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Association of kidney fibrosis with 
urinary peptides: a path towards 
non-invasive liquid biopsies?
Pedro Magalhães1,2, Martin Pejchinovski1, Katerina Markoska3, Miroslaw Banasik4, Marian 
Klinger4, Dominika Švec-Billá5, Ivan Rychlík5, Merita Rroji6, Arianna Restivo7, Giovambattista 
Capasso7, Flaviu Bob8, Adalbert Schiller8, Alberto Ortiz   9, Maria Vanessa Perez-Gomez9, 
Pablo Cannata9, Maria Dolores Sanchez-Niño9, Radomir Naumovic10,11, Voin Brkovic10,11, 
Momir Polenakovic12, William Mullen13, Antonia Vlahou14, Petra Zürbig1, Lars Pape2, Franco 
Ferrario15, Colette Denis16,17, Goce Spasovski3, Harald Mischak1,13 & Joost P. Schanstra16,17

Chronic kidney disease (CKD) is a prevalent cause of morbidity and mortality worldwide. A hallmark 
of CKD progression is renal fibrosis characterized by excessive accumulation of extracellular matrix 
(ECM) proteins. In this study, we aimed to investigate the correlation of the urinary proteome classifier 
CKD273 and individual urinary peptides with the degree of fibrosis. In total, 42 kidney biopsies and 
urine samples were examined. The percentage of fibrosis per total tissue area was assessed in Masson 
trichrome stained kidney tissues. The urinary proteome was analysed by capillary electrophoresis 
coupled to mass spectrometry. CKD273 displayed a significant and positive correlation with the degree 
of fibrosis (Rho = 0.430, P = 0.0044), while the routinely used parameters (glomerular filtration rate, 
urine albumin-to-creatinine ratio and urine protein-to-creatinine ratio) did not (Rho = −0.222; −0.137; 
−0.070 and P = 0.16; 0.39; 0.66, respectively). We identified seven fibrosis-associated peptides 
displaying a significant and negative correlation with the degree of fibrosis. All peptides were collagen 
fragments, suggesting that these may be causally related to the observed accumulation of ECM in 
the kidneys. CKD273 and specific peptides are significantly associated with kidney fibrosis; such an 
association could not be detected by other biomarkers for CKD. These non-invasive fibrosis-related 
biomarkers can potentially be implemented in future trials.

Chronic kidney disease (CKD) has become a worldwide problem that affects approximately 10% of the popu-
lation1–3. CKD is defined as chronic anomalies of kidney structure (evidenced by damage markers) leading to a 
decrease in kidney function and end-stage renal disease (ESRD)4. At this stage of CKD, therapeutic interventions 
are mostly restricted to renal replacement therapy (dialysis or kidney transplantation with life-long immunosup-
pressive drugs treatments)5,6. CKD is also associated with an increased risk to develop cardiovascular complica-
tions, and premature death7.
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Although CKD may develop due to a number of different primary diseases and/or secondary risk factors, 
progressive tubulo-interstitial fibrosis is one of the most frequent molecular and pathologic features and it is 
considered a hallmark of CKD8,9. Fibrosis is due to the imbalance between extracellular matrix (ECM) synthesis 
and degradation8,10. Renal fibrosis is a significant indicator of disease progression, and affects all kidney struc-
tures11,12. The pathophysiology of renal fibrosis is associated with an uncontrolled fibrogenesis process, which can 
be activated by any type of kidney injury. Expansion of fibrosis alters the normal homeostasis and structure of the 
tissue and results in kidney failure8,9,13. At present, there is no effective treatment for CKD. This is in part related 
to a lack of early markers of kidney disease. Currently, the categorization of CKD is based on the assessment 
of estimated glomerular filtration rate (eGFR), requiring about 50% of renal function to be lost before a signifi-
cant reduction can be detected14, and/or an increase in the urine-albumin/creatinine-ratio, which can be absent 
in non-proteinuric causes of CKD14. Early detection of fibrotic events may allow earlier detection of CKD and its 
risk of progression. The current state-of-the-art to assess renal fibrosis is a kidney biopsy which is obviously inva-
sive15,16, cannot be repeated frequently, is prone to observer bias and does not enable detailed molecular insight in 
the molecular components of the deposited ECM17.

