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Best known as chaperones, heat shock proteins (HSPs) also have roles in cell

signalling and regulation of metabolism. Rodent studies demonstrate that

heat treatment, transgenic overexpression and pharmacological induction of

HSP72 prevent high-fat diet-induced glucose intolerance and skeletal muscle

insulin resistance. Overexpression of skeletal muscle HSP72 in mice

has been shown to increase endurance running capacity nearly twofold

and increase mitochondrial content by 50%. A positive correlation between

HSP72 mRNA expression and mitochondrial enzyme activity has been

observed in human skeletal muscle, and HSP72 expression is markedly

decreased in skeletal muscle of insulin resistant and type 2 diabetic patients.

In addition, decreased levels of HSP72 correlate with insulin resistance and

non-alcoholic fatty liver disease progression in livers from obese patients.

These data suggest the targeted induction of HSPs could be a therapeutic

approach for preventing metabolic disease by maintaining the body’s natural

stress response. Exercise elicits a number of metabolic adaptations and is a

powerful tool in the prevention and treatment of insulin resistance. Exercise

training is also a stimulus for increased HSP expression. Although the under-

lying mechanism(s) for exercise-induced HSP expression are currently

unknown, the HSP response may be critical for the beneficial metabolic effects

of exercise. Exercise-induced extracellular HSP release may also contribute to

metabolic homeostasis by actively restoring HSP72 content in insulin resistant

tissues containing low endogenous levels of HSPs.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Introduction
Insulin resistance is a condition that impacts at least 86 million U.S. adults aged 20 or

older [1]. Insulin resistance occurs when the islet cells in the pancreas secrete insulin

but the hormone no longer effectively triggers glucose uptake in metabolic tissues.

The inability of metabolic tissues to take up glucose results in hyperglycaemia and

hyperinsulinaemia, both hallmark symptoms of insulin resistance. Most individ-

uals with insulin resistance go undiagnosed and the condition can persist for 10–

12 years. This decade plus of time can be especially damaging as insulin resistance

is an independent risk factor for obesity, cardiovascular disease, hypertension and

type 2 diabetes. This time frame represents a critical intervention window where

progression towards metabolic dysfunction and type 2 diabetes can be prevented

and reversed (figure 1).

Growing evidence suggests the heat shock response and/or heat shock pro-

teins (HSPs) could play an important role in preventing insulin resistance and

the development of type 2 diabetes. HSPs are a highly conserved family of pro-

teins best identified for their role as molecular chaperones [2]. They play a

critical role in maintaining cellular function via regulation of protein folding

and degradation. Not surprisingly, changes in their expression profile and cellular

localization are linked to numerous disease states. Several studies suggest that

induction, transcription and translation of these cytoprotective HSPs decline

with chronic disease like non-alcoholic fatty liver disease (NAFLD) [3], Hunting-

ton’s disease [4] and type 2 diabetes [5]. Conversely, induction and/or transgenic
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Figure 1. Targeting heat shock proteins in the prevention of insulin resistance. Schematic depicting the timeline of metabolic disease from insulin resistance to type
2 diabetes. Insulin resistance can persist for 10 – 12 years prior to clinical diagnosis of type 2 diabetes, a time period that represents an increased risk for car-
diovascular disease, obesity and type 2 diabetes. During insulin resistance, insulin secretion (red line) from pancreatic beta cells increases in an effort to
maintain blood glucose (blue line). Insulin sensitivity declines (yellow line) resulting in a gradual increase in blood glucose and the development of type 2 diabetes.
Insulin resistance represents a window of time when progression towards more severe metabolic disease can be prevented by lifestyle interventions like diet and
exercise. HSPs are robustly induced by exercise, and HSP72 mRNA and protein expression are significantly reduced in the skeletal muscle of type 2 diabetic patients.
However, very little is known about HSP expression patterns and regulation during insulin resistance. We hypothesize that HSP72 expression, in particular, may
demonstrate an inverted parabolic relationship wherein initial increases in HSP72 combat metabolic dysfunction, but expression levels eventually peak and decline
with disease severity and time spent under metabolic strain (solid green line). Exercise and heat treatment represent potential targeted therapies that could maintain
and even increase HSP expression to prevent metabolic disease (dashed green line).
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overexpression of HSPs results in ample metabolic benefit in

animal models of obesity/metabolic disease [5–11]. Less

clear, however, are the factors that regulate HSP expression

in the pathological development of metabolic disease. In par-

ticular, very little is known regarding skeletal muscle HSP

expression levels throughout the progression of obesity, insulin

resistance and type 2 diabetes.

