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Extracellular vesicles (EVs) are small-membrane vesicles secreted by most

cells types with the role to provide intercellular communication both locally

and systemically. The transfer of their content between cells, which includes

nucleic acids, proteins and lipids, confers the means for these interactions

and induces significant cellular behaviour changes in the receiving cell.

EVs are implicated in the regulation of numerous physiological and

pathological processes, including development and neurological and cardi-

ovascular diseases. Importantly, it has been shown that EV signalling is

essential in almost all the steps necessary for the progress of carcinomas,

from primary tumours to metastasis. In this review, we will focus on the

latest findings for EV biology in relation to cancer progression and the

tumour microenvironment.

This article is part of the discussion meeting issue ‘Extracellular vesicles

and the tumour microenvironment’.
1. Introduction
Extracellular vesicles (EVs) are a means of intercellular communication between

neighbouring and distant cells. They contain nucleic acids, proteins and lipids,

which can direct the fate of the recipient cell. EVs have been described to have a

role in both physiological and pathological conditions and can modulate a

number of cellular processes such as proliferation, migration, invasiveness

and extracellular matrix (ECM) remodelling, generating a great interest in

many different biological contexts [1].

From the 1960s, a number of groups observed that vesicles secreted by

different cells in culture functional. While platelet-secreted vesicles regulated

blood coagulation [2], it was found that EVs could transport trophic substances

or nutrients to other cells [3]. Furthermore, different groups observed a role for

secretory vesicles in reticulocyte maturation through recycling of transferrin

and its receptor [4,5]. However, it was not until the late 1990s that a couple

of studies found that immune cell-derived EVs could act as antigen presenters

and T cell stimulators by expressing MHC class I and MHC class II molecules

on their surface [6,7]. These studies presented for the first time an unconven-

tional mechanism for intercellular communication, revealing the importance

of a role for EVs in the immune system. Nowadays, it is widely recognized

that EVs can have multiple functions in other physiological and pathological

scenarios such as in cancer and in cardiovascular and neurodegenerative

diseases [8].
2. Extracellular vesicles: biogenesis
EVs are lipid bilayer vesicles secreted to the extracellular space by cells. Their

double membrane layer allows the EV content to be prevented from degra-

dation from exogenous nucleases and proteases, facilitating long-term and

long-distance transport of their cargo. Therefore, EVs allow cells to expand
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Figure 1. EV biogenesis and uptake. A simplified version of EV biogenesis is depicted on the left panel and EV uptake on the right. EVs can act locally, by affecting
the behaviour of nearby cells or systemically, by travelling via blood or the lymphoid system and influencing cells long-distance. On the left panel, the plasma
membrane of a cell can be endocytosed and trafficked to early endosomes and later to the multivesicular body (MVB). The MVB formed can either follow a
degradation pathway fusing with lysosomes (blue) or proceed to release exosomes (small circles with red dots) to the extracellular space by fusing with the
plasma membrane by exocytosis. On the other hand, microvesicles (big circles with black dots) are formed by direct shedding of the plasma membrane and release
to the extracellular space. The right panel shows different possible routes for EV uptake. On one hand, EVs can establish specific binding with the plasma membrane
followed by direct fusion of EV and cell membrane inducing the release of the EV cargo into the cytoplasm of the target cell (1). Altogether, various EVs can also be
internalized by endocytosis, which once in the cytosol can either be directed to the lysosome for degradation or release their content to the cytosol by back-fusion of
the EV membrane with the endosomal membrane (2).
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their intracellular transcriptome, proteome and lipidome to

the extracellular space they reach, communicating their

‘status’ to other cells. EVs can be subdivided into three

main categories depending on their subcellular origin: exo-

somes, microvesicles and apoptotic bodies [9,10]. Exosomes

are the smallest of EVs, with a size ranging from 30–150 nm.

