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The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR)

is characterized by induction of heat-shock proteins (HSPs). As molecular

chaperones, HSPs facilitate the folding, assembly, transportation and degra-

dation of other proteins. In mammals, heat shock factor 1 (HSF1) is the

master regulator of this ancient transcriptional programme. Upon proteotoxic

insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis,

thereby resisting stress and antagonizing protein misfolding diseases and

ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of

the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells

without stress, it becomes constitutively activated within malignant cells,

rendering them addicted to HSF1 for their growth and survival. Highlighting

the HSR/HPSR as an integral component of the oncogenic network, several

key pathways governing HSF1 activation by environmental stressors are

causally implicated in malignancy. Importantly, HSF1 impacts the cancer pro-

teome systemically. By suppressing tumour-suppressive amyloidogenesis,

HSF1 preserves cancer proteostasis to support the malignant state, both

providing insight into how HSF1 enables tumorigenesis and suggesting dis-

ruption of cancer proteostasis as a therapeutic strategy. This review provides

an overview of the role of HSF1 in oncogenesis, mechanisms underlying its

constitutive activation within cancer cells and its pro-oncogenic action, as

well as potential HSF1-targeting strategies.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Introduction
Every biological process is dynamic and needs to stay homeostatic [1], a state

essential to cellular and organismal fitness and survival. Disruption of this

equilibrium inevitably provokes stress and elicits stress responses, through which

cells and organisms can counter stresses and reinstate the homeostatic state.

Among the various cellular responses to stress is the heat-shock, or HSF1-

mediated proteotoxic stress, response (HSR/HPSR) [2,3], an evolutionarily

conserved defensive mechanism. Upon challenge by proteotoxic stressors, such

as heat shock, cells mobilize the HSR/HPSR to produce a large amount of heat-

shock proteins (HSPs), or molecular chaperones [2,3]. HSPs are a group of proteins

specializing in facilitating the folding, trafficking, complex assembly, and ubiqui-

tination and degradation of other proteins [2,3]. Therefore, HSPs ensure the quality

of the cellular proteome and preserve proteome homeostasis, or proteostasis [4,5].

Of note, two categories of HSPs, constitutively expressed and stress-inducible,

exist inside cells. Whereas the constitutively expressed HSPs, such as HSC70

and HSP90b, supply the basal chaperoning activity, the stress-inducible ones,

such as HSP27 and HSP72, are necessary for meeting the extra demand for chaper-

oning activity, owing to elevated protein misfolding and aggregation, under

proteotoxic conditions. Accordingly, the HSR/HPSR is dispensable under basal

growth conditions but becomes indispensable under stressful conditions.
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2. Transcriptional governance of the HSR/HPSR
The HSR/HPSR is primarily a transcriptional programme,

characterized by induced HSP mRNAs [2,3]. A small family

of transcription factors, named heat shock factors (HSFs),

have been implicated in controlling the HSR/HPSR in response

to proteotoxic stress [6,7]. While only a single HSF gene exists

in yeasts and invertebrates, at least nine HSF paralogues have

been identified in vertebrates to date, among which HSF1 is

the most conserved and regarded as the prototype [6–8]. In

mammals, HSF1 has proved to be the master regulator of the

HSR/HPSR, as genetic deletion of Hsf1 abolishes the induction

of HSPs by heat shock in mice [9,10]. By contrast, the HSR/

HPSR is still mounted in mice deficient for Hsf2 or Hsf4
[11,12]. Of note, although HSF2 can form heterotrimers with

HSF1 to modulate the HSR/HPSR, this interplay requires the

presence of HSF1 [13]. While HSF3 is pivotal to the HSR/

HPSR in avian cells, it appears to regulate the stress-inducible

expression of non-Hsp genes in mice [14]. Despite being dispen-

sable for the HSR/HPSR, HSF4 is required for normal lens

development in mice [15]. Moreover, the functions of HSF5,

HSFX1/2 and HSFY1/2 remain unknown [8].

Highly conserved among the HSF family of proteins

are several functional domains, including the N-terminal

helix–turn-helix DNA-binding domain, hydrophobic heptad

repeats (HR)-enriched trimerization domain and C-terminal

transactivation domain [7]. HSFs trimerize through their HR

domains, a configuration crucial to their DNA binding [7,16].

Following nuclear translocation, trimeric HSFs bind to the con-

sensus heat-shock elements (HSEs), typically consisting of

contiguous inverted arrays of 50-nGAAn-30 motif [7,16], in

gene promoters. Following DNA binding and subsequent

stress-inducible phosphorylation, HSF1 recruits positive tran-

scription elongation factor b (P-TEFb) to phosphorylate

paused RNA polymerase II (RNAP II) at the proximal promo-

ters of HSP genes, resulting in RNAP II pause release and

transcription elongation [16].
3. Complex regulations of HSF1
In yeast HSF is constitutively active [17]; however, in ver-

tebrates HSF1 becomes mobilized upon challenge by

stressors [7,16]. As the principal regulator of the HSR/HPSR,

HSF1 is subject to multilayer regulations.

In mammals, HSF1 remains latent under normal non-

stressful conditions. By forming a protein complex with

HSP90 and co-chaperones, HSF1 is repressed in the monomeric

state [18]. Following proteotoxic stress, however, this repres-

sive complex is disrupted, partially owing to the titration of

HSPs away from the complexes by the accumulation of mis-

folded proteins. Subsequently, monomeric HSF1 is released

and undergoes trimerization [18]. In agreement with this

model, inhibition of HSP90 alone is sufficient to activate

HSF1 in the absence of environmental stressors [18]. However,

in yeast Hsf1 seems to predominantly interact with cytosolic

Hsp70 and this repressive association is transiently disrupted

by heat shock [19].

Following trimerization, HSF1 enters the nucleus

and becomes competent for DNA binding. In addition, post-

translational modifications (PTMs) are important for complete

HSF1 activation. Among the various types of modifications

reported, the best studied is phosphorylation. Of note, HSF1
undergoes both stimulatory and inhibitory phosphorylation.