As skeletal muscle is the primary tissue responsible for

insulin-stimulated glucose uptake [12], many researchers

have investigated changes in skeletal muscle HSP expression

during obesity, insulin resistance and type 2 diabetes (summar-

ized in table 1). Skeletal muscle HSP72 (the corollary of

HSP70 in animals) expression is inversely related to body fat

percentage and blood glucose in healthy subjects [9,15].

Additionally, both HSP72 mRNA and protein expression are

significantly reduced in the skeletal muscle of type 2 diabetic

patients and subjects with insulin resistance [5,13,14,17,18].

Therefore, many have asserted that HSP72 expression levels

are tightly correlated to adiposity and decrease through the

progression from obesity to metabolic disease (i.e. insulin

resistance and type 2 diabetes). It is also possible that glucose

levels may partially regulate HSP expression levels [21–23].

Interestingly, multiple studies using animals fed a high-

fat diet (HFD) highlight that this relationship is much more

complex (table 1). For instance, investigations in primates

and rodents show that short-term high-fat feeding (16 and

6–12 weeks, respectively) results in hallmark symptomology

of insulin resistance but does not significantly reduce skeletal

muscle HSP72 expression [6,7,10,16,19,20]. In fact, HSP72
expression may increase after short-term high-fat feeding,

suggesting a possible compensatory response to combat

metabolic dysfunction [16,19]. However, long-term high-fat

feeding (6 years) appears to cause significant reductions in

skeletal muscle HSP72 expression similar to the phenomenon

described in type 2 diabetics [16]. Therefore, it is possible that

skeletal muscle HSP72 expression can be characterized as an

inverted parabolic relationship wherein initial increases in

skeletal muscle HSP72 combat metabolic dysfunction, but

these levels will eventually peak and decline depending on

the severity and time spent under metabolic strain (solid

green line, figure 1).

Discrepancies in the data regarding skeletal muscle HSP72

reductions during obesity, insulin resistance and type 2 diabetes

may also be due to the model being used and the muscle type

analysed. For example, investigations reporting significant

reductions in HSP72 expression during obesity, insulin resist-

ance and type 2 diabetes primarily analysed the vastus

lateralis muscle from human subjects [13,14,17,18]. Alterna-

tively, primate and rodent investigations observing no

significant reductions in HSP72 expression in response to

short-term high-fat feeding analysed the biceps femoris,

soleus, and extensor digitorum longus muscles

[6,7,10,16,19,20]. Thus, it is also possible that organismal differ-

ences and/or muscle fibre type differences, variations in

muscle oxidative capacity, and muscle size could contribute to

inter-study data variations (table 1). It is critical that future inves-

tigators address these inconsistencies when designing studies to

address the role of HSP72 expression in metabolic disease.
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A greater understanding of the regulation of skeletal muscle

HSPs during insulin resistance will allow future development

of targeted therapies to maintain and even increase HSP

expression to prevent metabolic disease (figure 1, dashed

green line).
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2. Heat shock protein mechanisms of action in
insulin resistance

The complex, integrative and multi-organ nature of the HSP

response makes the identification of specific mechanisms of

action difficult. For instance, the most widely known HSP,

HSP72, has varying roles and mechanisms of action in

heart muscle, skeletal muscle, adipose tissue and the liver.

Recent studies suggest decreasing inflammation, improving

mitochondrial function/oxidative capacity, and maintaining

proteostasis could be viable mechanisms of action for HSPs

in metabolic tissues.

(a) Anti-inflammatory properties of HSP72
The ability of HSPs to decrease inflammation has centred on the

proinflammatory protein c-Jun terminal kinase (JNK). Impor-

tantly, JNK activation is increased with the progression of

insulin resistance and diabetes [24–29], while HSP72 expression

is correspondingly decreased [5,13,14,17]. This inverse relation-

ship between JNK activation and HSP expression also occurs

during the progression from NAFLD to non-alcoholic steato-

hepatitis [3]. This relationship is of no coincidence. JNK

activation indirectly inhibits HSP expression by maintaining

heat shock factor 1 (HSF1), the primary HSP transcription

factor, in its inactive monomeric state [30,31]. Beyond

inactivation of HSF1 and HSP expression, there are other

downstream targets of JNK that potentiate insulin resistance.

