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Abstract

Nanotechnology, in conjunction with convection-enhanced delivery (CED), has gained traction as 

a promising method to treat many debilitating neurological diseases, including gliomas. One of the 

key parameters to evaluate the effectiveness of delivery is the volume of distribution (Vd) of 

nanoparticles within the brain parenchyma. Measurements of Vd are commonly made using 

fluorescent reporter systems. However, reported analyses lack accurate and robust methods for 

determining Vd. Current methods face the problems of varying background intensities between 

images, high intensity aggregates that can shift intensity distributions, and faint residual 

backgrounds that can occur as artifacts of fluorescent imaging. These problems can cause 

inaccurate results to be reported when a percentage of the maximum intensity is set as the 

threshold value. Here we show an implementation of Otsu’s method more reliably selects accurate 

threshold values than the fixed-threshold method. We also introduce a goodness of fit value η that 

quantifies the appropriateness of using Otsu’s method to calculate Vd. Adoption of Otsu’s method 

and reporting of η may help standardize fluorescent image analysis of nanoparticles administered 

by convection-enhanced delivery.
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Introduction

Glioblastoma (GBM) is the most common and aggressive type of brain tumor in adults, with 

an annual incidence of 3.19 per 100,000 people [1]. Highly heterogeneous and invasive, 

GBM constitutes the most severe grade of malignant glioma and is associated with 

extremely poor prognoses. Despite multimodal therapy consisting of surgery, radiation, and 

chemotherapy, GBM patients have a median survival of only 15 months [2]. Primary brain 

tumors usually recur—after therapy—within 2 cm of the original site [3].

Treating GBM with chemotherapeutic agents poses major drug delivery challenges. First, 

most chemotherapeutic agents have short half-lives in blood circulation and the tumor 

microenvironment, and are easily metabolized or eliminated before eliciting their therapeutic 

effect. To tackle this challenge, polymeric nanoparticles have been used to protect fragile 

molecules from metabolism, offering the possibility of sustained release. Second, the blood 

brain barrier (BBB) is the primary interface between the blood and the brain interstitial fluid 

(ISF), and prevents 98% of small molecules and effectively 100% of large molecules from 

reaching the brain parenchyma when delivered by systemic administration [4].

The BBB can be bypassed using local delivery. Polymeric wafers implanted directly in the 

tumor cavity, such as Gliadel® [5], represent one such method for direct delivery of 

chemotherapeutic agents. In clinical practice, implantation of Gliadel typically follows 

neurosurgical resection. However, this approach allows for only modest therapeutic 

improvement, likely due to its reliance on diffusion for drug penetration in the brain tissue 

[6]. Indeed, drugs loaded in Gliadel® wafers achieved depth of penetration in tissue of about 

1 mm [7], whereas GBM cells have been detected in areas remote from the primary lesion, 

including the corpus callosum [8].

Convection-enhanced delivery (CED) constitutes another method for direct, local delivery, 

and allows for overcoming issues associated with therapeutic distribution. During CED, 

drugs are infused continuously in the brain tissue through a catheter connected to an infusion 

pump. Unlike polymeric wafers, CED establishes a pressure gradient, allowing for 

distribution of drugs over large volumes. Morrison et al. predicted that CED can increase the 

volume of distribution (Vd) of macromolecules by fivefold over simple diffusion [9]. Recent 

clinical trials showed that CED is safe and feasible; however, CED has not yet translated to 

improvements in clinical outcomes. In particular, it has been suggested that suboptimal Vd 

compromise the therapeutic efficacy of CED [10]. Numerous pre-clinical studies from 

several laboratories have combined the use of nanoparticles with CED, showing the 

importance of size, surface charge, and stability to ensure wide distribution of particles 

throughout the brain tissue. However, values of Vd vary greatly among these reports, and 

there is a lack of a standardized method to compare brain penetration of particle 

formulations after CED.