Interestingly, recent studies suggest that phosphorylation,

although not required, is a fine-tuning mechanism for HSF1

activation [19]. Beyond phosphorylation, HSF1 is subject to

acetylation and sumoylation [7,16]. These diverse PTMs

likely impact different steps of HSF1 activation, including

nuclear translocation, DNA binding and transactivation.

It is widely believed that HSF1 is regulated at the point of

activation primarily; nonetheless, emerging evidence has

started unveiling additional mechanisms for regulating HSF1

by altering its expression levels. For instance, polyubiquitina-

tion destabilizes HSF1 proteins and, therefore, impaired

ubiquitination may contribute to elevated HSF1 proteins in

human cancers [20–22]. Furthermore, in many human cancers

HSF1 mRNA levels are increased too [23–25]. HSF1 gene

amplification may be one of the underlying mechanisms [25].

It was also reported that the splicing factor SF3B1, genetic

mutations of which occur in chronic lymphocytic leukaemia

recurrently [26], can regulate HSF1 mRNA levels [27],

suggesting a role of RNA splicing in regulating HSF1

expression. Together, these findings indicate that HSF1 can

be regulated at the levels of both expression and activation.
4. HSF1 acts as a potent pro-oncogenic factor
Beyond enhancing cellular and organismal survival of stress,

HSF1 prolongs the lifespan in nematodes [28,29]. In addition,

HSF1 can protect neurons against protein aggregation

and degeneration. In transgenic R6/2 mice, a Huntington’s dis-

ease model, Hsf1 deficiency causes increased aggregates and

inclusions of huntingtin proteins in the brain, shortening

animal survival [30]. Conversely, activation of HSF1 by a

small molecule HSF1A not only suppresses the aggregation

of polyQ-huntingtin proteins and toxicity in rat neuronal

precursor PC-12 cells, but also ameliorates the neurotoxicity

in a fly model of spinocerebellar ataxia type 3 [31]. Moreover,

pharmacological inhibition of HSP90 activates HSF1, thereby

rescuing synaptic dysfunction and memory loss in a mouse

model of Alzheimer’s disease [32]. Clearly, all these effects of

HSF1 are beneficial.

By stark contrast, recent studies have revealed a surprising

role of HSF1 in enabling oncogenesis. In 2007, two independent

studies demonstrated this unexpected deleterious action of

HSF1. In one study, Hsf1 knockout selectively impaired

lymphomagenesis in Trp53-deficient mice [33]. In the other

study, Hsf1-deficient mice were markedly refractory to the

DMBA-induced skin carcinogenesis and the tumorigenesis

initiated by Trp53R172H mutation [34]. Subsequent studies in

diverse mouse cancer models supported these initial findings.

For example, diethylnitrosamine-induced hepatocellular

carcinogenesis was suppressed in Hsf1-deficient mice [35].

Furthermore, Hsf1 deficiency impaired the development of

malignant peripheral nerve sheath tumours (MPNSTs) in mice

due to loss of the tumour suppressor neurofibromatosis type I

(Nf1) [20]. Moreover, two independent groups demonstra-

ted that deletion of Hsf1 significantly delayed mammary

tumorigenesis in MMTV-Her2/Neu transgenic mice [36,37].

In addition to these spontaneous tumorigenesis models,

various xenograft models have been employed to interro-

gate the role of HSF1 in oncogenesis. For example, RNA

interference (RNAi)-mediated HSF1 depletion impeded the

in vivo growth of transplanted human mammary epithelial
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Figure 1. Summary of various post-translational modifications potentially
implicated in constitutive activation of HSF1 within cancer cells. Refer to
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cells overexpressing HER2/NEU [38]. Similarly, HSF1 knock-

down resulted in impaired growth, invasion, and metastasis

of xenografted human hepatocellular carcinoma (HCC)

and melanoma cells in immunocompromised mice [39–42].

These studies clearly support an important role for HSF1 in

the maintenance and progression of established malignancies.

Moreover, HSF1 overexpression suffices to enhance the malig-

nant phenotypes of xenografted human melanoma cells in vivo
[43–45]. Thus, these findings collectively highlight the potent

pro-oncogenic effects of HSF1.

In line with these in vivo findings, in vitro studies confirmed

that HSF1 becomes indispensable for the growth and survival

of established cancer cells. HSF1 depletion, via either lenti-

viral small hairpin RNAs (shRNAs) or small interfering

RNAs (siRNAs), markedly impaired the growth and survival

of a wide array of human cancer cell lines, including

breast cancer cells, MPNST cells, melanoma cells, multiple

myeloma cells, HCC cells and pancreatobiliary cancer cells

[20,34,41,46–48]. In sharp contrast to the HSF1 addiction of

malignant cells, HSF1 depletion exerted little or no impact on

non-transformed cells [20,34]. The vast differences in HSF1

dependency are congruent with their distinct intrinsic levels

of proteotoxic stress and states of HSF1 activation.

Unlike HSF1, HSF2 appears to suppress malignant

progression [49]; moreover, HSF4 slightly promotes tumori-

genesis in Trp53- or Arf-deficient mice [50]. In addition, the

roles of other members of the HSF family in malignancy

remain unknown.
the main text for detailed regulations. Modifications stimulating HSF1 acti-
vation are marked in red and modifications inactivating HSF1 are marked
in blue. Accordingly, oncoproteins and tumour suppressors are labelled
in red and blue, respectively. Proteins displaying both oncogenic and
tumour-suppressive roles are labelled in brown. Ac, acetylation; de-phos.,
de-phosphorylation; K, lysine; polyUb, polyubiquitination; S, serine;
T, threonine; Sm, sumoylation.
5. Constitutive, autonomous activation of HSF1
within cancer cells

Canonically, HSF1 is activated by various environmental

stressors, an acute and transient process. By contrast, within

cancer cells HSF1 appears to remain constitutively activated

[20,34,51], suggesting a state of chronic stress.