JNK is thought to drive insulin resistance through inhibi-

tory phosphorylation of insulin receptor substrate 1 (IRS-1), a

key protein in the insulin signalling cascade [25]. In addition,

JNK can downregulate peroxisome proliferator-activated

receptora/fibroblast growth factor 21 (PPARa/FGF21) signal-

ling in hepatocytes, leading to reduced fatty acid oxidation and

the development of insulin resistance [32]. JNK activation also

inhibits mitochondrial respiration, increases reactive oxygen

species (ROS) production and causes apoptosis [33–37]. Pre-

vious studies suggest that HSP72 induction directly inhibits

JNK activation, thereby improving insulin sensitivity and glu-

cose tolerance at both skeletal muscle-specific and systemic

levels [5,6,8,38,39]. For example, work by our laboratory has

demonstrated that in vivo heat treatments decrease JNK acti-

vation in skeletal muscle of aged and HFD-fed rats [7,40].

Pharmacological activation of HSP72 also causes reduced

JNK activation in skeletal muscle and liver [6,38]. Finally, over-

expression of HSP72 in skeletal muscle decreased JNK

activation in mice fed a HFD and was associated with ben-

eficial metabolic outcomes [5]. In each instance, lowering of

JNK activation resulted in improvements in insulin sensitivity

and glucose tolerance, highlighting the importance of this

HSP-mediated mechanism for insulin action.

HSP72 is proposed to regulate JNK activation through

multiple mechanisms, including direct inhibition via protein–

protein interaction with JNK [41], and/or inhibition of

upstream JNK signalling pathways [42,43]. Evidence also

exists suggesting that activation of HSP72 in the liver may
decrease inflammation independently of JNK inhibition.

Specifically, pharmacological activation of HSP72 decreases

steatosis without decreasing JNK activation in HFD-fed rodents

[44]. Although no change in JNK activation was observed,

increased HSP72 expression resulted in inhibition of tumour

necrosis factor a (TNFa) in the liver of rodents fed a HFD.

HSP72 may also play additional anti-inflammatory roles

extracellularly or via localization in macrophages. For instance,

HSP72 decreases during NAFLD progression in human

Kupffer cells, liver-specific macrophages [3]. Interestingly,

heat-induced upregulation of HSP72 in Kupffer cells coincides

with suppression of TNFa [45,46]. Additionally, in myeloid

cells, JNK activity is considered essential for activation of

macrophages and a release of pro-inflammatory cytokines

[47,48]. The ability of extracellular HSP72 to inhibit

pro-inflammatory cytokine release from macrophages, lym-

phocytes and other immune cells [49–54] could be critical

in decreasing local inflammation and attenuating the

development of insulin resistance.

(b) HSP72 regulation of mitochondrial integrity
and function

Mitochondrial dysfunction is a primary contributor to the

development of metabolic disease and is therefore a possible

target for therapy [55–57]. Our laboratory and others have

shown that heat treatment improves skeletal muscle mitochon-

drial function by improving fatty acid oxidation [7], increasing

mitochondrial enzyme activity [7,58,59], and increasing

mitochondrial biogenesis [60]. Transgenic overexpression of

HSP72 in skeletal muscle also increases mitochondrial

enzyme activity, mitochondrial content and endurance run-

ning capacity [5,8]. Thus, it is possible that the beneficial

mitochondrial adaptations stemming from heat treatment are

a result of HSP72 induction.

HSP72 induction may mediate mitochondrial improve-

ments by regulating mitophagy, the targeted degradation

of mitochondria through autophagy. For instance, mice lack-

ing skeletal muscle HSP72 demonstrate a reduced ability to

degrade mitochondria through mitophagy [61]. Additionally,

these mice exhibit enlarged, dysmorphic mitochondria

with reduced muscle respiratory capacity and increased

lipid accumulation. Thus, activation of HSP72 may improve

mitochondrial quality by enhancing the degradation of

dysfunctional mitochondria.

(c) HSP72 regulation of the unfolded protein response
and proteostasis

Cellular stress causes unfolded proteins to accumulate in the

endoplasmic reticulum (ER), which activates the unfolded

protein response (UPR) [62–64]. This response is important

for cellular adaptation to ER stress and prevention of ER-

stress-induced apoptosis [65,66]. ER stress and chronic

activation of the UPR causes inflammation and contributes

to the development of insulin resistance [67–76].