They are generated inside multivesicular bodies (MVBs)

and are released upon the fusion of the MVB with the

plasma membrane [11]. Microvesicles have been previously

referred to as ectosomes or oncosomes and range from 100

to 1000 nm. They are formed, matured and released by shed-

ding from the plasma membrane of the cell (figure 1; left

panel). Both microvesicles and exosomes comprise the

accumulation of intracytosolic components although the

protein and lipid composition between both EV subtypes dif-

fers [8,12]. Apoptotic bodies are the largest of all EVs (up to

5000 nm) and are released as membrane blebs of cells under-

going apoptosis. Throughout this review we will focus

exclusively on the role of exosomes and microvesicles in the

tumour microenvironment using the generic name of EVs,

without specifying which type of EVs the original research

studies are referring to.

(a) Extracellular vesicle function in the extracellular
space: uptake mechanisms

Upon the release by the parental cell, EVs can act either

locally or systemically on neighbouring cells (figure 1). In

fact, EVs can travel through blood and/or lymphoid nodes

from other tissues [13]. It is therefore not surprising that

EVs have been found in a number of biological fluids
including plasma, urine, breast milk, semen, cerebrospinal

fluid and saliva [8].

The exact EV uptake mechanisms for recipient cells are

not completely understood but different groups have pro-

vided evidence for EV cargo uptake by either: (i) direct EV

fusion at the plasma membrane, releasing the EV cytosol con-

tent into the cytoplasmic compartment of the target cells; or

(ii) by uptake through endocytosis followed by back-fusion

of the EV with the endosomal membrane releasing their con-

tents to the cytoplasm of the recipient cell (figure 1) [8]. In

fact, in 2007, Valadi et al. demonstrated that mRNA and

microRNA (miR) could be transferred via EVs from mouse

to human mast cells. They also showed that the RNA content

was functional as they found mouse proteins in the human

recipient cells [14]. The delivery of EVs derived from dendri-

tic cells (DC) loaded with an siRNA targeting GAPDH

showed a reduction in the expression levels of GAPDH in

neurons, microglia, oligodendrocytes demonstrated that the

siRNA was effectively transferred and functional [15]. Fur-

thermore, performing membrane fusion assays using EVs

loaded with luciferin substrate to treat luciferase-expressing

cells resulted in production of bioluminescence in the recipi-

ent cells [16]. It was also demonstrated that heparan sulphate

proteoglycans (HSPGs) function as essential receptors for the

endocytosis of cancer-derived EV [17] and recently, Neuropi-

lin-1 has been confirmed as a receptor for extracellular

miRNA and AGO2/miRNA complexes internalization in

recipient cells [18]. Altogether, these and many other studies

have shown that EVs can be effectively taken up by recipient

cells, although it is possible that the EV uptake mechanism is

cell-type– and context-dependent.
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EVs do seem to have some characteristics that favour

cell-specific uptake. For example, EVs derived from platelets

preferentially transferred tissue factor (TF) to macrophages

but not neutrophils [8], while EVs derived from different

tumours are taken up by cells within their preferential meta-

static site and depend on their preferred integrin expressed

[19,20] and exosomes derived from K562 or MT4 cells were

internalized more efficiently by phagocytes than by non-

phagocytic cells [21]. These heterogeneous responses are

not surprising though the particular proteins involved from

both EVs and recipient cells remain to be elucidated.
Phil.Trans.R.Soc.B
373:20160488
3. Role for extracellular vesicles in cancer
The complexity of tumours is becoming increasingly recog-

nized with the view of tumours formed exclusively from

cancer cells now being obsolete. In fact, a variety of cell

types such as fibroblasts, lymphocytes, inflammatory cells,

epithelial cells, endothelial cells and mesenchymal stem

cells can be found within the tumour microenvironment

[22]. Although for years the main mediator for the tumour

intercellular communication was attributed to secreted pro-

teins like growth factors, cytokines and chemokines recent

advances in cancer biology show that EVs play a key role

in this communication process [8]. Therefore, the need for a

coordinated multistep programme and a multifaceted signal-

ling network between all the different cell types is necessary

for the success of tumour development [22].

(a) Extracellular vesicles released by tumour cells can
both suppress and activate the immune system

EVs have been shown to be involved in the regulation of an

immune response and therefore much attention has been

brought in the cancer field to the interplay between tumour

EVs and the immune system regulation [23]. Importantly,

it seems that the initial local interaction between tumour

cells and the innate immune response might be critical in

influencing tumour fate [19].