To evaluate the distribution of nanoparticles in the brain, the system is usually labeled using 

a fluorescent dye. Thin slices of brain tissue are then visualized using fluorescence 

microscopy, and these images are saved digitally for further analysis. It is assumed that 

fluorescence distribution reflects nanoparticle and drug penetration. Image processing 
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requires extracting objects from their background. Thresholding involves separating each 

pixel into one of two classes, background or foreground, according to a calculated threshold 

value. Background refers to areas of the image with intensity values less than the specified 

threshold, and foreground refers to areas with intensity values greater than the threshold. In 

the ideal case, an image would have an intensity histogram characterized by a sharp valley 

between two peaks, each one corresponding to the foreground and background. Thus, the 

choice of a threshold is conceptually simple but often practically difficult. For example, a 

histogram with a flat and broad valley or peaks of unequal heights offers no easily 

discernable threshold [11].

Currently, most laboratories reported automated methods wherein a fixed threshold is set as 

a proportion of the maximal intensity of any particular pixel in the image (fixed-threshold 

method). However, this strategy has resulted in selections of thresholds that appear to be 

incorrect upon manual inspection, highlighting the need for a more reliable approach for 

image thresholding. Chow and Kaneko previously developed a method of automatic 

boundary detection for identifying the left ventricle in cineangiograms. Their technique 

involves approximating the histogram using a method of least squares. However, the 

assumption of Gaussian distributions often does not correspond well to real images, and 

thresholds are set according to local, rather than global, characteristics of the image [12]. 

Weszka et al. previously developed a technique wherein the threshold is selected based on 

the Laplacian of the histogram. The choice of threshold corresponds to the region of 

maximal difference. However, one drawback of this approach is that it does not offer a 

measure of the “goodness” of a threshold selection [13]. Otsu’s method is a nonparametric 

and unsupervised method of thresholding. This method distinguishes between foreground 

and background by minimizing the weighted within-class variance of foreground and 

background pixels, which is equivalent to maximizing the between-class variance [14]. 

Application of Otsu’s method resulted in adequate separability as compared to other 

thresholding methods when applied to images of breast tumor cells [15].

In this paper, we developed a MATLAB algorithm based on Otsu’s method to analyze 

fluorescence images of nanoparticle distribution after CED. Upon visual inspection, this 

algorithm appeared more effective at image thresholding than the fixed-threshold method 

currently reported in the literature. This was observed when analyzing images of different 

particle types and encapsulated dyes, showing the universality of the method. Moreover, our 

algorithm also provided a parameter reflecting the “goodness” of the threshold that 

quantifies the appropriateness of the threshold selection, and can be used as a comparison 

criterion between studies.

Methods

Preparation of NPs

PEGylated SQ-Gem NPs loaded with BODIPY-CE dye (1% w/w) at a final concentration of 

10 mg/mL in SQ-Gem were prepared by the nanoprecipitation technique as previously 

described [16]. PLA-HPG NPs loaded with the DiA dye (0.2% w/w) at a final concentration 

of 100 mg/mL in PLA-HPG were prepared by the emulsion-evaporation technique as 

previously described [17]. Brain penetrating PLGA NPs loaded with Nile Red (0.2% w/w) at 
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a final concentration of 100 mg/mL in PLGA were prepared by the emulsion-evaporation 

technique followed by centrifugation steps to recover small particles, as previously described 

[18]. TAMRA-PNA PLA-HPG particles were prepared by nanoprecipitation as follows. 

TAMRA tagged-PNA was suspended in water at a concentration of 1 mg/mL. The solution 

was emulsified into a mixture of DMSO and ethyl acetate (1:3 v/v) with 6 mg of PLA-HPG 

dissolved and sonicated to create a first emulsion. This final emulsion was then added 

dropwise to 6 mL of water (1:5 v/v ratio).

CED of NPs

Male Fischer 344 rats (6–8 weeks old, Charles River Laboratories) or C57BL6 mice (6–8 

weeks old, Charles River Laboratories) were used. All procedures were performed in 

accordance with the guidelines and policies of the Yale Animal Resource Center and 

approved by the Institutional Animal Care and Use Committee. Surgical procedures were 

performed using standard sterile surgical techniques. Animals were anesthetized using a 

mixture of ketamine (75 mg/kg) and xylazine (5 mg/kg), as previously described. Animal’s 

head was shaven, and the animal was then placed in a stereotaxic frame. After sterilization 

of the scalp with alcohol and betadine, a midline scalp incision was made to expose the 

coronal and sagittal sutures, and a burr hole was drilled above the striatum region (3 mm 

lateral to the sagittal suture and 0.5 mm anterior to the bregma for rat, 2 mm lateral to the 

sagittal suture from the bregma for mice). A 50 μL Hamilton syringe with a polyamide-

tipped tubing, loaded with the NPs, was inserted into the burr hole to reach the striatum 