On the one hand, this chronic stress could be induced by

acidic and hypoxic tumour microenvironments, which inflict

protein damage inside cancer cells. On the other hand, pro-

teotoxic stress could arise from within the tumour cell in the

absence of environmental insults. A number of mechanisms

may account for this intrinsic stress within cancer cells, includ-

ing heightened global protein synthesis driven by mTORC1

hyper-activation, exacerbated proteomic imbalance due to

aneuploidy, destabilized protein conformations resulting

from numerous genetic mutations and oxidative protein

damage caused by oxidative stress [8]. As a result, HSF1

activation is widespread in human cancers [23,51].

Although it is well known that proteotoxic stressors, such

as heat shock, potently activate HSF1, our understanding of

the underlying molecular mechanisms remains incomplete.

For example, HSF1 hyper-phosphorylation is important to

its full transcriptional activation and a number of phosphory-

lating events have been defined to date (figure 1) [52]. The

stimulatory events include Ser230, Ser419, Thr142, Ser320

and Ser326 phosphorylation. By contrast, the inhibitory

events include Ser303, Ser307, Ser363 and Ser121 phosphoryl-

ation. Nonetheless, it remains obscure how these events

regulate HSF1 activity.

Although these phosphorylating events occur either under

physiological conditions or in the face of environmental

stressors, it remains elusive whether cancer cells exploit the
very same mechanisms to render HSF1 constitutively active.

Of interest, some of the signalling pathways implicated in

HSF1 regulation are frequently altered in human malignancy,

such as the RAS/MAPK and LKB1/AMPK signalling cascades.

(a) Oncogenic RAS signalling directly activates HSF1
through phosphorylation

RAS/MAPK signalling plays a prominent role in oncogenesis,

highlighted by the fact that RAS mutations occur in up to 30%

of all human cancers [53]. These mutations all lead to hyper-

activation of RAS/MAPK signalling, which, in turn, mobilizes

numerous downstream effectors that control a plethora of cel-

lular processes to drive malignant transformation collectively

[54,55]. In addition to RAS mutations, frequent aberrations

in upstream receptor tyrosine kinases (RTKs) and loss of

the tumour suppressor NF1 can also activate RAS/MAPK

signalling [20].

Does the oncogenic RAS/MAPK signalling pathway control

HSF1 activation? It has been reported that ERK1/2, the widely

believed ultimate effector of this signalling cascade, phosphory-

lates HSF1 at Ser307, a constitutively repressive modification

under basal growth conditions [56]. Thus, HSF1 would be

repressed by the most important oncogenic signalling pathway.

Nonetheless, our and others’ studies demonstrated that onco-

genic RAS/MAPK signalling directly activates HSF1 and its

mediated HSR/HPSR [20,21,57]. Surprisingly, our study
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uncovered that it is MEK, rather than ERK, that physically inter-

acts with and activates HSF1 [21]. Thus, in parallel with ERK,

HSF1 is a second physiological substrate for MEK. Our study

indicated that heat shock activates RAS/MAPK signalling

and induces physical MEK–HSF1 interactions, which leads to

HSF1 phosphorylation at Ser326 [21], a modification known

to be critical to its activation by heat shock [52]. Moreover, our

study revealed that ERK suppresses HSF1 activation indirectly

via a negative feedback mechanism. That is, ERK phosphory-

lates MEK at Thr292/386 to repress the MEK-mediated HSF1

Ser326 phosphorylation [21].

Interestingly, another report proposed that mTOR also

phosphorylates HSF1 at Ser326 [58]. mTOR, a serine/threonine

kinase, assembles into two distinct large protein complexes,

mTORC1 and mTORC2, controlling protein translation, lipo-

genesis, autophagy and survival [59]. Unsurprisingly, mTOR

signalling is pro-oncogenic [60]. In line with a role of mTOR

signalling in HSF1 activation, the dual PI3 K/mTOR inhibitor

BEZ235 blocks HSF1 activation due to HSP90 inhibition [61].

Moreover, p38g was recently reported to phosphorylate

Ser326 under heat shock [62]. It is possible that multiple

kinases can phosphorylate Ser326. Despite phosphorylation

demonstrated in vitro, the key evidence showing physical inter-

actions between HSF1 and mTOR or p38g inside cells is still

missing. Thus, it remains unclear whether mTOR and p38g

regulate HSF1 directly or indirectly in vivo. Further detailed

studies are necessary to clarify these issues.

(b) Tumour-suppressive LKB1/AMPK signalling represses
HSF1 through phosphorylation

In response to elevated cellular AMP/ATP or ADP/ATP

ratio, signals indicating cellular energy stress, AMP-activated

protein kinase (AMPK) becomes activated [63]. In turn,

AMPK phosphorylates numerous downstream effectors, elicit-

ing a systemic cellular response that aims to conserve ATP

consumption and enhance ATP production simultaneously

[64]. Thereby, AMPK initiates the metabolic stress response

and preserves energy homeostasis. Following binding of

AMP or ADP to its g subunits, full activation of AMPK

requires phosphorylation of its a subunits at Thr172 by its

upstream kinase liver kinase B1 (LKB1), a tumour suppressor

causally implicated in human Peutz–Jeghers syndrome [65].

Notable downstream effectors of AMPK include acetyl

CoA carboxylase 1 (ACC1), regulatory associated protein of

mTOR (RAPTOR), sterol regulatory element binding protein

1c (SREBP1c) and Unc-51-like autophagy activating kinase 1

(ULK1) [65–67], which are involved in lipogenesis, protein

translation and autophagy. In contrast with its well-known

activation by proteotoxic stressors, it remains unknown how

the HSR/HPSR responds to metabolic stressors.

