physical and chemical 

microenvironments, which can be differentiated on the basis of their various relaxation and 

diffusion properties by using MRI. We used MADCO to generate multidimensional 

relaxation–diffusion spectra with relatively few MR data, so that microdynamic REDCO can 

be performed voxel by voxel within an imaging volume in a preclinically feasible time 

period. To enable our assignment of the REDCO peaks to their correct corresponding tissue 

components we selected a cervical spinal cord specimen. It is part of the central nervous 

system (CNS), yet exhibits excellent segregation of GM and WM into distinct histological 

regions (Standring, 2015).

Before presentation of the results, it is worth noting that previous 1D and 2D NMR and MRI 

relaxometry studies of a variety of neural tissues were able to distinguish and isolate three 

microscopic components within the investigated volume: intracellular, extracellular, and 

myelin associated (Beaulieu et al., 1998; Peled et al., 1999; Does and Gore, 2002; MacKay 

et al., 2006). In the present study we show that MRMI delivers unprecedented specificity to 

cellular subpopulations. To unequivocally assign the multispectral peaks to tissue 

components we show that each of them possesses a unique joint distribution of T2, T1, and D 
values, which can be regarded as a multispectral signature. In this study we therefore 

reconstructed three 2D distributions from the spinal cord – D-T2, D-T1, and T1–T2 – to 

decipher the particular tissue origin of the peaks.

We first focus on a GM ROI in the spinal cord (Fig. 2a), whose REDCO spectra are shown 

and analyzed in Fig. 2b. There are almost no multicompartmental T1, T2, and D MRI studies 

with well-segregated GM tissue. However, given what is known about spinal cord anatomy, 

we can assume that GM is mainly composed of different cell types (i.e., neurons, glia), 

dendrites, a few mainly unmyelinated axons, and interstitial space (Standring, 2015). The 

GM intracellular (GM-IC) and GM interstitial (GM-IS) spaces are disentangled by their 

physical environment, reflected by the D dimension, whose peaks are shown in Figs. 2bI and 

II, respectively. Magnetization transfer (MT) between bulk water protons and nonaqueous 

protons (e.g., protons residing on proteins) was shown to be the source of short T1 

components in the brain (Gochberg and Gore, 2007; Prantner et al., 2008). The third 

identified short T1 and T2 GM peak (Fig. 2bIII) was therefore assigned to a myelin-

associated (GM-MA) component. This determination is also backed by previous studies, 

which found that the short T2 component, usually assigned to myelin water (Beaulieu et al., 

1998; Mackay et al., 1994; Does and Gore, 2002; Bjarnason et al., 2005), is involved with 

large MT processes because of its close association with myelin bilayer proteins (MacKay et 

al., 2006). It is worth noting that dendrites in GM, which are expected to be randomly 

oriented, may contribute to the GM-IC, IC, and GM-IS components, depending on the angle 

of the dendrite relative to the diffusion gradient direction. Therefore, the dendrite 
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microenvironment cannot be distinguished from the rest using a single diffusion gradient 

direction (for further discussion, see section 3.8).

The same types of spectra from a representative WM ROI (Fig. 2a) are shown and analyzed 

in Fig. 2c. Three peaks can be identified in each of the multidimensional spectra; however, 

four distinct microscopic components can be assigned from them. When only the physical 

environment, reflected by D, is considered, two domains can be identified: slow and fast 

apparent diffusion, in agreement with previous WM 1D studies (e.g., Ronen et al. (2006)). 

Similarly to GM, the slow and fast apparent diffusivity domains can be assigned to water 

residing in the intracellular and interstitial (labeled WM-IS) spaces, respectively. A more 

careful analysis of the D-T2 spectrum suggests two subpopulations of IC water, with long 

and short T2 values, whose peaks are shown in Figs. 2cI and II, respectively. While the long 

T2 IC component is readily visible in the WM spectra, nonnegligible spectral intensity in the 

peak location is also present in the GM D-T2 spectrum. Since both WM and GM share the 

long T2 IC component, we label it for the time being, as IC. The short T2 IC component is 

exclusive to WM, and therefore labeled WM-IC. It is worth noting that the intracellular 

space in WM is mainly comprised of axons and glial soma (Walhovd et al., 2014), and the 

ability to detect cellular subpopulations within WM is unique to MRMI. Assigning these 

components to specific microenvironments on the basis of their spatial arrangement within 

the spinal cord, along with the relevant assumptions, is discussed in the next sections. The 

fourth, short T1–T2 WM component (Fig. 2cIII) is identified as a WM myelin-associated 

(WM-MA) component, similar to the GM case.