While HSP family proteins have been shown to be a part of

the UPR [77–79], new evidence has also identified the cyto-

plasmic HSP72 as a part of the UPR. Specifically, HSP72

interacts with and upregulates inositol-requiring enzyme 1a

(IRE1a) signalling. Activation of IRE1a by HSP72 enhances

cell survival through prevention of ER-stress-induced apoptosis

[80]. This mechanism may be important in HSP72-mediated
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metabolic improvements, since activation of IRE1a also has

been shown to suppress lipogenesis [81].

HSP72 may also impact metabolic health through the pro-

tein’s additional responsibilities as a cellular chaperone.

During stress, HSP72 is essential to refold misfolded proteins

and to maintain proteostasis. HSP72 may maintain proteosta-

sis by regulating proteosomal degradation and autophagy

[82,83]. Degradation pathways via proteasomes and auto-

phagy are well established, but it was recently demonstrated

that mitochondria also function as sites for protein degra-

dation [84]. Specifically, the chaperone HSP104 detangles

protein aggregates allowing mitochondrial transporters to

import proteins in the outer and inner mitochondrial mem-

brane. Proteases in the mitochondrial matrix are then able

to degrade the newly imported unfolded proteins. Impor-

tantly, defects in HSP70 activity resulted in increased

transport of misfolded proteins into the mitochondria, caus-

ing increased mitochondrial damage and ROS production.

This phenomenon was confirmed both in yeast and in

human retinal pigment epithelium cells [84]. It is tempting

to speculate that defects in HSP72 activity could contribute

to mitochondrial dysfunction by triggering this alternative

mitochondrial-dependent degradation pathway. This alterna-

tive pathway may contribute to the swollen, rounded

appearance of the mitochondria during metabolic disease,

as well as decreased ability for the mitochondria to function

as a respiratory organelle. Future research investigating this

mechanism in metabolic organs will be necessary.
(d) Heat shock transcription factor regulation of
oxidative capacity

One of the most important heat shock response functions in

metabolic tissue may actually lie upstream of HSP72. HSP72

overexpression leads to an increase in mitochondrial content,

oxidative capacity and insulin sensitivity [5,55–57,85].

Similarly, the absence of HSP72 expression results in mitochon-

drial dysfunction and insulin resistance [61]. In addition to

increasing HSP72 content, and thereby the ability to enhance

mitochondrial quality control, exercise also increases peroxi-

some proliferator-activated receptor g coactivator 1-a (PGC1a)

expression [86–88]. PGC1a is the primary transcriptional

coactivator for mitochondrial biosynthesis [89,90]. Interestingly,

recent investigations reveal that the upstream regulatory

elements of the PPARGC1A gene contain a heat shock element

(HSE) binding sequence. This HSE sequence provides a docking

site for the primary HSP transcription factor, heat shock factor 1

(HSF1). Indeed, chromatin immunoprecipitation analyses show

that HSF1 and PGC1a co-occupy the HSE sequence on the pro-

moter of the PPARGC1A gene [91]. Through a myriad of HSF1

activation and knockdown experiments, the Mueller lab has

provided compelling evidence that HSF1 is a primary regulator

of mitochondrial biogenesis, enzymatic function and whole-

body metabolism [91,92]. These data exemplify the elegant

coordination of HSF1 downstream targets (i.e. HSPs and

PGC1a) in regulating mitochondrial biogenesis, quality control,

and enzymatic function under conditions of metabolic demand

and/or chronic disease. Importantly, future research is needed

to delineate the specific contributions of varying downstream

HSF1 targets, as well as potential direct effects of HSF1 itself,

with regard to metabolic outcomes. This information, combined

with a greater understanding of HSP mechanisms of action in
metabolic tissue, may provide novel therapeutic targets to

ameliorate metabolic dysfunction.
3. Exercise-induced heat shock protein response
Exercise is a primary treatment modality for patients exhibit-

ing symptoms of metabolic dysfunction. Specifically, regular

exercise training is known to decrease metabolic and cardio-

vascular disease risk factors in patients suffering from obesity

and metabolic dysfunction [93,94]. Exercise is also a potent

inducer of HSP expression [78], with HSP72 showing the

most robust and consistent upregulation with exercise.

HSP72 induction via heat treatment, pharmacologic interven-

tion, and transgenic overexpression results in metabolic

effects similar to exercise in models of obesity and insulin

resistance [5–7,40,78]. Thus, exercise-induced HSP72

expression may contribute to the beneficial metabolic effects

observed with exercise training. There is already a significant

amount of information available about exercise and HSPs;

however, little is known regarding the role of exercise-induced

HSP72 expression in treating metabolic disease.