Focusing on the non-invasive detection of the kidney’s ECM composition could be a good alternative 
towards the early detection of fibrosis16. In this context, the urinary proteome has been extensively studied18,19. 
Particularly, capillary electrophoresis coupled to mass spectrometry (CE-MS), focusing on the low molecular 
weight urinary proteome, has been successfully used in many studies for the diagnosis and prognosis of CKD20–25. 
An example is CKD273, a multidimensional classifier developed by using CKD-specific peptides present in urine. 
This classifier is composed of 273 urinary peptides including many peptides (n = 207) derived from the ECM26. 
CKD273 performance has been validated in several independent studies using different cohorts, displaying high 
sensitivity and specificity for the non-invasive detection of CKD26–29. Furthermore, CKD273 enables prediction 
of progression of CKD28,30,31. Indeed, this classifier was able to predict the development of micro- or macroalbu-
minuria and rapid eGFR loss, demonstrating its utility and advantage over the currently used clinical parameters 
for predicting CKD progression30–33. First data also indicated that CKD273 enables prediction of response to 
spironolactone34. These results have led to the initiation of a randomised controlled clinical trial, PRIORITY, 
investigating the benefit of CKD273-guided intervention with spironolactone in normoalbuminuric type 2 dia-
betic patients35.

In the current study, we aimed to examine urine and biopsy samples from the same CKD patients, to assess the 
association of CKD273 with the degree of fibrosis. Furthermore, we also investigated individual urinary peptides 
potentially correlated with fibrosis.

Results
Degree of fibrosis based on Masson trichrome staining.  Masson trichrome staining was performed 
on the 42 kidney biopsies to display fibrotic lesions. Two examples are presented in Fig. 1, exemplifying little and 
massive fibrosis as indicated by the level of green staining. These two examples included patients with mesangio-
capillary glomerulonephritis type 2 revealing a reduced fibrosis (Fig. 1A) and with mesangiocapillary glomerulo-
nephritis type 1 showing a massive degree of fibrosis (Fig. 1B).

Association of CKD273 classifier with the degree of fibrosis.  We first investigated the association of 
CKD273 and of the parameters used in routine clinical care to assess the severity of kidney disease (eGFR, urine 
albumin-to-creatinine ratio and urine protein-to-creatinine ratio values) with the percentage of renal fibrosis per 
total tissue area of kidney biopsy. As shown in Fig. 2A, CKD273 scores were significantly and positively correlated 

Figure 1.  Two examples of biopsies with little (A) and massive fibrosis (B) as evidenced by Masson trichrome 
staining (green) that were used for quantification of the degree of fibrosis. (A) A patient with mesangiocapillary 
glomerulonephritis type 2 and (B) a patient with mesangiocapillary glomerulonephritis type 1.
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(Rho = 0.430, P = 0.0044) with the degree of fibrosis. A higher CKD273 score had been previously associated 
with an increased risk of CKD and of CKD progression in larger, non-biopsied cohorts28,31. In contrast, none 
of the other parameters in routine clinical use were significantly correlated to the percentage of fibrosis: eGFR 
(Rho = −0.222, P = 0.16, Fig. 2B), urine albumin-to-creatinine ratio (Rho = −0.137, P = 0.39, Fig. 2C) and urine 
protein-to-creatinine ratio (Rho = −0.070, P = 0.66, Fig. 2D).

Correlation of individual urinary peptides to renal fibrosis.  As a second aim, we investigated the 
correlation of individual urinary peptides with the degree of fibrosis. In total, we assessed 385 urinary peptides 
that were detected in >50% of all samples and where a high-confidence sequence could be assigned. Out of 
these 385, seven presented a statistically significant association with the degree of fibrosis (p < 0.05) (Table 1). 
All peptides displayed a negative correlation with fibrosis (−0.552 < Rho <− 0.343) and were ECM related. The 
peptides were derived from different collagen fragments. Amongst the collagen fragments, six were fibrillar col-
lagens covering type I and III collagens (alpha-1 and 2 chains) and one alpha-1 type XVI collagen, characterized 
as a fibril-associated forming collagen. Out of these seven urinary peptides, two are also included in the CKD273 
classifier and five were previously associated to CKD progression31.