3.3. Tissue components have a unique multispectral signature

Apart from the spinal cord, such clear GM and WM separation is rare in other regions of the 

CNS. In most cases, a typical MRI brain voxel would contain a mixture of axons, neuronal 

soma, different types of glia, myelin, and interstitial spaces. One of the greatest challenges 

facing researchers using quantitative MRI methods is distinguishing between at least a 

subset of these components within an imaging voxel. The strength of microdynamic imaging 

in this context was demonstrated by analyzing a mixture of spectra from the above GM and 

WM ROIs (Fig. 2a). The resulting REDCO spectra are shown in Fig. 3. All of the identified 

WM and GM peaks possess a unique multispectral signature, thus allowing unequivocal 

assignments of these peaks to tissue components in the more challenging, and more realistic 

case, of mixed GM and WM.

Even in a mixed gray–white matter volume, the microdynamic information from the D-T2 

and D-T1 spectra reveals the seven peaks identified in Fig. 2. The T1–T2 spectrum is the 

least informative of the three, not contributing any new information. However we retained 

this spectrum because it provides an internal experimental control, since it has to be 

consistent with the other two spectra. In addition, it may reveal distinct components in a 

different region of the CNS. It should be noted that discarding the T1–T2 measurement 

would reduce the number of acquisitions from 88 to 76.
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3.4. Numerical representations of the tissue components

Mean values of the identified peaks are presented in Table 1. First, the weighted geometric 

mean of the T1, T2, and D of each component were derived according to the peaks’ intervals, 

which are also shown in the table. After that, the mean values from each of the components 

were again averaged across the spinal cord image according to their relative weights, which 

resulted in the global weighted mean and standard deviation (SD) that are shown in Table 1. 

Each component’s weighted global mean and SD of the apparent volume fraction (AVF) is 

also shown. Note that weighted AVFs do not, and should not, add up to 1.

Fig. 3 and Table 1 indicate a difference between the interstitial water of GM and WM. 

Although the term “interstitial” is somewhat ambiguous, the gray–white matter D-T2 

spectrum suggests some important distinctions between WM- and GM-IS, in terms of their 

physical and chemical environments. The higher apparent diffusivity of the GM-IS reflects a 

less compact and ordered macroscopic tissue arrangement, compared with its WM 

counterpart, as expected. The faster relaxation in the WM-IS may be caused by a higher 

concentration of macromolecules, such as collagen and myelin, which are known to reduce 

the overall observed T2 (Sundaram et al., 1987; Beaulieu et al., 1998; Peled et al., 1999).

Another question that can be addressed from Table 1 is whether intracellular T2 is longer 

than its extracellular space counterpart. We suggest examining the different tissue regions, 

GM and WM, separately. In WM, our findings support previous studies, which have 

concluded the longer-lived T2 component corresponds to intracellular water (Peled et al., 

1999; Wachowicz and Snyder, 2002; Dortch et al., 2010). In the present study, the WM 

description is a bit more complex because the tissue does not partition to only extra- and 

intracellular water, and the restricted diffusion component is divided into an additional two 

subpopulations. From Table 1, WM-IS, WM-IC, and IC have a global weighted mean T2 of 

13, 20, and 47 ms, respectively, which is in agreement with the above-mentioned studies.

Very few studies have focused on quantifying T2 values of extra- and intracellular spaces in 

GM tissue. In the present study, the relevant GM components had average T2 values of 37, 

48, and 47 ms, for the GM-IS, GM-IC, and IC, respectively (Table 1). These numbers 

indicate that similar to WM, the intracellular T2 is longer than the extracellular T2, although 

to a much lesser extent. These findings are partially backed by the work of Dortch et al. 

(2010), who could not distinguish between the intra- and extracellular components in the 

cortical and subcortical GM based on their T2. Contrary to our findings, Flint et al. (2012) 

investigated the spinal cord’s ventral horn (i.e., GM) using MR microscopy imaging, and 

showed a T2-weighted image with 6.25 μm isotropic resolution with hypointense neuronal 

cells, which may be interpreted as having reduced T2 compared with IS. However, two 

important issues prevent such a direct assertion: (a) IC hypointensity may be due to 

differences in proton density, i.e., proton density is lower in the IC compared with the IS, 

and therefore leads to lower signal. (b) Flint et al. (2012) have also reported that the IC 

diffusivity is about three times higher than that of the IS. Therefore, the presence of the 

imaging gradients could have resulted in unintentional diffusion-weighting in the T2-

weighted images, which can be attributed to the IC hypointensity.
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Intra- and extracellular fractions ratios can also be studied from these results. Previous brain 

extracellular space real-time iontophoresis studies determined that the volume fractions of 

the two intra- and extracellular water pools are about 0.8 and 0.2, respectively (Nicholson 

and Syková, 1998; Syková and Nicholson, 2008). We point back to Table 1, where such 

ratios can be obtained for the GM and WM regions. Ignoring the contribution of the MT-

generated component, the ratios of the intra- and extracellular fractions are 0.61:0.39 and 

0.60:0.40, in GM and WM, respectively. These ratios are not far from the established 

“ground truth” from the direct diffusion analysis by Nicholson and Syková (1998), 

especially considering the difference between the measuring techniques. It is worth noting 

that previous studies that used a biexponential diffusion model (Niendorf et al., 1996; 

Mulkern et al., 2000) have consistently found this ratio to be almost the opposite of what is 

expected.