(a) Complexity of the exercise heat shock protein
response

The direct cause of exercise-induced HSP upregulation,

primarily of HSP72, remains unknown. It is hypothesized

that a variety of biochemical, metabolic and/or physical

stressors may stimulate HSP72 expression post-exercise. For

instance, common challenges to tissues during exercise such

as mechanical stress, acidosis, hypoxia, ischaemia, ROS

formation, and calcium signalling changes are shown to inde-

pendently cause HSP induction [95–103]. Additionally,

increased metabolic stress via depletion of bioenergetic sub-

strates (i.e. glycogen) is shown to potentiate exercise-induced

HSP72 expression [104]. A similar potentiation effect is

observed when exercise bouts are completed in a hot environ-

ment, but this effect is blunted in a cold environment [105].

Thus, it appears that elevations in HSP72 expression post-

exercise are a result of not one, but many physiological

stressors associated with exercise.

Adding complexity is the understanding that exercise-

induced HSP expression is training modality, intensity and

duration dependent. In skeletal muscle, elevations in HSP72

expression occur with both aerobic and resistance training

[106,107]. Importantly, HSP72 expression is dependent on exer-

cise intensity. For instance, HSP72 expression displays a positive

relationship with exercise intensity during both aerobic and

resistance training [104,106,108,109]. This relationship also

exists when comparing exercise intensity and metabolic out-

comes [110], supporting the potential contribution of HSP72

induction to the metabolic benefits associated with exercise.

HSP72 expression also varies based on the duration of the

training regimen (i.e. acute versus chronic training). Acute

exercise bouts cause dramatic elevations in HSP72 within

24 h [106], while chronic training regimens typically result in

minimal elevations in HSP72 post-exercise [102]. Similarly,

untrained subjects exhibit lower basal HSP72 expression and

a higher degree of change in HSP expression post-exercise com-

pared with fit subjects [102,111]. The minimal degree of change

in HSP72 expression observed during long-duration training

protocols and in fit subjects is likely a result of adaptation to
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exercise. This phenomenon, referred to as the repeated bout

effect [112,113], is exemplified by the lack of potentiated HSP

induction in recurring exercise bouts (specifically HSP72 and

HSP27) [114]. However, cessation of exercise in trained subjects

will cause basal HSP expression to return to levels comparable

to those observed pre-exercise [115].

(b) Aerobic capacity and exercise training impact heat
shock protein expression and induction

Recently, our laboratory has published data suggesting that

intrinsic aerobic capacity, or the ability of the body to take up

and use oxygen, is coupled to HSP induction and metabolic

flexibility [10]. Low aerobic capacity increases susceptibility

to developing metabolic dysfunction. Importantly, it is esti-

mated that 50–70% of one’s aerobic capacity is attributable to

inheritable traits [116]. This genetic/phenotypic phenomenon

is exemplified by rodent models selectively bred for high-

capacity or low-capacity running (HCR and LCR respectively)

[117]. Specifically, these models have drastic differences in sus-

ceptibility to metabolic complications [118–121]. For instance,

the HSP72 response is blunted in LCR rodents after heat

treatment and they require the heat intervention to maintain

metabolic flexibility/protection when acutely challenged

with a HFD [10]. Conversely, HCR rodents maintain the ability

to upregulate HSP72 expression in skeletal muscle via heat

treatment and display metabolic flexibility/protection inde-

pendent of intervention when metabolically challenged.

These data suggest that intrinsic aerobic capacity is coupled

to the HSP72 response in skeletal muscle and that these two

factors are primary contributors to whole-body metabolic

health. As mentioned, unfit subjects with metabolic dysfunc-

tion, and most likely low aerobic capacity, have markedly

low levels of HSP72 expression compared with healthy con-

trols [5,13,14]. Thus, chronic exercise may restore basal

HSP72 expression levels to that of healthy subjects. The restor-

ation of basal HSP72 expression via exercise may directly

impact organ-specific insulin sensitivity.

(c) Tissue-specific heat shock protein expression and
induction

As mentioned, exercise increases skeletal muscle HSP72

expression. However, the levels of both basal HSP72 expression

and exercise-induced HSP72 expression are dependent on

muscle fibre type. For instance, muscles predominantly com-

posed of type I fibres have higher basal HSP72 expression

compared with muscles composed of type II fibres [122,123].