Discussion
Fibrosis is a hallmark of CKD, however non-invasive specific markers allowing the assessment of the in situ ECM 
content are lacking16. Kidney biopsies allow a certain degree of fibrosis assessment but cannot be used to assess 
the progression of fibrosis in routine clinical care10,13. Moreover, fibrosis may be patchy and kidney biopsies may 
offer an incorrect assessment of the overall degree of fibrosis since tissue is randomly taken and may not be repre-
sentative of the entire kidney. In fact, this may in part be the reason for the yet significant, but variable association 
found between CKD273 and the observed fibrosis. However, multiple sampling (i.e. repeated biopsies) to improve 
the accuracy of fibrosis assessment is not possible. Therefore, in this study, we aimed to correlate urinary peptides 
to the degree of kidney fibrosis with the goal of providing a non-invasive readout of renal fibrosis that may be used 
to monitor kidney fibrosis.

The most prominent finding of the study was a significant positive correlation of CKD273 with the degree of 
fibrosis. CKD273 was not initially developed to predict CKD progression and by extension, for the prediction of 
the degree of fibrosis. However, further studies were conducted31,36,37, validating and demonstrating the prognos-
tic value of this classifier. A higher score of CKD273-classifier indicates more severe and advanced CKD. Hence, 
a positive correlation was expected, due to the fact that CKD273 scores are directly associated with CKD progres-
sion31. In the case of the seven individual peptides that were correlated to the degree of fibrosis, we hypothesize 
that the observed negative correlation results from decreased degradation of the kidney ECM proteins, leading to 
ECM accumulation in the form of kidney fibrosis. Collagen fragments are the most abundant peptides in urine 

Figure 2.  Spearman’s rank correlation analysis, presented by Scatter diagrams. Comparison of different 
parameters with percentage of fibrosis: (A) CKD273 classifier; (B) eGFR values (ml/min/1.73 m2); (C) Urine 
albumin-to-creatinine ratio (UACR (mg/g)) and (D) Urine protein-to-creatinine ratio (UPCR (mg/g)).
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and are thought to be the result of proteolytic activity8,38. They are the main structural elements of the interstitial 
ECM, responsible for cell adhesion, tissue development and tensile strength39. The reduced abundance of colla-
gen fragments was previously observed in several studies for different kidney diseases20,40–42. Hence, the results 
presented here are in good agreement with previous findings. Both type I and type III collagens are fibrillary 
collagens known to form the bulk of kidney fibrosis during kidney scarring. A marked increase in the synthesis 
of collagen type I, associated with decreased degradation leads to increased collagen deposition in fibrotic glo-
meruli, tubulointerstitial space and arterial walls43. Collagen type III also accumulates in the interstitium and in 
the glomeruli44. A surprising finding was the negative association of type XVI collagen with the degree of fibrosis. 
Type XVI, a fibril-forming collagen, is expressed in various cells and tissues45,46. To our knowledge, this is the first 
time that this collagen type is associated with CKD progression. However, this potential association is in line with 
the presence of fibrosis in-situ, due to the fact that collagen type XVI is an adaptor protein involved in fibrillar 
processes, and consequently could contribute to the integrity of the ECM46,47.

Enzymes, such as matrix metalloproteinases (MMPs), are responsible for maintaining the homeostasis of the 
ECM48. The underlying molecular process is without doubt rather complex, considering also that not only the 
activity of the protease, but also the susceptibility of the substrate are relevant in this context. Hence, a situation 
where post-translational modifications on collagen, e.g. glycation, that effectively inhibit proteolysis by MMPs, 
could ultimately result in decreased collagen degradation even if MMPs activity was increased49.

In hindsight, it is not surprising that routine parameters, used to assess the severity of kidney disease, did not 
correlate well with kidney biopsy findings. Loss of nephron mass is associated with hyperfiltration, which results 
in an underestimation of the kidney injury when eGFR is used. However, therapy for kidney disease is aimed to 
decrease hyperfiltration. The end-result of these factors at the individual patient level is unpredictable and may 
result in an apparent lack of correlation between eGFR and kidney tissue damage, especially in a study with a low 
number of subjects, as the one presented here. In addition, mean (SD) single nephron GFR in young humans 
was 79 ± 42 ml/min and was nearly 40% higher in individuals in their seventies in a study of kidney biopsies 
from living kidney donors with normal (>90 ml/min) mean GFR50. Regarding albuminuria and proteinuria, 
both proteinuric and non-proteinuric kidney disease share a common pathway of kidney fibrosis. Additionally, 
anti-proteinuric therapy may further dissociate albuminuria/proteinuria from kidney histology. Furthermore, 
proximal convoluted tubular uptake of albumin may also be modified in CKD. Up to 30% of diabetic kidney 
disease cases may develop decreased eGFR without increase of albuminuria51.