As detailed above, MT, which can occur either by direct chemical exchange or by indirect 

dipole-mediated crossrelaxation, is the source of the short T1 peaks (WM- and GM-MA). 

From Table 1, these components have a T1 value of about 30 ms, while their T2 and D are 

similar to those of their respective IS components. With an effective diffusion period of 17 

ms, which is not sufficient for complete MT-governed exchange, one would expect that the 

short T1 component would have two diffusivities in the D-T1 spectrum, corresponding to the 

diffusivities of the two exchanging pools. However, this is not the case and only one 

component was detected. We believe that the magnetization of this component originates 

from nonaqueous protons (Henkelman et al., 1993) and not water residing between or within 

the myelin sheaths. In that case, even if the MT process did not reach pseudo equilibrium 

during the diffusion period, the expected second peak in the D-T1 spectrum is undetectable 

due to its T2 (~ 10 μs), which is invisible when normal solution-state MRI techniques are 

used (Prantner et al., 2008).

3.5. Images of microscopic tissue components using MRMI

The REDCO spectrum is considered to be the joint probability density function of any two 

MR contrasts. Summing over a particular peak would therefore result in its signal fraction. It 

is generally assumed that the MR signal fraction is proportional to the proton’s volume 

fraction, thus giving the multispectral content physical meaning. We caution here that the 

relationship between the observed signal fraction and the actual volume fraction of the tissue 

component depends on many factors, such as the MR pulse sequence and MT efficiency 

(Prantner et al., 2008), and therefore the observed signal fraction is referred to here as the 

apparent volume fraction (AVF).

We now want to assign the different multispectral components in Fig. 3 to actual tissue 

microenvironments. The fact that each spinal cord image voxel has its own multispectral 

signature, containing information from the seven identified tissue components, helps us with 

the correct assignment. By summing over each of the identified distinct peaks, the AVFs of 

the seven tissue components are obtained in each voxel. The boundaries around the peaks 

(i.e., intervals) were determined based on the identified components in Fig. 2b, c, and are 

detailed in Table 1.
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The AVF images of the nervous tissue components, shown in Fig. 4, exhibit unique 

contrasts. First, let us examine the spatial distribution of all the intracellular components we 

identified – WM-IC, GM-IC, and IC – and assign them to biological components:

• The WM-IC peak does not appear at all in the gray column voxelwise spectra 

(Fig. 4a). It has a weighted mean diffusivity value of 0.051 μm2/ms (Table 1), 

which is similar to previous findings in ex vivo WM (e.g., Avram et al. (2017)). 

It should be noted that very few axons, if any, are expected to reside in the 

cervical portion of the spinal cord GM, while a significant concentration of 

axons is expected in the WM(Standring, 2015). This microanatomical 

information would lead to an image with similar contrast as Fig. 4a, and we 

therefore suggest that the WM-IC component be assigned to intraaxonal water.

• High spectral intensity of the GM-IC peak is mainly limited to the GM (Fig. 4b), 

and it has a geometric mean diffusivity value of 0.16 μm2/ms (Table 1), which 

may still be considered restricted (compared with the GM-IS diffusivity, for 

example). The gray column concentrates neuronal and glial soma and dendrites, 

with the former being physically larger (Rajkowska et al., 1998, 1999). The 

component’s high intensity in GM precludes it from originating from axonal 

water, and its relatively high diffusivity makes it improbable that it originates 

from glial soma. Therefore we assign the GM-IC component to the neuronal 

soma microenvironment (termed here intraneuronal).

• The spectral intensity of the IC component peak is distributed in most areas of 

the spinal cord, with hyperintensity in certain regions of the WM (Fig. 4c). To 

assign this peak, it is worth noting that glia are present in all CNS regions, with 

higher concentration in WM (Snell, 2009; Azevedo et al., 2009), similar to the 

contrast in Fig. 4c. In addition, glia has a broad range of size (i.e., microglia and 

macroglia), while the IC peak spans a wide range of diffusivities, suggesting a 

broad size distribution (diffusivity range interval of [0.001, 0.10] μm2/ms, from 

Table 1). We therefore hypothesize that the IC peak originates from glial soma 

water (termed here intraglial).

As anticipated, WM-IS image intensity is mainly limited to WM (Fig. 4d) and is 

complementary to the GM-IS image, whose intensity is almost exclusively present in the 

gray column (Fig. 4e).