Our recent study revealed that glucose and amino acid

deprivation both suppress the HSR/HPSR [43]. Moreover, the

widely prescribed anti-diabetic drug metformin exerted a simi-

lar effect [43]. Metformin, a mitochondrial toxin that disrupts

cellular energy homeostasis by depleting ATP, has been

recently shown to display promising anti-neoplastic effects

[68]. Mechanistically, our study indicated that both nutrient

deprivation and metformin activate AMPK, which sub-

sequently phosphorylates HSF1 at Ser121 [43]. As a negative

modification, Ser121 phosphorylation impairs the nuclear

translocation and stability of HSF1 [43]. Accordingly, metabolic

stressors suppress the HSR/HPSR triggered by heat shock,
exacerbating proteomic perturbation and impairing survival

[43]. Through the same mechanism, metformin at a clinically

relevant dose suppresses the constitutive HSF1 activation in

diverse human cancer cell lines and in xenografted human

melanomas, provoking global protein ubiquitination [43].

Conversely, HSF1 overexpression renders human melanoma

cells refractory to the inhibition of anchorage-independent

growth by metformin in vitro and to the tumour-suppressive

effect of metformin in vivo [43]. In line with its role in activating

AMPK, LKB1 deficiency not only enhances the HSR/HPSR trig-

gered by heat shock but also heightens the constitutive HSF1

activation in malignant cells (KH V, S Dai, Z Tang, C Dai

2017, unpublished manuscript).

Taken together, these findings uncover a previously

unrecognized metabolic control of the HSR/HPSR via the

AMPK-HSF1 interplay. In addition to its activation by proteo-

toxic stressors, metabolic stressors suppress HSF1. Although

most of the anti-neoplastic effects of metformin have been

ascribed to its metabolic impacts, our study pinpoints a new

mechanism of action of metformin—disruption of cancer

proteostasis. This action is probably applicable to metabolic

stressors in general.

(c) GSK3 signalling suppresses HSF1 through
phosphorylation

Glycogen synthase kinase 3 (GSK3), a key serine/threonine

kinase involved in glycogen synthesis, regulates a wide variety

of cellular functions and has been implicated in many human

pathological conditions including neurodegenerative dis-

orders and diabetes [69]. However, its roles in cancer remain

controversial; and GSK3 seems to function as both a tumour

suppressor and a tumour promoter. On the one hand, GSK3

can activate tumour suppressors, including TP53, TSC2 and

RBL2 [70], and inactivate oncoproteins, including c-MYC,

cyclin D1 and HIF-1a [70]. On the other hand, GSK3 activates

some oncoproteins, including p70S6 K and MDM2 [70], and

inactivates certain tumour suppressors, including PTEN and

p27KIP1 [70].

It was reported that GSK3b phosphorylates HSF1 at Ser303,

a constitutively negative modification promoting the nuclear

exit of HSF1 via recruiting 14-3-3 proteins [56]. Interestingly,

this GSK3-mediated HSF1 phosphorylation suppresses the

expression of RNF126, an E3 ubiquitin ligase, to stabilize

IGF-IIR proteins, thereby supporting hypertension-induced

cardiomyocyte hypertrophy [71]. Moreover, another study

showed that Ser303 phosphorylation is required for sub-

sequent sumoylation of HSF1 at Lys298, which is inhibitory

to its transactivation [72]. This negative regulation of HSF1

suggests a new role of GSK3 in regulating proteostasis. There-

fore, in some human cancers inactivated GSK3 signalling may

contribute to malignant transformation at least in part via

HSF1 activation.

(d) JNK signalling suppresses HSF1 through
phosphorylation

c-Jun N-terminal kinase/stress-activated protein kinase (JNK/

SAPK), a multifaceted serine/threonine kinase, responds to

numerous extracellular and intracellular cues, including

growth factors, inflammatory cytokines, UV radiation and cel-

lular stresses, including oxidative, osmotic, endoplasmic

reticulum and proteotoxic stress [73,74]. Following activation,
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JNK phosphorylates a list of downstream effectors, including c-

JUN, ELK1, ATF2 and TP53, to regulate differentiation, growth

and apoptosis [75]. The role of JNK signalling in human cancer

is context-dependent, exerting both tumour-suppressive and

tumour-promoting effects [75]. In support of its tumour-

suppressive role, inactivating mutations in MKK4 and MKK7,

the genes encoding two key upstream kinases activating

JNK, have been found in human cancer [76,77].

Interestingly, one of the JNK targets is HSF1. It was

reported that JNK phosphorylates HSF1 at Ser363, leading

to its inhibition [78]. Congruent with this negative regulation,

JNK deficiency activates HSF1 [79]. Furthermore, our recent

study showed that HSF1 prevents JNK activation recipro-

cally [79], revealing a mutual suppression between JNK and

HSF1. Thus, these findings suggest that in some human can-

cers with inactivated JNK signalling HSF1 is mobilized to

support malignancy.

(e) PKA signalling activates HSF1 through
phosphorylation

Cyclic adenosine 30,50 monophosphate (cAMP), the first ident-

ified intracellular second messenger, plays a pivotal role in

the signal transductions triggered by hormones and neuro-

transmitters [80]. In mammalian cells, the primary effector of

cAMP is protein kinase A (PKA), a ubiquitous tetrameric

cAMP-binding kinase [80]. Among the key PKA substrates

are GSK3 and cAMP-response element binding protein [80].

Importantly, activation of PKA signalling has been implicated

in tumour initiation and progression [81]. In human Carney

complex syndrome, germline mutations in PRKAR1A, which

encodes the type 1A regulatory subunit of PKA, result in

hyper-activation of PKA and, ultimately, development of

endocrine tumours in the testicle, thyroid and pancreas [82].

Of note, a recent study reported that PKA activates HSF1

through Ser320 phosphorylation, a modification promoting

its nuclear translocation and DNA binding [83]. In addition,

PKA may activate HSF1 indirectly, via suppressing GSK3

[84]. These findings suggest that PKA signalling can promote

tumorigenesis, in part, by activating HSF1.