Fibrosis as a dynamic process is expected to be associated with proteinuria and eGFR52. However, in 
this present study, no significant correlation was found between fibrosis and proteinuria/albuminuria or 
eGFR. The absence of such correlation may be due to the fact that only one point in time was measured, 
while fibrosis represents years of progression. The slope of eGFR over time might have displayed a better 
correlation. In addition, eGFR and albuminuria measurements display a large degree of variability19, which 
could also contribute to the absence of correlation with the degree of fibrosis. Similarly, no association of 
these clinical parameters with CKD273 was detectable, although described in previous studies31,53. This lack 
of expected associations is thus also likely due to the small sample size. In fact, sample size is a shortcoming 
of the study. The relatively low patient number is due to the invasive method of obtaining kidney biopsies. 
Another issue that could be a limitation of this study is the heterogeneity of our cohort, comprising of CKD 
patients with various etiologies. Different disease processes and risk factors can be associated with a pro-
gressive fibrosis. However, this may also be considered as a strength, since a marker that relates to fibrosis 
independently from the cause of CKD - frequently being unknown- is needed. Another limitation is that we 
could not obtain the sequence information for all single urinary peptides significantly associated with fibro-
sis. This can be caused by post-translational modifications of the proteins. Finally, despite kidney biopsy 
being the current gold standard to assess kidney fibrosis, it involved a very small section (in the range of 
0.0025% of total kidney volume) of one of the two kidneys and may not be representative for the full extent 
of fibrosis, as also indicated above.

In conclusion, our study demonstrated a significant association of CKD273 with the degree of kidney fibro-
sis, which could not be detected by the current state-of-the-art methods based on serum and urine biochemi-
cal parameters used in routine clinical care to estimate the severity of CKD. Furthermore, we identified seven 
fibrosis-associated peptides that displayed a negative association with the degree of fibrosis. To our knowledge, 
the present study provides the first investigation of CKD273 and urinary peptides related to the severity of kidney 
fibrosis. Additional studies in larger cohorts are required to further validate these potential associations. However, 

Sequence Protein name
Accession 
number StartAA StopAA

Spearman’s 
rho p-value

Overlap with 
CKD27326

Previously associated 
peptides with CKD 
progression described 
in Schanstra et al.31

SpGERGETGPp Collagen alpha-1(III) chain P02461 796 806 −0.461 0.007 no yes

ApGDRGEpGPpGPAG Collagen alpha-1(I) chain P02452 798 812 −0.351 0.025 yes yes

DAGApGApGGKGDAGApGERGpPG Collagen alpha-1(III) chain P02461 664 687 −0.343 0.029 no yes

VGEpGpAGSKGESGNKGEPGSAGP Collagen alpha-2(I) chain P08123 345 368 −0.348 0.041 yes no

ANGAPGNDGAKGDAGAPGApGSQGApG Collagen alpha-1(I) chain P02452 699 725 −0.464 0.016 no yes

PGpPGHPGPpGEPGTDGAAGKEGPpG Collagen alpha-1(XVI) chain Q07092 1331 1356 −0.552 0.003 no no

KNGETGPQGPPGPTGPGGDKGDTGPpGP Collagen alpha-1(III) chain P02461 610 637 −0.418 0.043 no yes

Table 1.  Individual peptides that display a significant correlation with the degree of fibrosis.
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the results of the present study are in line with previous observations suggesting that CKD273 is a good predictor 
of CKD progression.