The total myelin-associated content (WM-MA + GM-MA) MRMI stain suggests a higher 

concentration in WM, but non negligible presence in the GM as well (Fig. 4f). This tissue 

component originates from MT between nonaqueous protons that reside on proteins and 

bulk water protons. Myelin-associated proteins, such as myelin basic protein (MBP) and 

myelin oligodendrocyte glycoprotein (MOG), are present in both myelin and in 

oligodendrocytes (Baumann and Pham-Dinh, 2001). While myelin is almost exclusively 

present in WM; oligodendrocytes are present in GM as well, which is consistent with the 

observed MA image contrast.
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3.6. Stability and uncertainty

In light of the previously discussed non-uniqueness of the reconstructed 1D spectra, it is 

important to discuss their reliability, especially because MADCO uses them to constrain the 

2D spectra estimation. Examination of the 1D projections from the 2D spectra in Fig. 2 

reveals that all of the (1D) spectral peaks were previously reported in multiple publications: 

1D diffusion spectrum with 2 peaks (e.g., Ronen et al. (2006)), 1D T2 spectrum with two or 

three peaks, depending on the tissue subregion (e.g., Dortch et al. (2010)), and 1D T1 

spectrum with two peaks (e.g., Dortch et al. (2010)). The fact that the current 1D estimates 

are in agreement with the previous literature reduces the probability of the introduction of 

spurious peaks in the 2D spectra by using MADCO (i.e., applying the equality constraints). 

As additional evidence of the inversion stability, Fig. 5 shows the spatially varying spectra 

from four voxels within a WM ROI, indicated with a yellow rectangle on Fig. 2a. As can be 

seen, the distributions from single adjacent voxels demonstrate the robustness of the 

inversion. All three WM D-T2 components can be identified, with slight spectral intensity 

changes, across the ROI, highlighting the spatially varying nature of the estimated 

multidimensional spectroscopic signature across the heterogenous sample.

To quantify the uncertainty in the obtained 1D and 2D spectra, we used a jackknife approach 

(Quenouille, 1949), following a previously suggested method to reduce the resulting 

dimensionality (Prange and Song, 2009), as detailed in section 2.6. We obtained the spatially 

resolved AVFs of the tissue components from 880 2D spectra estimated from the resampled 

data. We report here their weighted means and SDs across the image: 0.30±0.015, 

0.19±0.016, 0.28±0.016, 0.36±0.014, 0.3±0.020, 0.10 ± 0.0064, and 0.080 ± 0.0075, for the 

WM-IC, GM-IC, IC, WM-IS, GM-IS, WM-MA, and GM-MA, respectively. The SD of each 

AVF represents a quantified measure of its uncertainty. The SDs are under an order of 

magnitude smaller than the corresponding means, pointing to relative stability and low 

uncertainty. In addition, we presented in Fig. 6, as a representative example, the AVF 

histograms of the 7 components, along with their means and SDs, from the mix gray-white 

matter ROI spectra in Fig. 3.

3.7. Consistency across modalities

Because of the rich and compelling nature of high-resolution IHC images, a quantitative 

comparison of IHC- and MRI-derived images would appear to be a natural control and 

validation step. However, fundamental differences between these two methodologies 

(detailed below) prevent IHC images from being used as “ground truth” for MRI-based 

findings. Nevertheless, it is consistency and not fidelity that we are testing for, given the 

artifacts and uncertainties present in both imaging modalities.

IHC findings were used to solidify the validity of the assignment of the multispectral 

signatures peaks to nervous tissue components. The same spinal cord specimen scanned with 

MRMI was subsequently studied with IHC, staining for astrocytes (GFAP), microglia (Iba1), 

neurofilaments (NF), myelin oligodendrocyte glycoprotein (MOG), and cell nuclei (cresyl 

violet). Further details and protocols are provided in the Materials and Methods section. 

Multi-variable linear regression was performed to assess consistency between the MRMI-

derived nervous tissue component images and the relevant IHC-derived images after image 
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registration. To visualize the fit of the dependent variable versus the other variables in the 

model we used the Frisch–Waugh–Lovell theorem (Frisch and Waugh, 1933; Lovell, 1963). 

Eight ROIs were selected, and MRMI voxels from each were correlated to IHC pixels. We 

divided this analysis into two sections, WM (axons and myelin) and cellular content 

(neurons and glia).

For WM, the multiple linear regression model included the NF and MOG IHC optical 

density images as independent variables, regressed onto a combined WM MRMI image, 

generated by adding the intraaxonal (WM-IC) and the total MA images. Although not 

exclusively specific to axons, NF optical density provides an indirect measure that should 

increase with axon density. The WM ROIs, fasciculus gracilis (FG), lateral corticospinal 

(LCS), lateral spinothalamic (LST), and anterior corticospinal (ACS) tracts, are marked on 

the IHC NF and MOG images of the entire spinal cord (Fig. 7a, b). Figs. 7c–f show the plots 

of the WM AVF obtained from REDCO versus the results of the adjusted multiple linear 

regression model, in the FG, LCS, LST, and ACS ROIs, respectively. Pearson’s correlation 

coefficients, ρ, of 0.71, 0.65, 0.78, and 0.72, with p < .0001, p < .005, p < .00001, and p < .