(depth of 5 mm from the surface of the brain for rats, depth of 3 mm from the surface of the 

brain for mice), and left to equilibrate for 7 minutes before infusion. A micro-infusion pump 

(World Precision Instruments, Sarasota, FL, USA) was used to infused 20 μL (rats) or 5 μL 

(mice) of NPs at a rate of 0.667 μL/min. Once the infusion was finished, the syringe was left 

in place for another 7 minutes before removal of the syringe. Animals were then euthanized 

and brains were immediately harvested and frozen for further tissue processing.

Brain processing and imaging

Frozen brains were cut in 50 μm slices using a Leica Cryostat CM1850 (Leica, Germany) 

and mounted on positively charged frosted microscope slides. Images of slices were taken 

with a Zeiss SteREO Lumar.V12 microscope (Zeiss, Germany) with a Zeiss NeoLumar S 

1.5× FWD 30 mm objective lens. Images were taken with an exposure time of 350 ms in a 8 

bit grey format. Images were 1388×1040 pixels with a black value of 0, white value of 

0.0625 and gamma value of 0.45. Finally the images were analyzed using programs written 

in MATLAB (MathWorks, Natick, MA, USA).

Image analysis

The fixed-threshold method program employs a threshold selection technique based on the 

following algorithm. The maximum intensity level of any one pixel in the image is given by 

m, and the threshold is as a fixed fraction—typically, 1/7 or 1/10—of m. The same fraction 

is applied globally to all images in a series of brain sections. The area of distribution is 

calculated for each slice and summed to obtain the Vd for the whole brain.
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A program was then developed based on Otsu’s method. The method can be derived as 

follows [14]. For a given image, let the pixels correspond to L values of intensity. Let ni 

denote the number of pixels at intensity level i. Thus the total number of pixels is given by N 
= n1 + n2 + … + nL. We may thus represent the histogram as a probability distribution:

Likewise, we may represent the zeroth- and first-order cumulative moments up to a 

threshold of intensity value t as follows:

The mean intensity value of the image is given by:

Allow each pixel to be classified into one of two classes F and B corresponding to 

foreground and background, respectively, wherein pixels with intensity value above t belong 

to F and pixels with intensity value at or below t belong to B. Thus, B is comprised of pixels 

with intensity levels [1, …, t] and F is comprised of pixels with intensity levels [t + 1, …, L]. 

We may calculate the probability that a pixel belongs to each class and the mean of each 

class:
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It follows that the probability-weighted means sum to the total mean of the image for any 

selection of t, and that all pixels belong to either B or F:

The variances for B and F are given by:

We may then derive the within-class, between-class, and total variance of intensity levels, 

respectively:

We now define three discriminant criterion measures:

Chi et al. Page 6

Comput Med Imaging Graph. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We must select a criterion measure to evaluate our choice of threshold t. η is the simplest to 

maximize of the criterion measures. Notably, σT
2 is independent of t. The optimal threshold 

t′ that maximizes η and likewise maximizes σBC
2 is given by:

Furthermore, the value (t′) can be used to measure the ease of separating pixels into B and 

F, and thus represents a measure of “goodness” of the separation.

An algorithm employing Otsu’s method was implemented in MATLAB using the graythresh 
function. A filter that removed all connected components with fewer than 50 pixels was 

utilized. The area of distribution for each fluorescent image was calculated and summed to 

obtain Vd for a whole brain.

Overlapping comparisons of Otsu’s method and the fixed-threshold method to the reference 

image were generated using the imshowpair function. The appropriateness of threshold 

selection was evaluated by the authors on individual images by visual inspection. For each 

image, the threshold selection was recorded as either appropriate or inappropriate and then 

compared between authors for consensus. For a series of images, a method of threshold 

selection was considered reliable if threshold selection was appropriate for all images in that 

series.

Statistical Analysis

A two-tailed z-test was implemented with theoretical values of maximum volume of 

distribution in the striatum reported by Andersson et al [19]. Statistical significance is noted 

by * (P < 0.05).