( f ) PLK1 regulates HSF1 through phosphorylation
Polo-like kinase 1 (PLK1) is essential to cell cycle progression

and mitosis by regulating maturation of mitotic centrosomes,

assembly of mitotic spindle, as well as cytokinesis [85,86].

Unsurprisingly, PLK1 plays a key role in maintaining geno-

mic stability. Prominent PLK1 substrates include CDC25,

cyclin B1, MYT1/WEE1, NLP, APC/C and NUDC [85,86].

Whereas its expression remains low in most primary adult tis-

sues, PLK1 is frequently overexpressed in human cancer

tissues, which is associated with tumour progression and

poor prognosis [86].

Congruent with its tumour-promoting effects, it was

reported that PLK1 phosphorylates HSF1 at Ser419, a modifi-

cation enhancing HSF1 nuclear translocation induced by heat

shock [87]. Furthermore, another study showed that during

mitosis PLK1 phosphorylates HSF1 at Ser216, which blocks

the SCFb-TrCP-mediated ubiquitination and subsequent

degradation of HSF1 by inducing physical HSF1–CDC20

interactions [88]. This interaction sequesters CDC20 away

from the anaphase promoting complex/cyclosome (APC/C),

blocking mitotic exit and inducing aneuploidy [88]. These
findings suggest that HSF1 acts as a mitotic regulator indepen-

dently of its transcriptional regulation of the HSR/HPSR.

Further studies are necessary to fully delineate the PLK1-

mediated HSF1 regulations; nonetheless, current evidence

suggests that HSF1 may contribute to the tumour-promoting

effects of PLK1.

(g) CK2 signalling activates HSF1 through
phosphorylation

Casein kinase II (CK2) is a constitutively active serine/

threonine kinase closely associated with enhanced cell

proliferation and survival [89]. CK2 normally exists as a hetero-

tetrameric complex comprising two catalytic subunits, a and

a0, and two regulatory b subunits [89]. CK2 can phosphorylate

a myriad of substrates, and accumulated evidence has demon-

strated the oncogenic potential of CK2. For example, CK2a
overexpression accelerated the development of acute lympho-

blastic leukaemia in TAL-1 transgenic mice [90]. Furthermore,

MMTV-CK2a transgenic mice developed mammary gland

hyperplasia and adenocarcinomas [91]. Consistent with its

pro-oncogenic potential, CK2 expression is elevated in a large

diversity of human cancers [89].

It was reported that heat shock triggers the nuclear trans-

location and activation of CK2 [92]. Importantly, CK2

phosphorylates HSF1 at Thr142, a modification necessary

for its DNA binding and HSP gene transcription under heat

shock [92]. Thus, it is conceivable that HSF1 activation may

contribute to the oncogenic property of CK2.

(h) IER5 activates HSF1 through de-phosphorylation
In contrast to the well-recognized HSF1 activation via phos-

phorylation, a recent study uncovered that HSF1 can also be

activated via de-phosphorylation. Immediate early response

5 (IER5), a transcriptional target of TP53, acts as an activator

of HSF1 by forming a ternary complex with HSF1 and the

phosphatase PP2A [93]. In consequence, HSF1 becomes

hypo-phosphorylated but active [93]. Although the underlying

mechanisms remain unclear, it is possible that the IER5-PP2A

complex alleviates some of the inhibitory phosphorylation

events on HSF1. Importantly, IER5 is often transcriptionally

upregulated in various human cancers [93], which may also

contribute to the widespread constitutive activation of HSF1

in cancer via this de-phosphorylating mechanism.

(i) SIRT1 promotes HSF1 activation via deacetylation
Sirtuin 1 (SIRT1), the mammalian orthologue of Sir2p in yeast,

is an NADþ-dependent protein deacetylase controlling DNA

repair, cellular metabolism, longevity and stress responses

[94]. TP53, FOXO, KU70, PGC1a and LXR are among the

notable SIRT1 substrates [94]. By preventing MDM2 binding

to TP53-responsive promoters, acetylation of the tumour sup-

pressor TP53 is essential to its transcriptional activation [95].

In support of its oncogenic potential, SIRT1 deacetylates

Lys382 to impair the transcriptional activity of TP53 [96]. More-

over, SIRT1 can promote epithelial–mesenchymal transition

(EMT) [97]. Paradoxically, SIRT1 can also act as a tumour sup-

pressor. Sirt1-deficiency led to increased genomic instability

and accelerated tumorigenesis in Trp53þ/2 mice [98]. Conver-

sely, Sirt1 overexpression impaired intestinal tumorigenesis in

APCmin/þ mice [99]. Thus, the roles of SIRT1 in cancer are

complex, likely tissue- and context-dependent.
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It has been shown that heat stress induces Lys80 acetylation

of HSF1 by p300 or cyclic AMP response element-binding

protein, a modification negatively regulating its DNA bind-

ing [100]. Of interest, SIRT1 deacetylates Lys80, thereby

maintaining HSF1 in a DNA-binding competent state [100].

While this mechanism likely underlies the beneficial effects of

SIRT1 on stress-resistance and longevity [100], it may also

serve to promote malignancy. Importantly, it remains elusive

whether SIRT1 plays a role in protecting cancer proteostasis

via HSF1.

( j) HDAC6 senses protein aggregation to de-repress
HSF1

In addition to SIRT1, histone deacetylase 6 (HDAC6) can regu-

late HSF1 activation as well; however, this action is independent

of its deacetylase activity. Under non-stress conditions, HDAC6

and its interacting partner p97/VCP, an AAAþ-ATPase, associ-

ate with the repressive HSP90–HSF1 protein complex [101].