005, in the FG, LCS, LST, and ACS ROIs, respectively, point to strong correlations with a 

high level of statistical significance.

The cellular content is examined by correlating the MRMI-based combined GM-IC and IC 

image with the IHC findings. The multiple linear regression model included the optical 

densities of the cell nuclei (neurons and glia), astrocytes, and microglia IHC images as 

independent variables. For this analysis, we focused on the FG and ACS WM ROIs, and on 

the gray column in two regions, the posterior column (PC) and anterior column (AC). These 

ROIs are marked on the cell nuclei, astrocytes, and microglia histology images of the entire 

spinal cord (Fig. 8a–c). Fig. 8d–g show the plots of the cellular AVF obtained from MRMI 

against the adjusted multiple linear regression model in the FG, AC, PC, and ACS ROIs, 

respectively. Pearson’s correlation coefficients, ρ, of 0.73, 0.88, 0.71, and 0.82, with p < .

001, p < .0001, p < .001, and p < .001, in the FG, AC, PC, and ACS ROIs, respectively, 

show strong correlations with a high level of statistical significance.

Although these results point to relatively strong correlation, it is important to bear in mind 

two major differences between MRI-based data and IHC. The first concerns the source of 

the signal. In MRI, the signal originates from protons and is proportional to their content. 

IHC contrast results from a chemical reaction (binding of an antibody to a specific protein), 

and the measured signal is an intensely colored product or a change in OD (Ramos-Vara, 

2005). Water is generally used as a reporter molecule in MRI, while proteins are used in 

IHC, the former transmitting volumetric signal and the latter OD from the surface. The 

second difference relates to the physical state of the specimen. Even when imaging the same 

sample with both modalities, MRI scans the tissue in a completely hydrated state, without 

using any prior chemical processing (except fixation). Conversely, IHC microscopy requires 

multiple sample preparation steps, which are known to alter tissue microstructural features 

(Gusnard and Kirschner, 1977; Strausfeld, 1983).
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3.8. Practical translational considerations

MRI is more time demanding from the perspective of data acquisition and scanning time 

than NMR because of the additional spatial encoding required. Although multidimensional 

MR is a powerful approach, these limitations have relegated its widespread use to non-MRI 

applications only. In vivo MRI measurements are generally limited in time – typically to 20 

min for clinical scans, to 60 min for human neuroscience research, and up to 180 min for 

small animal imaging studies.

When a conventional 3 T clinical scanner with a 32-channel RF coil and a single-shot spin-

echo DWEPI pulse sequence are used, acquisition of one slice takes about 150 ms (Avram et 

al., 2016). With the currently used TR = 4 ms, a multislice acquisition would result in 26 

slices. Whole-brain coverage generally requires 12 cm in the superior–inferior direction 

(without cerebellum), which could be achieved with 26 slices and a 4.6 mm slice thickness. 

Because in vivo relaxation times are longer, the required TR would have to be on the order 

of 10 s, which would lead to 66 slices and a 1.8 mm slice thickness. Field of view (FOV) 

requirements for the human brain are generally 21 cm, and therefore the common matrix of 

sizes is 128 × 128 or 96×96 with 2 to 3 mm in-plane resolution. EPI readouts use an echo 

spacing of 0.8 ms, and therefore to avoid long echo time, EPI is done with parallel imaging, 

which can lead to a minimal echo time of about 32 ms (without diffusion weighting). If no 

diffusion weighting is used, this duration can be reduced using segmented EPI.

The minimum echo time in DW EPI scans depends strongly on the maximal b-value and the 

gradient system. For current state-of-the-art whole-body gradients (80 mT/m), b-values of 

1500 and 6000 s/mm2 will result in echo times of about 60 and 79 ms, respectively (Avram 

et al., 2016). Reducing the echo time for diffusion scans can be achieved by using a 

stimulated echo diffusion EPI acquisition (Avram et al., 2010), or spiral-out trajectories 

(which start from the center of k-space) (Avram et al., 2014). In the latter case, the readout 

does not add to the echo time.

The REDCO spectra and nervous system component images in this study were generated by 

using 88 acquisitions in the T1–T2-D parameter space (instead of the commonly used 1000 

to 2000 with conventional methods). This number of acquisitions was translated to a total 

scan time of 88 min with the currently used pulse sequence on our preclincal scanner. With 

the above mentioned clinical scanner experimental parameters, 88 acquisitions would take 

about 15 min, which is well-within the clinically acceptable range.