Subjects and Methods
Patient Cohort.  Matched urine and kidney tissue samples were collected from seven different centers: 
Wroclaw Medical University (Wroclaw, Poland; n = 13), Clinical Center of Serbia (Belgrade, Serbia; n = 12), 
Charles University (Prague, Czech Republic; n = 7), IIS-Foundation Jimenez Diaz (Madrid, Spain; n = 4), 
University Hospital Center “Mother Teresa” (Tirana, Albania; n = 3), University of Campania “Luigi Vanvitelli” 
(Naples, Italy; n = 2), and University of Medicine and Pharmacy Timisoara (Timisoara, Romania; n = 1). The 
patient cohort consisted of 42 CKD patients. Patients’ clinical data (eGFR, albuminuria and proteinuria) were 
measured based on the urine samples, which were collected on the same day as the kidney biopsies were per-
formed. Albuminuria (mg/g) was determined by the ratio of the measured urine albumin and urine creati-
nine. Proteinuria was calculated in a similar way, however, based on urine-protein values. Baseline eGFR (mL/
min/1.73 m2) was estimated using the CKD-EPI formula. CKD stages were defined on the basis of the eGFR, 
allowing the following distribution of the patients: 26.2% in category G1, eGFR ≥90 ml/min/1.73 m2; 23.8% in 
G2, eGFR 60–89 ml/min/1.73 m2; 35.7% in G3, eGFR 30–59 ml/min/1.73 m2; 11.9% in G4, eGFR 15–29 ml/min 
and 2.4% in G5, eGFR <15 ml/min/1.73 m2, according to the KDIGO categorization system4. This cohort was 
constituted by patients of different CKD etiologies: chronic hypertensive nephropathy (n = 1); Henoch-Schönlein 
Purpura - Nephritis (HSPN; n = 1); Idiopathic Rapid Progressive Glomerulonephritis (n = 1); IgA Nephropathy 
(IgAN; n = 9); Membranous Glomerulonephritis (MGN; n = 1); Mesangioproliferative Glomerulonephritis 
(n = 4); Mesangiocapillary Glomerulonephritis (n = 7); Minimal Change disease (MCD; n = 3); Primary 
Focal Segmental Glomerulosclerosis (FSGS; n = 3), Tubulointerstitial Nephritis (TIN, n = 1); Membranous 
Nephropathy (MN; n = 5), Minimal Change Nephropathy (n = 4); Systemic vasculitis-ANCA positive (n = 1) 
and Transplant Glomerulopathy (n = 1).

Baseline characteristics of the patients included in this study are summarized in Table 2.
The study was designed and conducted in accordance with the standards of good clinical practice and prin-

ciples of the Helsinki Declaration. Written informed consent was obtained from all participants. The protocol 
was approved by each center local ethics committee (Ethics Committee of the Hospital of the Second University 
of Naples, Italy; Multicentric ethics committee of the Faculty Hospital Kralovske Vinohrady, Czech Republic; 
Component of the Local Ethics Commission for Scientific Research of Timisoara, County Emergency Clinical 
Hospital, Romania; National Ethics Committee from the Ministry of Health, Republic of Albania; Bioethics 
Committee at the Medical University of Wroclaw, Poland; Ethics Committee of Clinical Center of Serbia, Serbia; 
Ethics Committee of Clinical Center of the IIS-Foundation Jimenez Diaz, Spain) and the general one from 
the coordinating center in Skopje, Macedonia - Ethic Subcommittee for Medicine, Pharmacy, Veterinary and 
Stomatology-Macedonian Academy of Science and Arts (Ethical ID: 09-1785/5).

Urine samples.  Sample preparation and CE-MS analysis.  Urine sample collection and CE-MS analysis were 
carried out as previously described26,54. Briefly, 0.7 ml of urine was thawed and diluted with 0.7 ml of a solution 
containing 2 M urea, 0.1 M NaCl, 10 mM NH4OH and 0.02% SDS. The sample was filtered using a Centrisart 
ultracentrifugation filter devices (20 kDa molecular weight cut-off; Sartorius, Goettingen, Germany) at 2,600xg 
for one hour at 4 °C until 1.1 ml filtrate was obtained. Subsequently, the filtrate was applied onto a PD-10 desalting 
column (GE Healthcare, Sweden) equilibrated in 0.01% aqueous NH4OH. Finally, the eluate was lyophilized, 
stored at 4 °C prior to be resuspended in HPLC-grade water for CE-MS analysis.

CE-MS analysis was performed using a P/ACE MDQ capillary electrophoresis system (Beckman Coulter, 
Fullerton, USA) online coupled to a MicroTOF MS (BrukerDaltonic, Bremen, Germany)55. The ESI sprayer 
(Agilent Technologies, Palo Alto, CA, USA) was grounded, and the ion spray interface potential was set between 
−4 and −4.5 kV. Spectra were accumulated every 3 seconds over a range of mass-to-charge from 50 to 3000. 
Details on accuracy, precision, selectivity, sensitivity, reproducibility and stability of the CE-MS method were 
previously reported in detail55.