Tumour-derived EVs are a reflection of the protein

composition of the parental cell. Therefore, EVs can con-

tain tumour-specific antigens such as carcinoembryonic

antigen (CEA) and mesothelin [24]. As a consequence,

tumour-specific antigens can induce the maturation of anti-

gen-presenting cells (APC), stimulating cytotoxic CD8þ T

and natural killer (NK) cells, eventually eliminating cancer

cells [25,26]. This anti-tumour response is in line with pre-

vious reports, where EVs derived from DC cells functionally

express MHC Class I and II molecules, inducing anti-tumour

responses dependent on CD8þ T lymphocyte activation

[7,27]. Interestingly, Headly et al. have shown that circulating

tumour cells from the lung release EVs that migrate along

the lung vasculature and are subsequently taken up by

myeloid cells. As a consequence, this activates DC cells that

initiate an anti-tumour response [28]. Another recent study

has also shown that the loss of the Hippo pathway kinases

large tumour suppressor 1 and 2 (LATS1/2) in tumour

cells inhibits tumour growth by nucleic-acid-rich-EVs, which

induce a type I interferon response (IFN) via the Toll-like

receptors-MYD88/TRIF pathway [29].

Although the activation of the immune system can

initially reduce tumour growth, cancer cells generally have
defence mechanisms to evade immune surveillance. Pucci

et al. have found that tumour-derived EVs preferentially

bind subcapsular sinus of lymph nodes, where a specialized

population of macrophages (CD169þ) block the dissemination

of cancer EVs. Interestingly, this barrier is altered during

cancer allowing the tumour-derived EVs to travel along the

lymph nodes and activate B lymphocytes promoting tumour

growth [30].

In fact, tumour-derived EVs create an immunosuppres-

sive niche that protects the tumour from the immune

system [31,32]. For example, EVs derived from breast cancer

cells were shown to activate tumour-activated macrophages

(TAMs), inducing the secretion of IL-6, tumour necrosis

factor alpha (TNFa), granulocyte-colony stimulating factor

(G-CSF) and CCL2 by NK-kB activation and promoting

vascularization and angiogenesis [33]. Furthermore, TGFb

was found to be essential for the recruitment of tumour-

associated neutrophils to the tumour [34], and breast

cancer–derived EVs can immobilize neutrophils in the

tumour promoting cancer progression [35]. In addition, EVs

derived from serum of patients with cancer have been

shown to express FasL and TRAIL as transmembrane pro-

teins, activating programmed cell death or apoptosis in

cytotoxic CD8þ T cells [31]. The TNF superfamily member,

CD95 L, is also found in tumour EVs and mediates

immune evasion, and the presence of CD11b in tumour

EVs suppresses antigen-specific responses via an MHC

class II–dependent mechanism [24]. The existence of this

immunosuppressive niche is reinforced by the activation of

DC by tumour-derived EVs [24,32], and by favouring the

generation of myeloid-derived suppressor cells (MDSCs),

that contain prostaglandin E2 (PGE2), transforming growth

factor-b (TGFb) and heat shock protein 72 (HSP72) in their

secreted vesicles [24]. All these studies show that EVs derived

from tumour cells present a wide range of antigens capable of

evading immune surveillance.

(b) Tumour-derived extracellular vesicles influence the
transition to metastasis

Apart from evading immune surveillance, cancer cells need

alternative pathways in order to successfully grow and colonize

foreign tissues. In this section, we will explain how tumour-

derived EVs contribute to the step necessary to transition to

metastasis such as inducing changes in the tumour stroma, pro-

moting angiogenesis and favouring epithelial–mesenchymal

transition (EMT).

For the tumour to continue progressing, a complex stro-

mal support is needed [22]. Cancer-stroma is mainly

composed of the cancer-associated fibroblasts (CAFs) sub-

type myofibroblasts, which release enzyme-degrading

proteases or metalloproteases (MMPs) that contribute to the

formation of desmoplastic stroma, a feature of advanced car-

cinomas. EVs containing TGFb have been shown to drive

tissue-resident fibroblasts into myofibroblasts demonstrated

by the expression of a-smooth muscle actin (a-SMA) [36,37].