Upon accumulation of ubiquitinated protein aggregates inside

cells, HDAC6 senses protein aggregation via its ubiquitin-

binding domain and dissociates itself from p97/VCP, thereby

enabling p97/VCP to disrupt HSP90–HSF1 interactions via

its ATPase activity [101]. Thus, HDAC6 is required for disas-

sembly of the repressive HSP90-HSF1 complexes to unleash

HSF1 for activation in the face of protein aggregation.

In the light of its upregulated expression in various human

cancers [102], it is conceivable that HDAC6 may contribute to

constitutive HSF1 activation in malignancies.

(k) EEF1A1 enhances the HSR/HPSR both
transcriptionally and translationally

A recent study revealed that, beyond its well-defined func-

tion in protein translation, eukaryotic translation elongation

factor 1 alpha 1 (EEF1A1) is also actively involved in regulating

the HSF1-mediated HSR/HPSR. During proteotoxic stress,

EEF1A1 helps to recruit HSF1 to the HSP72 gene promoter to

initiate the transcription; subsequently, it stabilizes and trans-

ports HSP72 mRNAs to translating ribosomes by binding to

their 30 untranslated regions (UTRs) [103]. Thereby, EEF1A1

assists the HSR/HPSR to enhance thermotolerance. Although

it remains unclear whether this mechanism operates in the

context of cancer, it is tempting to speculate that EEF1A1

may support oncogenesis in part by heightening the

HSF1-mediated HSR/HPSR.

(l) Stabilization of HSF1 proteins in cancer
Canonically, HSF1 regulation is thought to occur at the

activation step primarily; however, elevated mRNAs and

proteins of HSF1 have been noticed in human cancers

[21–23]. Whereas the mechanisms underlying upregulated

HSF1 mRNAs remain elusive, emerging evidence has high-

lighted a role of the ubiquitin–proteasome system (UPS) in

regulating HSF1 protein stability.

Our study indicated that the MEK-mediated Ser326

phosphorylation stabilizes HSF1 by blocking its polyubiquiti-

nation and subsequent proteasomal degradation [21].

Furthermore, another study reported that filamin A-interacting

protein 1-like (FILIP1 L) interacts with HSF1 to promotes its

ubiquitination and proteasomal degradation [104]. FILIP1 L,

whose expression is downregulated in several human cancers,
inhibits the migration, invasion and metastasis of various

human cancer cell lines [105]. Thus, FILIP1 L acts like a

tumour suppressor to destabilize HSF1. Moreover, a recent

study identified F-box and tryptophan/aspartic acid (WD)

repeat domain-containing 7 (FBXW7) as an E3 ligase respon-

sible for HSF1 ubiquitination [22]. FBXW7 is a tumour

suppressor targeting several key proto-oncoproteins, including

c-MYC, cyclin E and SREBP1, for proteasomal degradation

[106]. This study demonstrated that FBXW7 physically

binds to HSF1 via a conserved degron motif (aa 303–307),

which is phosphorylated by both GSK3b and ERK1 [56].

Another new study indicated that CK2a’ can also phosphory-

late Ser303/307 to recruit FBXW7 for HSF1 ubiquitination

[107]. In a xenograft model, FBXW7 deficiency led to nuclear

accumulation of HSF1 and enhanced lung metastasis of

human melanoma cells [22]. Interestingly, our study indicated

that the MEK-mediated Ser326 phosphorylation diminishes

HSF1 Ser307 phosphorylation [21]. Thus, it is possible

that MEK stabilizes HSF1, in part, by impeding the

FBXW7-mediated ubiquitination.

In aggregate, a growing body of evidence indicates that

both HSF1 activity and expression are upregulated in human

cancers via diverse mechanisms.
6. How does HSF1 empower tumorigenesis?
Given that HSPs chaperone a vast number of cellular pro-

teins, unsurprisingly, the impacts of HSF1 on tumorigenesis

are very broad and diverse.

(a) Transcription-dependent, cell-autonomous
pro-oncogenic effects

Naturally, it has been believed that HSF1 promotes oncogen-

esis primarily through its transcriptional action (figure 2).

Congruent with its role in regulating HSP transcription, aB-
crystallin/Hspb5 expression is diminished in Hsf12/2 mouse

embryonic fibroblasts [108]. It is known that aB-crystallin

complexes with FBX4, an E3 ubiquitin ligase, to promote

protein ubiquitination [109]. Of note, one of the FBX4 targets

is the tumour suppressor TP53 [108]. Thus, decreased aB-

crystallin expression impairs TP53 protein ubiquitination,

leading to TP53 accumulation in Hsf12/2 cells [108]. This

result suggests that HSF1 promotes malignancy, in part, by

enhancing TP53 degradation.

Furthermore, HSF1 is required for malignant transform-

ation of immortalized mammary epithelial MCF-10A cells

driven by the HER2/NEU oncogene. Mechanistically, HSF1

antagonizes HER2/NEU-induced cellular senescence [38].

This can be, in part, ascribed to elevated HSP expression

owing to HSF1 activation, as depletion of either HSP27 or

HSP72 by shRNAs sensitizes MCF-10A cells to senescence

induced by HER2/NEU [38].

Moreover, through induction of HSP90a expression, HSF1

can promote oncogenic RAS signalling indirectly via stabiliz-

ing kinase suppressor of RAS 1 (KSR1) [20], a client protein

of HSP90. KSR1 is a scaffolding protein providing docking

sites for RAF, MEK and ERK oncoproteins to undergo serial

activating phosphorylation events [110]. Congruently,

HSF1 deficiency diminishes KSR1 protein and impairs ERK

phosphorylation, impeding the tumorigenesis driven by

hyper-activation of RAS signalling due to Nf1 deficiency [20].
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In addition, mitigation of RAS signalling may underlie the

migration defect of Hsf1-deficient cells stimulated with epider-

mal growth factor (EGF) [111]. Similarly, HSF1 deficiency can

destabilize other client proteins of HSP90, including AKT,

EGFR and MIF [112–114], all of which are important players

in oncogenesis.