Results

Various NP formulations (PLA-HPG, PLGA, SQ-Gem) with different dyes (PNA-TAMRA 

or DiA, Nile Red and BODIPY respectively) were delivered intracranially by CED to non-

tumorous rodent brains. Fig. 1 presents two representative images of brains injected with 

SQ-Gem NPs. Three key image processing challenges were identified by manual inspection: 

variability of the background, faint residual signal due to neighboring regions of 

fluorescence, and particulate-shaped regions corresponding to high intensity levels. The 

corresponding regions were circumscribed on the images.
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Both Otsu’s method and different implementations of the fixed-threshold method most 

commonly employed in the literature were used to process two selected images. Based on 

manual inspection of Fig. 2 and Supp. Fig. S1, the threshold chosen by Otsu’s method (Fig. 

2b, Supp. Fig. S1b) resulted in a better fit of the original image (Fig. 2a, Supp. Fig. S1a) 

compared to implementations of the fixed-threshold method at one-seventh (Fig. 2c, Supp. 

Fig. S1c) or one-tenth (Fig. 2d, Supp. Fig. S1d) of the maximum pixel intensity. More 

specifically, when the images are imported into MATLAB, the pixel intensities are 

automatically scaled such that the range of possible intensities is 0 to 255. The fixed-

threshold method selected the same thresholds for both images: 36 when using one-seventh 

(Fig. 2c, Supp. Fig. S1c) and 25 when using one-tenth (Fig. 2d, Supp. Fig. S1d) of the 

maximum pixel intensities. On the other hand, Otsu’s method selected thresholds of 61 in 

Fig. 2b and 72 in Supp. Fig. S1b.

We validated the use of Otsu’s method by applying it to calculate the volume of distribution 

(Vd) of different nanoparticle/fluorescent dye combinations. In the case of SQ-Gem NPs 

loaded with BODIPY dye and surface modified with varying concentrations of 

poly(ethylene) glycol (PEG), Otsu’s method calculated values of Vd lower than the ones 

obtained using a fixed-threshold (Fig. 3a). For example, for the series of brain slices to 

which the image in Fig. 1a belongs, Otsu’s method calculated a Vd of 41.5 mm3, while 

implementations of the fixed-threshold method using 1/5, 1/7 or 1/10 of the maximum pixel 

intensity calculated Vd of 54.8 mm3, 69.8 mm3 and 157.5 mm3, respectively. Likewise, for 

the series of brain slices to which the image in Fig. 1b belongs, Otsu’s method calculated a 

Vd of 46.3 mm3, while implementations of the fixed-threshold method using 1/5, 1/7 or 1/10 

of the maximum intensity calculated Vd of 57.9 mm3, 77.0 mm3 and 155.8 mm3, 

respectively. Notably, the values of Vd obtained with all implementations of the fixed-

threshold method were larger than the theoretical volume of the rat striatum (40 mm3), while 

Otsu’s method reported a value in accordance with the physiological value. Additionally, 

threshold selections by Otsu’s method exhibited less dispersion than all implementations of 

the fixed-threshold method. Otsu’s method was extended to other particle and dye 

combinations to confirm the robustness of our analysis (Fig. 3b). Similar results were 

observed for PLGA particles loaded with Nile Red, with Otsu’s method calculating the 

lowest Vd compared to the different implementations of the fixed-threshold method. PLA-

HPG particles loaded with DiA or TAMRA dyes showed lower Vd when the threshold was 

set at 1/5 and 1/7 of the maximum pixel intensity, as compared to Vd calculated using Otsu’s 

method. On the other hand, a threshold of 1/10 increased the values of Vd beyond the 

theoretical values of the striatum volume in mice (10 mm3, used for the PLA-HPG TAMRA 

loaded particles) or rats (40 mm3, used for the PLA-HPG DiA loaded particles) (Fig. 3b).

For images with a large region of high intensity values, it appeared based on manual 

inspection that Otsu’s method was not able to determine a satisfactory threshold (Fig. 4b and 

Fig. 5b). The region of moderate intensity value in the left half of the image (circumscribed 

in blue in Fig. 4b and Fig. 5b) was an area that should have been considered in the Vd 

calculation, but was not included based on the threshold (118) selected by Otsu’s method. 

Indeed, the histogram of intensity values of the image revealed a flat and broad valley 

between two peaks, which rendered threshold selection by any method challenging (Supp. 