Furthermore, CAFs can secrete EVs inducing protrusive

activity and mobility in breast cancer cells by a Wnt-driven

planar cell polarity [38] and transfer radiation and che-

motherapy resistance in the form of EV messaging [39]. In

addition, a recent paper has shown that melanoma cells

release EVs carrying miR-211, inducing the activation of

CAFs in the dermal stroma [40]. Therefore, the communication



tumour metastasis site

EMT

vascular
leakinessangiogenesis

pre-metastatic
niche

bl
oo

d 
ve

ss
el

ECM
remodelling

TAM

CAF

T-cell

B-cell

cancer cell

CAF EVs

T-cell EVs

T-cell EVs

cancer cell EVs

B-cell EVs

new blood
vessel

immune system

Figure 2. Tumour-derived EVs influence the microenvironment to promote tumour progression. The tumour microenvironment is comprised of a variety of cell types,
which interact with each other via different signalling mechanisms. Tumour-derived EVs induce the activation of tissue-resident fibroblasts into myofibroblasts,
cancer-associated fibroblasts (CAFs), which in turn modify the ECM favouring cancer cell growth and the recruitment of immune cells. In fact, EVs derived
from cancer cells can exert both anti-tumour and pro-tumour activities on different cells of the immune system, which as a consequence secrete their own
EVs altering the behaviour of cancer cells. Furthermore, tumour-derived EVs contribute to numerous steps required for the progression from a primary tumour
to the final stages of metastasis, such as stimulating epithelial to mesenchymal transition (EMT), the formation of new blood vessels (angiogenesis), vascular
leakiness and pre-conditioning of the premetastatic niche for ‘foreign cell’ establishment.
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between CAFs and cancer cells via EVs is an important inter-

cellular communication mechanism that induces changes in

the tumour microenvironment (figure 2).

EVs derived from several human cancer cells have been

shown to induce angiogenesis. One particular example is

EVs derived from renal cancer cells that promote angiogen-

esis in the lung [41]. In addition, epidermal growth factor

receptor, EGFR-enriched EVs produced by cancer cells are

uptaken by endothelial cells, inducing vascular endothelial

growth factor (VEGF) and VEGF receptor 2 expression [42],

while TF-containing EVs upregulate angiogenesis [43]. Fur-

thermore, the transfer of the microRNA miR-150 from EVs

to TAM leads to a proangiogenic environment through the

secretion of VEGF [44].

Tumour-derived EVs also can activate EMT transition in

epithelial cells triggering their loss of cell adhesion. The

loss of adhesion alters the encapsulated structure of the pri-

mary tumour facilitating the release of tumour cells to

distant sites to induce metastasis. In fact, a number of studies

have observed that EVs derived from Madine-Darby canine

kidney epithelial cells and the breast metastatic cell line

MDA-MB-231 can induce EMT in recipient cells [45,46].

Overall, all these series of events allow the tumour to

progress and metastasize.
(c) Extracellular vesicles play an important role in the
formation of secondary tumours and metastasis

As tumours evolve, their intercellular communication

becomes distorted, with EVs derived from tumour cells

affecting all hallmarks of cancer [22].

In 1889 Stephen Paget observed that different tumour

types have preferential metastatic sites [47], while Ernest

Fuchs perceived that those sites must be predisposed for

allowing ‘foreign cell’ growth. In fact, the role for EVs in

creating an ideal premetastatic niche is becoming increasingly

recognized. The contribution to soluble factors and EVs from

a subtype of pancreatic cancer cells to predispose the
lymphoid node and lung was first made by Jung et al. [48].

However, many other studies followed this observation.

The blood vessels produced within tumours are typically

aberrant allowing vascular leakiness and abnormal endo-

thelial cells morphology [22]. Tumour-derived EVs also

contribute to the induction of vascular leakiness, an

additional factor that contributes to EV-promoted metastasis.

Melanoma-derived EVs induce the upregulation of S100 pro-

teins and TNFa, causing vascular leakiness, inflammation

and bone marrow progenitor recruitment [49]. Similarly,

breast-derived EVs also promote vascular leakiness by acti-

vating Src kinase signalling pathway [50] and through the

release of exosomal miR-105, which targets the mRNA encod-

ing the tight junction protein ZO-1 in endothelial cells [51].