Characteristics

Number of subjects 42

Age (years) 43.99 ± 17.72

Gender (F/M) 19/23

Mean ± SD of characteristic

Systolic BP (mmHg) 131.62 ± 17.20

Dyastolic BP (mmHg) 80.64 ± 10.03

Mean BP (mmHg) 97.63 ± 10.79

UACR (mg/g) 1882.49 ± 2250.21

UPCR (mg/g) 2773.68 ± 3045.47

eGFR (CKD-EPI). mL/min/1.73 m² 67.28 ± 34.55

CKD273 scores 0.51 ± 0.48

% fibrosis/total area 13.07 ± 8.25

Table 2.  Baseline characteristics of the study population. BP: blood pressure; UACR: urine albumin-to-
creatinine ratio; UPCR: urine protein-to-creatinine ratio; eGFR: estimated glomerular filtration rate
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Data processing.  MosaiquesVisu was used to deconvolute mass spectral peaks representing identical molecules 
into singles masses. The obtained peak list of each polypeptide is characterized by molecular mass [in Daltons], 
CE-migration time (in minutes), and normalized ion signal intensity. MS signal intensities were used as a meas-
ure of relative abundance and normalized using 29 internal standard peptides (peptides generally present in at 
least 90% of all urine)56. All detected peptides were deposited, matched and annotated in a Microsoft SQL data-
base57, permitting further correlation and statistical analysis.

Peptide Sequencing.  To obtain the sequence information, tandem mass spectrometry was performed using 
a Dionex Ultimate 3000 RSLC nano flow system (Dionex, Camberly, UK) or a Beckman CE systems (PACE 
MDQ) coupled to an Orbitrap Velos MS instrument (Thermo Fisher Scientific)58,59. Data files were analyzed using 
Proteome Discoverer 1.2 and were searched against the UniProt human non-redundant database without enzyme 
specificity and with hydroxylation of proline and lysine, as well as oxidation of methionine. The assessment of 
the sequences was based on the molecular mass and calculated CE-migration time based on its peptide sequence 
(number of basic amino acids). Peptides were accepted only if they had a mass deviation below ±5 ppm and <50 
mDa for the fragment ions. In addition, CE-migration time deviation was required to be below ±2 min.

Tissue samples and Image analysis.  Sections from Formalin Fixed Paraffin Embedded (FFPE) blocks with bioptic 
tissues were shipped to Nephropathology Department of San Gerardo Hospital in Monza where histopathological 
diagnoses and scores were performed according to the predefined renal scoring system for glomerular, vascular 
and interstitial changes60.

Biopsy slides stained with Masson trichrome were scanned with an Aperio Scanner (Leica Biosystems) and 
analyzed with ImageJ software (version 1.51n, https://imagej.nih.gov/ij/). The surface occupied by the green 
marker was evaluated as fibrosis surface. Based on these measurements, the level of fibrosis, expressed as a per-
centage of the total measured area, was calculated. The degree of fibrosis was calculated according to the following 
equation: % fibrosis per total area = (fibrosis area/total tissue area) * 100. Total area is defined by the total kidney 
tissue area that is available to evaluate for image analysis.

Correlation and statistical analysis.  The non-parametric Spearman’s rank correlation coefficient was used to 
estimate the correlation of the CKD273 classifier with the degree of fibrosis. The same method was applied to 
investigate the correlation between the parameters routinely used in the clinic to assess the severity of kidney 
damage and to categorize CKD based on the risk of CKD progression and premature mortality (eGFR, urine 
albumin-to-creatinine ratio, urine protein-to-creatinine ratio)4 and the percentage of fibrosis. Correlations were 
considered significant when displaying a P value <0.05. These analyses were performed using MedCalc software 
(version 12.1.0.0; MedCalc Software, Mariakerke, Belgium).

To determine the correlation of individual peptides with the percentage of fibrosis as a continuous variable, 
Spearman’s rank correlation was assessed, because the peptide profiles across the samples are not normally dis-
tributed. Peptides present in at least 50% (frequency threshold) of the samples were included in the correlation 
analysis. The analysis was performed using R-based statistic software and confirmed by MedCalc. Graphs were 
generated with MedCalc.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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