Fig. 2).
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Finally, using Otsu’s method, we could calculate an index of “goodness”, η, which 

corresponds to the separability of the image. A review of published literature did not reveal 

any quantifiable guidelines for interpreting values of η. However, based on the images 

processed in this study, in general, Otsu’s method reliably selected satisfactory thresholds 

for images with a separability index η greater than 40 (Table 1).

Discussion

Three image-processing challenges are associated with fluorescence-based imaging and 

must be resolved by a thresholding algorithm (Fig. 1). First, the background intensity varies 

between and within slices of the same brain. This prevents the selection of a global threshold 

applied to all images within a set of slices; a unique threshold should be determined for each 

slice. Second, faint residual signal may arise from regions of the image in which there is 

fluorescence. A method for threshold selection must reliably exclude these areas and 

categorize them as background. Third, due to heterogeneous nanoparticle distribution, small 

particulate-like regions of a given image may have high intensity relative to both other 

regions of foreground as well as the background. These particulates are often unconnected 

components and can be identified by manual inspection. An ideal thresholding method must 

categorize these regions as part of the foreground in addition to areas with moderate, but not 

low, intensity.

Image thresholds set as a certain percentage of maximum intensity (fixed-threshold method) 

tended to miscalculate Vd for the images examined in this report (Fig. 3). This is apparent in 

Fig. 2c,d, and Supp. Fig. S1c,d, where images display clear positive signal in locations that 

are not distinguishable from background upon manual inspection. In contrast, for most 

images, Otsu’s method calculates accurate threshold and Vd values that can be verified both 

by comparison to theoretical limits of the rodent brain volume and through visual acuity 

(Fig. 2b, Supp. Fig. S1b). Our first exploration looked at the Vd of a single type of particle 

with variation of surface properties (different amount of PEG), and investigated the 

robustness of the thresholding technique. Values of Vd for brains treated with SQ-Gem NPs 

containing 5%, 10%, 30%, or 50% PEG appeared less dispersed when calculated with 

Otsu’s method than when calculated with different implementations of the fixed-threshold 

method, showing that Otsu’s method is reliable and reproducible in calculating fluorescent 

nanoparticle volumes of distribution. When a two-tailed z-test was implemented, setting the 

theoretical value of the striatum as a comparison, a significance was shown for 1/5, 1/7 and 

1/10 of the maximum thresholding, which all had values greater than the theoretical value of 

40 mm3, indicating that the fixed-threshold method picked up more signal than was in fact 

positive. This was confirmed by manual inspection, as in Fig. 2c,d, and Supp. Fig. S1 c,d.

A similar comparison was made using different particle type and fluorescent dye 

combinations (Fig. 3b). For some particle/dye combinations (PLA-HPG NPs/TAMRA and 

PLA-HPG NPs/DiA), values of Vd calculated with Otsu’s method were higher than the ones 

obtained with fixed thresholds of 1/5 or 1/7, although always lower than the one obtained 

with a 1/10 threshold. The fixed-threshold method depends on the maximum pixel intensity 

of an image, which varies with camera exposure times as well as the brightness of the 

fluorophone, its concentration, and its emission spectra. Still, Otsu’s method was able to 
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overcome these variances and calculate appropriate thresholds upon manual inspection (Fig. 

3b).

However, Otsu’s method does not successfully select threshold values for all images (Fig. 4 

and Fig. 5). The measure of “goodness” η can be used to evaluate the appropriateness of 

Otsu’s method for various images (Table 1). By manual inspection, we observed that Otsu’s 

method tends to fail for images with a value of η below 40. As is the case with the original 

image in Fig. 4 and Fig. 5, pictures with low separability η are characterized by a histogram 

with poorly defined peaks, as well as a flat and broad valley (Supp. Fig. S2). One 

workaround to this challenge may be to employ a different thresholding technique [20, 21] 

for images with η below 40.

In future research, Otsu’s method may also demonstrate advantages over the fixed-threshold 

method when applied to images of CED in preclinical GBM models. These images may 

possess greater complexity, including varying tumor grades, heterogeneity, tumor 

localization, and artifacts arising from surgery or tissue preparation. Adoption of Otsu’s 

method and reporting of η may help standardize fluorescent image analysis of nanoparticles 

administered by convection-enhanced delivery.