In this work we encoded D, T2, and T1 in separate, independent acquisitions, without 

availing ourselves of multichannel coils for parallel imaging, multiband, and other 

accelerated acquisition methods. Other more advanced MRI pulse sequences allow for more 

efficient image acquisition, which can result in significant acceleration. For instance, 

multiecho (Mädler et al., 2008) and modified Look-Locker (Messroghli et al., 2004) 

acquisitions, which are routinely used in clinical applications, yield multiple T2 and T1 

images, respectively, in one shot. Using these standard pulse sequences would considerably 

reduce the total acquisition time we reported here to well below the clinically accepted 

threshold.
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While T1- and T2-weighted experiments do not have a directional preference, dMRI 

acquisitions are acquired with diffusion gradients applied along a certain direction, thus 

encoding diffusivity in that direction. Since spinal cord WM is mainly comprised of 

relatively well-aligned axons, optimal diffusion contrast was achieved in the present study 

by setting the diffusion direction perpendicular to the main axis of the spinal cord. In other 

brain regions, where the fiber orientation is unknown, an isotropic DW sequence 

(Szczepankiewicz et al., 2015) or an orientationally averaged acquisition scheme over 

multiple well-distributed directions (Avram et al., 2017) could be used. In the latter study 

whole-brain human isotropic acquisitions with a maximal b-value of 6000 s/mm2 resulted in 

a 1D diffusion spectrum, which consistently contained two to three separable components 

(intracellular, extracellular, and CSF). However, these strategies would not help to 

distinguish between dispersed axons or dendrites that exhibit identical diffusion profiles as a 

heterogeneous distribution of isotropic tissue components (Mitra, 1995). The difference 

between such cases can be fully captured by estimating the 2D correlation of isotropic and 

directional diffusion (de Almeida Martins and Topgaard, 2016). Although still limited to 

NMR applications, this method may be used in conjunction with the MADCO framework to 

significantly reduce the number of acquisitions in the densely sampled 2D parameter space, 

thereby permitting measurements within the time frame of clinical MRI.

An additional practical consideration is the extent of dynamic migration of water from one 

domain to another, referred to as molecular exchange. If the exchange times between the 

microenvironments are shorter than the nominal acquisition times, then the demonstrated 

separation of the REDCO peaks will decline. In particular, the absence of a myelin sheath 

layer on neuronal and glial soma should increase the water exchange rate to and from them. 

Although our findings suggest that, indeed, the cell membrane is sufficient to induce a 

relatively low diffusivity and, in addition, the intraneuronal and intraglial peaks were well-

resolved, we cannot exclude the effects of fast exchange in these two cases. The impact of 

exchange is expected to increase with in vivo applications because of the elevated 

temperature, the presence of active water and ion channels (Zhang et al., 2011), and the 

longer diffusion times necessary when using clinical systems. This issue may be addressed 

by direct measurement of the exchange rate spectrum, either via relaxation exchange 

spectroscopy (REXSY) (Lee et al., 1993) or via diffusion exchange spectroscopy (DEXSY) 

(Callaghan and Fur’o, 2004). Spatially resolved, accelerated, and efficient REXSY and 

DEXSY experiments were recently demonstrated by using the MADCO framework (Bai et 

al. (2016) and Benjamini et al. (2017), respectively), and could be integrated with MRMI, as 

a complementary measurement. Alternatively, filter-exchange imaging may be used to 

obtain a single global apparent exchange rate value (Nilsson et al., 2013), assuming two 

exchanging compartments.

4. Conclusions

Using MRMI, we identified specific tissue components on the basis of their multispectral 

signature within individual imaging voxels and in a clinically acceptable time range. The 

spatially resolved images obtained by using the MADCO framework with REDCO 

spectroscopic imaging allowed us, for the first time, to detect and distinguish between 

different intracellular components: axons, neuronal soma, and what is hypothesized to be 
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glial soma. Interstitial spaces and myelin associated macromolecules within gray and white 

matter were also disentangled, identified, and imaged. These seven cellular, interstitial, and 

extracellular components may be present in any single MRMI spinal cord voxel. These have 

the potential to become a new family of microdynamic and physiological biomarkers for 

neurodegenerative diseases, neuroinflammation, and characterization of traumatic brain 

injury, as well as signatures of normal and abnormal development. MRMI delivers 

unprecedented spatially resolved information, which could have only been obtained by using 

laborious histological procedures on a fixed specimen. MRMI is clearly not limited to 

applications within the CNS; it can be used on any type of tissue or material in which 

relaxation, diffusion, and transport properties can be measured, providing exciting 

opportunities for investigators in a range of disciplines.
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Appendix A. MRI data processing

Appendix A.1. 1D relaxometry and diffusometry

Depending on the type of 1D relaxometry/diffusometry experiment, the signal attenuation, 

M, can be described by the following discrete sum (Menon and Allen, 1991):

(A.1)

where ε(β) is the experimental noise, which is assumed to be Gaussian. βi are experimental 

parameters determined by the data acquisition scheme, ω is the measured relaxation/

diffusion parameter, which is distributed according to F(ω) with N discrete components, and 

K(β,ω) relates β and ω, and is called the kernel.