Given its regulation of several classes of chaperones and

co-chaperones, HSF1 deficiency is expected to influence

numerous chaperone client proteins and their mediated bio-

logical pathways, therefore bringing forth systemic impacts.

Indeed, our recent study revealed that HSF1 compromise, via

either shRNA, AMPK activation or MEK blockade, induces

global protein ubiquitination and aggregation in malignant

cells, accompanied by diminished cellular chaperoning

capacity [21,43]. Moreover, beyond protein destabilization

and aggregation, HSF1 deficiency provokes amyloidogenesis

[21], marking the state of utmost proteomic chaos. Whereas

amyloidogenesis frequently occurs in neural cells and has

been closely associated with human neurodegenerative dis-

orders [115], it appears that cancer cells are also susceptible

to amyloidogenesis. Our study revealed that both HSF1 and
proteasome operate in concert to contain amyloidogenesis at

a low level not obviously detrimental to cancer cells. Nonethe-

less, amyloids are still elevated in malignant cells compared

with their non-transformed counterparts [21]. Of note, this

fragile cancer proteostasis is highly vulnerable to proteomic

perturbations. Either HSF1 compromise, proteasome inhi-

bition or both combined induces amyloid formation, leading

to toxicity in both cancer cells in vitro and melanomas in vivo
[21]. Moreover, our study indicated that amyloidogenesis

is tumour-suppressive, impeding melanoma growth and

metastasis in vivo [21].

Conceptually, our study suggests that proteostasis enables

oncogenesis. Furthermore, our study not only establishes that

HSF1 acts as a generic pro-oncogenic factor, by safeguarding

proteostasis in cancer, but also suggests that disrupting pro-

teostasis and provoking amyloidogenesis may be a novel

therapeutic strategy to combat malignancies.

In addition to their prominent cytosolic localization and

roles as molecular chaperones, a fraction of HSPs are associated

with membranes in tumour cells. For example, HSP72 proteins

have been found both in lipid rafts of the plasma membrane and
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on the lysosomal membrane. While the plasma membrane-

bound HSP72 can both protect tumour cells against radiation

and function as a target structure recognized by natural killer

cells [116], the lysosomal membrane-bound HSP72 inhibits

lysosomal membrane permeabilization and subsequent cathep-

sin release [117]. Thus, through regulation of membrane-bound

HSPs, HSF1 may modulate the anti-tumour immune response

and promote tumour cell survival.

Accumulating evidence also indicates that HSF1 can regu-

late non-HSP genes, particularly in the context of cancer [53].

In addition to suppressing the initiation of mammary carci-

nomas in MMTV-Her2/Neu transgenic mice, Hsf1 deficiency

impeded tumour progression by impairing angiogenesis

[36]. Mechanistically, HSF1 controls the transcription of

human antigen R (HuR), an RNA-binding protein specifically

recognizing the AU-rich elements located at the 30 UTR of

mRNAs [118]. HuR is known to regulate the stability and/

or translation of many mRNAs, including HIF-1a and

VEGF [119,120]. Thus, Hsf1 deficiency diminishes cellular

HuR expression, leading to reduced HIF-1a protein trans-

lation and impaired tumour angiogenesis [36]. Similarly,

HSF1 can control b-catenin mRNA translation via HuR in

mammary cancer cells [121].

HSF1 also promotes EMT. It was reported that Hsf1
deficiency impedes the EMT and migration of mammary

epithelial cells derived from MMTV-Her2/Neu transgenic

mice, contributing to impaired mammary tumorigenesis and

metastasis [37]. Similarly, it was reported that HSF1 knock-

down mitigates the transcription of several master inducers

of EMT, including SLUG, SNAIL, TWIST1 and ZEB1, thereby

blocking the EMT and migration induced by transforming

growth factor beta (TGFb) in ovarian cancer cell lines [22].

HSF1 can also promote HCC cell migration and invasion

through transcriptional induction of miR-135b, a microRNA

targeting RECK and EVI5 [122].

Interestingly, HSF1 can also promote the transcription of

telomeric repeat containing RNA and telomere protection

under heat stress [123]. Given the suppression of tumorigen-

esis by telomere shortening [124], it is plausible to postulate

that the HSF1-mediated telomere protection may contribute

to malignant transformation.

(b) Transcription-dependent, non-cell-autonomous
pro-oncogenic effects

Undoubtedly, HSF1 is capable of promoting malignant

phenotypes in a cell-autonomous fashion; however, emerging

evidence also points to a non-cell-autonomous action of

HSF1 in oncogenesis (figure 2). It was reported that HSF1 is

activated in cancer-associated stromal fibroblasts and, impor-

tantly, deletion of HSF1 in fibroblasts impedes the in vivo
growth of xenografted MCF-7 breast cancer cells [125].

Mechanistically, HSF1 appears to drive a transcriptional

programme in stromal fibroblasts that induces the expression

of TGFb and SDF1 to support the malignant growth of adja-

cent cancer cells [125]. Interestingly, our recent study also

uncovered that Jnk1 deficiency causes HSF1 activation in

non-parenchymal cells, a group of diverse cell populations

that critically support hepatocytes, in mouse livers, leading to

increased transcription of hepatocyte growth factor (Hgf)
[79]. In a paracrine manner, enhanced HGF production in

non-parenchymal cells, in turn, stimulates c-MET signalling

in adjacent hepatocytes to drive their proliferation [79]. Thus,
it is conceivable that this non-cell-autonomous mechanism

could be operating in the context of liver carcinogenesis,

given that c-MET is a potent proto-oncogene [126]. Further-

more, HGF secreted by microenvironments may render

tumour cells resistant to therapeutic agents [127].

In addition, accumulating evidence indicates that HSPs can

be secreted into the extracellular space via exosomes [128].