Several groups have found that upregulation of S100 and

MMP proteins mediated by tumour EVs creates a premeta-

static niche, either by enhancing vascular leakiness [49] or

by TLR3 activation [52]. In fact, MMPs present in tumour-

derived EVs can influence the ECM, inducing morphological

changes ultimately leading to metastasis [38,53]. Interest-

ingly, a recent study has found a specific pattern for

integrin expression in tumour-derived EVs, which directs

EVs to specific metastatic sites via S100 upregulation. Thus,

EVs containing integrins a6b4 and a6b1 have been associ-

ated with lung metastasis, while avb5-expressing EVs are

linked to liver metastasis [50]. Another study found that fibro-

nectin (FN)-integrin a5b1 EVs derived from fibrosarcoma

promoted cell migration in vitro and in vivo [54]. In fact, integ-

rin signalling via focal adhesion kinase (FAK) is considered a

possible mechanism of EV signalling in cancer [55].

In recent years, the transfer of RNA within tumour EVs

has generated a great interest in the cancer community.

A study by the Lötvall group showed that mast cell–derived

EVs contain and transfer miR and mRNA to recipient cells,

therefore regulating gene expression [14]. Likewise, several

miR targeting the tumour suppressor gene PTEN have been

found in astrocyte-derived EVs, enhancing the growth of

brain metastatic cells [56]. Interestingly, exosome cargo can

also influence glucose metabolism. A recent study showed
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that breast-derived mir-122 can be transferred to stromal

fibroblasts and prevent glucose uptake by downregulating

pyruvate kinase [57]. However, further thorough investi-

gation is needed to conclusively confirm EV-dependent

transport and expression of miR.

Once the premetastatic niche is conditioned by tumour

EVs, this influences the recruitment of additional cells to pro-

mote the growth of secondary tumours. Both melanoma and

pancreatic tumour EVs induce the recruitment of bone

marrow-derived cells (BMDC) [49,58]. In particular, EVs

from pancreatic cancer cells activate resident macrophages

in the liver (Kupffer cells), which release TGFb. TGFb in

turn activates hepatic stellate cells (HSCs) that induce ECM

remodelling prompting the recruitment of BMDC [58].

It seems that the receptor tyrosine kinase receptor Met

plays a key role in metastatic EV-mediated preconditioning.

Met can be found in tumour EVs and can be transferred

to recipient cells, which in turn promote tumorigenesis

[49,59,60]. However, cancer cells also release EVs containing

other oncogenic proteins. The oncogene KIT was found in

EVs derived from gastrointestinal tumours [61], while a trun-

cated oncogenic form of the epidermal growth factor receptor

(EGFRvIII) can be uptaken by cells negative for the receptor

via EV transfer [62]. Altogether, these studies suggest that

the presence of the oncogene Met in EVs is not the only

mechanism involved in promoting metastasis.
4. Future directions
Tumour-derived EVs prepare the premetastatic niche for

metastasis. To deal with this issue, a recent study created

an artificial premetastatic niche by embedding tumour-

derived EVs in a 3D scaffold device, which they called
M-Trap. By implanting M-Trap in an animal model, they

could observe a reduction in the metastatic potential of ovar-

ian tumour cells and an increase in the survival rate of the

mice [63]. Altogether this technique could potentially present

a promising approach to deal with cancer metastasis,

although a more detailed investigation into different types

of cancer and the precise mechanism implicated would

be needed.

Another question that remains to be answered is: Why not
inhibit EV biogenesis if it is so detrimental in cancer? Several

studies have tried this approach with more or less success.

Interference with some Ras-related RAB proteins, which are

essential for EV biogenesis, has been shown to reduce

migration, growth and metastasis [1]. However, although a

reduction in the metastatic potential induced by injecting

EVs from RAB-depleted cells was observed, metastasis was

not completely abolished, suggesting either additional mech-

anisms unrelated to EV biogenesis are implicated or that

affecting EV biogenesis influences other cellular signalling

pathways. This further highlights the existing complexity

of the different EV subtypes and their functionality,

which is an area of enormous interest in the field. In fact,

further basic and translational research on this topic is

likely to pay dividends in terms of regaining control of

our understanding of the cancer microenvironment and

metastatic dissemination.
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