The applied MRI pulse sequence determines the experimental contrast (i.e., weighting), and 

subsequently the expression for the kernel. The respective kernels of the three present MRI 

contrasts, diffusion, T1, and T2, are

(A.2a)
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(A.2b)

(A.2c)

while it is worth noting that KT1 is in fact a modified version of the conventional T1 kernel, 

obtained by subtracting the fully recovered data from the data set, and is done to eliminate 

any signal offset. In addition, a constant that accounts for a possible signal offset was added 

to Eq. A.1 in the case of the diffusion and T2 kernels, and therefore in those cases F(ω) 

contains N+1 components.

For each contrast, 1D encoding can be done by sampling the corresponding experimental 

parameter Nβ timess. In this case, Eq. A.1 can be written in matrix form as

(A.3)

where M and ε are Nβ ×1 vectors, F is an N ×1 vector, and K is an Nβ × N matrix (or (N 
+ 1) × 1 vector and Nβ × (N + 1) matrix in the cases of diffusion or T2 encoding). Eq. A.3 

represents an ill-posed problem, i.e., a small change in M may result in large variations in F. 

A standard approach to solving ill-conditioned problems is to regularize them. When the 

distribution is expected to be smooth, ℓ2 regularization is appropriate (Fordham et al., 1995), 

and therefore the regularized problem considered in this study was

(A.4)

where || · · · || is the ℓ2 norm. The regularization term is a measure of the desired smoothness 

in F(ω), and although it makes the inversion less ill-conditioned, it may cause a bias. 

Choosing the suitable value of α is still an open research question, with several approaches 

having been proposed (for a comprehensive review, please refer to Mitchell et al. (2012)). 

The regularization parameter in this study was chosen by means of the L-curve method 

(Hansen, 1992). Note that since F(ω) is a probability density function, nonnegativity 

constraints are imposed. Acquired 1D data using diffusion-, T1-, and T2-weighted 

experiments are then used to solve Eq. A.4 with the appropriate kernels from Eq. A.2, 

resulting in the 1D (marginal) distributions, F(D), F(T1), and F(T2).

Appendix A.2. 2D relaxation–diffusion correlation (REDCO)

In the above described cases (i.e., diffusion-, T1-, and T2-weighted experiments), the 

experimental parameters b, τ1, and τ2 are independent variables with respect to each other. 

Two-dimensional experiments that combine two contrast mechanisms can also be used. Eq. 
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A.1 can be extended to the following general expression (English et al., 1991), which 

describes the signal attenuation from 2D experiments with separable kernels:

(A.5)

where the notation in Eq. A.1 is kept, only expanded to the 2D case. Eq. A.5 can be written 

as

(A.6)

and Eq. A.4 as

(A.7)

Here, a robust and widely used algorithm developed by Venkataramanan et al. 

(Venkataramanan et al., 2002; Song et al., 2002) was used to solve Eq. A.7.

Appendix A.3. MADCO framework implementation

It is generally accepted that if Nβ1 measurements are required to estimate the 1D 

distribution, F(ω1), then to reconstruct the 2D distribution, F(ω1, ω2), would require an 

order of Nβ1 × Nβ2 acquisitions, which is not feasible in clinical and biological applications. 

In this work we apply MADCO (Benjamini and Basser, 2016), a robust framework to 

stabilize the solution of Eq. A.7, while significantly reducing the number of required 

acquisitions and improving accuracy. Since the 2D distribution, F(ω1, ω2) is, in fact, the 

joint distribution of ω1 and ω2, it is related to the 1D marginal distributions F(ω1) and F(ω2) 

by

(A.8a)

(A.8b)

As described above, these marginal distributions can be separately estimated from 1D 

experiments, which is the main principle of the MADCO experimental design and 
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reconstruction framework. Instead of sampling the entire experimental parameters space, 

(β1, β2), and directly estimating the 2D distribution F(ω1, ω2), using MADCO would only 

require sampling along β1 and β2 axes (i.e., 1D data), complemented with a small number of 

acquisitions in the 2D space (Fig. 1a). The framework therefore has two steps: (1) estimate 

F(ω1) and F(ω2) from 1D experiments using (2Nβ) 1D measurements, and (2) use F(ω1) 

and F(ω2) as additional constrains (Eq. A.8) when solving Eq. A.7 with very few 2D 

measurements.

These equality constraints are correct in an idealized system; however, expected errors in the 

1D estimations of F(ω1) and F(ω2) require a relaxed version of Eq. A.8,

(A.9a)

(A.9b)