Conclusion

With many research groups combining nanotechnology with local delivery systems in the 

brain, it is important to have a method that allows for reliable laboratory-to-laboratory 

comparisons of measured volumes of distribution, a critical parameter that has therapeutic 

relevance. The accuracy and robustness of the fixed-threshold method can be impaired by 

factors such as camera exposure time, brightness of fluorescence, and artifacts of tissue 

preparation. Most importantly, there does not exist a standardized measure of image 

separability. In this report, we detailed an implementation of Otsu’s method for use on 

fluorescent images of different particle/dye combinations administered by CED to rats or 

mice. We demonstrate that this technique meets two key criteria for a robust thresholding 

algorithm that are unfulfilled by the fixed-threshold method currently employed to analyze 

fluorescent NP distribution in the brain: (1) Otsu’s method selects appropriate thresholds for 

most images that can be verified upon manual inspection, and (2) it provides an index of 

separability η that can quantify the suitability of Otsu’s method for a given set of images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Otsu’s method as dynamic thresholding to quantify brain distribution of 

nanoparticles

• Obtention of robust thresholds for most images as verified upon manual 

inspection

• Introduction of a goodness of fit value for universal comparison of 

measurements
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Figure 1. Identification of key image processing challenges on representative images from rats 
treated by CED
Blue: the background intensity can vary within and between slices, and varies linearly with 

exposure times (Supp. Fig. S3). The maximum possible pixel intensity is 255; the minimum 

is 0. The boxed regions in Figures 1a and 1b have pixel intensities of 23.0 ± 1.4 and 25.1 

± 4.7, respectively. Red: a faint residual can arise from neighboring regions of fluorescence. 

These areas resemble the shape of the neighboring fluorescent region and are distinct from 

autofluorescent regions. Yellow: particulate-shaped regions corresponding to high intensity 

levels. Scale bar = 200 μm.

Chi et al. Page 13

Comput Med Imaging Graph. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Comparison of Otsu’s method to different implementations of the fixed-threshold 
method for a representative image from rat treated by CED
(a) Original image, (b) image with Otsu’s method. (c) Fixed-threshold method with 

threshold at 1/7 of the max pixel intensity. (d) Fixed-threshold method with threshold at 1/10 

of the max pixel intensity. Scale bar = 100 μm.
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Figure 3. Volumes of distribution calculated using different thresholding methods
(a) Comparison of Otsu’s method to percentage of maximum thresholding methods for rats 

treated with SQ-Gem BODIPY NPs (n = 3). (b) Comparison of Otsu’s method to percentage 

of maximum thresholding methods for mice (TAMRA) and rats (DiA, Nile Red, and 

coinjection) with various particle/dye combinations (n = 3). Dotted lines represent 

theoretical volumes of rodent striatum (10 mm3 for mice and 40 mm3 for rats) and * denotes 

statistical significance from a two-tailed z-test (P < 0.05).
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Figure 4. Comparison of Otsu’s method to current thresholding method for representative image 
from rat treated by CED with aggregating NPs
(a) Original image, (b) image with Otsu’s method. Blue shows area of lower intensity that is 

assumed to be part of the background due to a large high intensity aggregate (c) Current 

method with threshold at one-seventh of max pixel intensity. (d) Current method with 

threshold at one-tenth of max pixel intensity. Scale bar = 100 μm.
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Figure 5. Otsu’s method thresholding for representative image from rats injected with Nile Red 
encapsulating PLGA NPs
(a) Original image, (b) image with Otsu’s method. Blue shows area of lower intensity that is 

assumed to be part of the background due to heterogeneity in particle distribution. Scale bar 

= 200 μm.
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Table 1
“Goodness” of separation, η, for images from rats treated with various dye and NP 
formulation combinations by CED

Appropriateness of threshold selection by Otsu’s method was determined by manual inspection: “+” denotes 

reliable thresholding; “−” denotes unreliable thresholding. (n = 3 per group)

Particle Type η Manual Inspection of Threshold

Nile Red 19.2 ± 18.0 −

1% 22.8 ± 9.0 −

TAMRA 41.4 ± 5.5 +

Coinjection 54.9 ± 1.2 +

DiA 69.7 ± 14.9 +

5% 82.2 ± 52.1 +

2.5% 113.5 ± 23.9 +

30% 114.2 ± 12.4 +

10% 119.0 ± 14.9 +

50% 121.2 ± 7.9 +
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