Extracellular HSPs can not only induce proinflammatory cyto-

kines but also suppress protein misfolding and aggregation

in recipient cells through exosome-mediated transmission

[129,130]. Thus, through the non-cell-autonomous actions of

HSPs, HSF1 may promote tumour progression by creating an

inflammatory microenvironment and maintaining global

proteomic stability in tumours.
(c) Transcription-independent pro-oncogenic effects
Previously, it has been shown that a dominant negative HSF1

mutant is able to impair cyclin B1 degradation and suppress

aneuploidy in prostate cancer cell lines in vitro [131]. Another

study reported that PLK1 phosphorylates HSF1 at Ser216,

sequestering CDC20 away from the APC/C [88]. Thus, phos-

phorylated HSF1 heightens mitotic checkpoint activation to

promote aneuploidy, independently of its transcriptional

action (figure 3a).

Our recent study also indicates that HSF1 supports

robust protein translation mediated by mTORC1 in a

transcription-independent fashion (figure 3b). Mechanistically,



Table 1. Small molecules inhibiting the HSF1-mediated HSR/HPSR. n.d., not determined.

drug-like compounds chemical class mechanisms of action molecular targets references

quercetin flavonoid reduction of HSF1 expression many [134,135]

KNK437 benzylidene lactam blockade of HSF1-mediated HSP transcription n.d. [136]

triptolide diterpenoid epoxide global transcriptional arrest XPB/ERCC3 [137,138]

KRIBB11 pyridinediamine blockade of HSF1-dependent recruitment of

P-TEFb to the HSP72 promoter

HSF1 in cell lysates [139]

fisetin dietary flavonoid blockade of HSF1 binding to the HSP72 promoter n.d. [140]

NZ28 and emunin emetine inhibition of HSP mRNA translation n.d. [141]

rohinitib rocaglate blockade of genome-wide HSF1 DNA binding EIF4A [142]
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the multifaceted stress-responsive kinase JNK constitutively

associates with mTORC1 [79]. Upon activation by proteotoxic

stress, JNK directly phosphorylates both RAPTOR at Ser863

and mTOR at Ser567, resulting in selective exclusion of

mTOR from the complex and subsequent mTORC1 suppres-

sion [81]. Although not part of mTORC1, HSF1, through

physical interactions, sequestrates JNK apart from mTORC1,

thereby de-repressing mTORC1 [79]. This mechanism

not only averts deep repression of mTORC1 under proteo-

toxic stress, enhancing stress-resistance by ensuring efficient

translation of induced HSP mRNAs, but also supports cellu-

lar and organismal growth under normal conditions,

controlling cell and body size [79]. Given the important role

of mTORC1 in malignancy [59], it is conceivable that this

very same mechanism could contribute to oncogenesis.

Indeed, our results show that in diverse human cancer

cell lines, HSF1 depletion by lentiviral shRNAs leads to

JNK activation and suppressed global protein translation

(KH Su, J Cao, C Dai 2017, unpublished manuscript).

Collectively, these recent findings pinpoint a key tran-

scription-independent mode of action of HSF1, in addition

to its well-appreciated transcriptional action.
7. Therapeutic targeting of HSF1 in cancer
Compelling evidence has indicated the potent pro-oncogenic

role of HSF1 [8,132]. It is natural to consider HSF1 as a poten-

tial anti-cancer therapeutic target. Furthermore, targeting

HSF1 is being considered for use in combinatorial therapies

to mitigate the counterproductive HSF1 activation triggered

by proteasome and HSP90 inhibitors [61]. In fact, in recent

years increasing efforts have been invested in developing

various strategies to target HSF1 for cancer therapies.

(a) Targeting HSF1 mRNAs
One means to block the HSF1 pathway is to deplete HSF1
mRNAs via RNAi. This strategy has been successfully applied

in many studies to demonstrate the pro-oncogenic effects of

HSF1. Owing to its relatively greater target specificity com-

pared with small-molecule drugs, there is a considerable

amount of interest in developing RNAi therapeutics for var-

ious human diseases including cancer [133]. Importantly, in

the light of the emerging transcription-independent action of

HSF1, one evident advantage of the RNAi-based therapies is

depletion of HSF1 proteins, which is typically difficult to

achieve with small molecules.
(b) Targeting the HSF1-mediated transcription
or translation of HSP mRNAs

Still, small-molecule drugs are the mainstream pharmaceutical

approach. To date, a number of compounds displaying inhibi-

tory effects on the HSF1-mediated transcription or translation

of HSP mRNAs have been reported (table 1), although most

of them suffer from lack of target specificity or poorly defined

mechanisms of action.

Recently, a new strategy based on RNA aptamer technol-

ogy has emerged. It was reported that RNA aptamers bind

to HSF1 proteins avidly in vitro and block the binding of

HSF1 to HSP genomic loci in vivo [143]. Like HSF1-targeting

RNAi, RNA aptamers effectively impede the malignant pheno-

types of human cancer cell lines [143]. Thus, RNA aptamers

may represent a promising class of HSF1 inhibitors with

improved target specificity.

8. Concluding remarks and perspectives
Unequivocally, cancer is a genetic disease. Whereas genomic

instability has been causally associated with tumorigenesis,

little is known of the role of proteomic stability or proteostasis

in cancer. Now, emerging evidence suggests that proteostasis

enables malignancy, sharply contrasting with its beneficial

roles in antagonizing neurodegeneration and ageing. The

cellular proteostasis network consists of translation, chaperon-

ing and proteolytic machineries, among which HSF1 governs

the stress-inducible, but not the basal, chaperoning capacity.

Owing to the chronic proteotoxic stress endured by malignant

cells, HSF1 is obligated to remain constitutively active to

supply the additional chaperoning capacity, which is necessary

to accomplish and sustain malignant transformation. Thus, the

proteostasis in cancer is constrained and fragile, distinct from

that in primary non-transformed cells, which is robust and

capable of buffering a considerable degree of proteomic

perturbation. This key distinction may offer a promising

opportunity for proteostasis-targeted anti-cancer therapies.
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