In this work we set σ1,2 to be the standard deviation of the noise (as determined after 

complete signal decay) normalized by the unattenuated signal and N1,2. Similar to the 

standard nonnegativity constraints, the inequality constraints in Eq. A.9 also represent 

physical conditions that must be fulfilled (“conservation of mass” of the 2D probability 

distribution projected onto one of its axes) and can be applied in a similar manner.
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Figure 1. 
Schematic and principle of MADCO MRI with a D-T2 example. (a) Two-dimensional 

sampling scheme encoding T2 and D result in (b) a spinal cord image. A WM voxel is 

chosen, and the 1D T2 and D signal attenuations shown in (c), top to bottom, are used to 

evaluate their corresponding 1D marginal distributions by using an inverse Laplace 

transform (ILT) (Provencher, 1982; Whittall and MacKay, 1989), shown in (d). The 2D D-T2 

spectrum can be obtained with MADCO by sampling only a dozen random data points 

(instead of sampling over the entire 2D parameter space). (e) The reduced 2D data are then 

transformed to 2D spectrum by using a 2D ILT, constrained by the a priori estimated 

marginal distributions. The peaks in the resulting 2D spectrum originate from different 

microenvironments within the given voxel (Peled et al., 1999; Does and Gore, 2002). After 

judicious assignment of peaks to their respective tissue components, integration over each 

peak results in the signal fraction of that component, which is assumed to be proportional to 

its volume fraction. (f) This process is repeated in every image voxel, resulting in spatially 

resolved quantitative images of the microdomain.
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Figure 2. 
Spectra from GM and WM ROIs. (a) A high-resolution proton density MR image with the 

locations of representative ROIs: WM (blue box) and GM (red box) ROIs. After voxelwise 

analysis, the spectra in each of the GM and WM ROIs were averaged and are presented in 

(b) and (c), respectively. The different peaks are assigned to microscopic neuroanatomical 

components according to their D, T1, and T2 values. GM: I. Intracellular (GM-IC), II. GM 

interstitial space (GM-IS), and III. GM myelin-associated (GM-MA). WM: I. Long T2 

intracellular (IC), II. Short T2 intracellular (WM-IC), III. WM interstitial space (WM-IS), 

and IV. WM myelin-associated (WM-MA).
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Figure 3. 
Microscopic compartmental analysis of a mixture of the representative GM and WM ROIs 

in Fig. 2a, which yield a gray–white matter “mixed volume.” To the right is the most 

informative D-T2 spectrum with four peaks, corresponding to four unique microscopic 

nervous components that can be unequivocally assigned (IC, WM-IC, GM-IC, and GM-IS). 

Having similar T2 and D values, the WM-IS, WM-MA, and GM-MA peaks are well 

separated by their T1 value, reflected in the D-T1 spectrum to the left. With this information, 

all seven peaks identified in Fig. 2 are accounted for.
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Figure 4. 
Generated quantitative images of the identified microscopic neuroanatomical tissue 

components. Image intensity reflects the AVF of the specific tissue component within each 

voxel. (a–c) The three identified intracellular tissue component images, WM-IC, GM-IC, 

and IC, corresponding to intraaxonal, intraneuronal, and intraglial AVF images, respectively. 

(d–e) Interstitial spaces, WM- and GM-IS AVF images. (f) Total content of myelin-

associated components (GM and WM). Note that the AVFs are additive and normalized, and 

therefore sum to 1.
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Figure 5. 
Spatially varying D-T2 spectra from a WM ROI, corresponding to the yellow box drawn on 

the anatomical image in Fig. 2a.
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Figure 6. 
Histograms of the AVF values of the 7 tissue components computed from 880 2D spectra 

from the mix gray-white matter ROI in Fig. 3. The mean and SD for the histograms are 

indicated by the solid bars.
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Figure 7. 
Correlations between various MRMI- and IHC-derived WM volume fractions. (a) Anti-NF 

IHC of the entire spinal cord slice with FG, LCS, ACS, and LST ROIs (solid lines) and 

magnified subregions within them (dashed lines). (b) Same for anti-MOG IHC. MRMI-

based intraaxonal (WM-IC) and myelin-associated (MA) images were added to create a WM 

image in each ROI. After registration of IHC images to the MR image space, IHC images 

were resampled at MRI in-plane resolution, followed by multivariable regression with NF 

and MOG IHC images as predictor variables in a linear regression model. Scatter plots, 

along with the correlation coefficient (ρ) and the p-value for FG, LCS, LST, and ACS ROIs 

are shown in (c–f), respectively. The fitted model is the solid red line, and the dashed lines 

are the 95% confidence bounds.
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Figure 8. 
Correlations between various MRMI- and IHC-derived cellular volume fractions. (a) Cresyl 

violet stain of the entire spinal cord slice with FG, AC, PC, and ACS ROIs (solid lines) and 

magnified subregions within them (dashed lines). (b) Same for anti-GFAP IHC. (c) Same for 

anti-Iba1 IHC. MRMI-based intraneuronal (GM-IC) and intraglial (IC) images were added 

to create a cellular content image in each ROI. After registration of IHC images to the MR 

image space, IHC images were resampled at MRI in-plane resolution, followed by 

multivariable regression with cresyl violet stain, GFAP, and Iba1 IHC images as predictor 

variables in a linear regression model. Scatter plots, along with the correlation coefficient (ρ) 

and the p-value for FG, AC, PC, and ACS ROIs are shown in (d–g), respectively. The fitted 

model is the solid red line, and the dashed lines are the 95% confidence bounds.
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