Furthermore, the magnitude of HSP72 upregulation is much

greater in type II muscle fibres post-exercise compared with

type I fibres [106,124]. This may explain the intensity depen-

dent increases in HSP72 expression post-exercise, as higher

intensity activities cause the recruitment of fast-twitch

muscle fibres, resulting in a greater overall change in HSP72

expression. As type II muscle fibres are inherently glycolytic

and have a high dynamic range of HSP72 expression, this

invites the possibility that the positive metabolic effects seen

with HSP72 overexpression may be primarily mediated by

changes in type II fast-twitch muscles.

Exercise is also known to increase HSP72 expression in the

liver, kidney, lungs, heart and brain [125–127]. During states

of metabolic dysfunction, HSP72 expression in the liver is of

primary concern owing to the organ’s role in maintaining
whole-body metabolic homeostasis. Pharmacologic HSP72

induction in the liver is shown to improve insulin sensitivity

and glucose tolerance in models fed an HFD [38]. This protec-

tive effect may stem from the enhancement of HSP72-mediated

mitochondrial quality control and the restoration of the insulin

signalling pathway in hepatocytes—both of which occur with

exercise and HSP72 upregulation in skeletal muscle. Thus,

exercise-induced HSP72 expression in the liver may act to

restore liver insulin sensitivity by mechanisms similar to

those observed in skeletal muscle. However, future studies

are needed to confirm this notion.

Interestingly, exercise also results in the release of

extracellular HSPs (eHSPs) from the hepatosplanchnic viscera

and brain into the circulation [104,128], and other potential

sites of origin include epithelial cells [129] and immune cells

[130,131]. eHSP72 function in general is associated with acti-

vation of the immune system [132], and in contrast to the

anti-inflammatory actions of intracellular/cytosolic HSP72

(iHSP72), can induce activation of proinflammatory pathways.

Based on this antagonistic action of HSP72 on the inflamma-

tory response, the Chaperone Balance Hypothesis contends

that the balance between eHSP72 and iHSP72 (eHSP72/

iHSP72) could determine the extent of tissue inflammation,

and thereby also influence the pathogenesis of insulin resist-

ance and type 2 diabetes [133]. According to this hypothesis,

an intervention that lowers the eHSP72/iHSP72 ratio could

in effect improve insulin sensitivity. Long-term exercise train-

ing in effect results in decreased eHSP72 and increased

iHSP72 expression (as in skeletal muscle), supporting this

hypothesis. Importantly, the eHSP72/iHSP72 ratio could be a

valuable biomarker for assessment of the inflammatory

response in insulin resistance and diabetes.

However, the specific tissue contributions, mechanism(s) of

action, and physiological consequences of eHSPs during exer-

cise remain unknown. It is hypothesized that exercise-induced

eHSPs may provide metabolic crosstalk between organs, con-

tribute to exercise adaptation, and/or act as a stress-sensor or

stress-messenger [78,104,128]. Exercise-induced eHSP release

may also contribute to metabolic homeostasis by actively restor-

ing HSP72 content in insulin resistant tissues containing low

endogenous levels of HSPs. For example, existing evidence

suggests that HSPs can be produced in tissues like muscle and

adipose and released in the circulation via exosomes, small

membrane vesicles that are secreted by numerous cell types

[134]. In this manner, intracellular HSP72 transmission mediated

by exosomes represents a novel mechanism for maintenance of

HSP72 expression among different tissues. Future studies are

needed to characterize the physiological outcomes of eHSPs

both in healthy subjects and those with metabolic dysfunction.
4. Summary
Current lifestyle interventions for obesity and metabolic dis-

ease include dietary modification and exercise training.

While effective at reducing body mass and enhancing insulin

sensitivity, compliance is often low in patient populations

and therefore alternative approaches are needed. Acute or

short-term passive heating (�3 weeks) has been investigated

with promising improvements in metabolic parameters in

humans [135]. In 1999, Philip Hooper performed the first

study to suggest heat therapy (HT) could be beneficial for

metabolic disease. In diabetic patients, fasting plasma glucose
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and haemoglobin A1c (HbA1c) levels were significantly

decreased after only three weeks of HT by water immersion

(30 min, 6 days/week) in which core body temperature was

increased by an average of 0.88C each session [135]. Despite

this exciting phenomenon, only a handful of studies have

examined the effects of HT in obese and/or type 2 diabetic

patients [136–139].

Importantly, the first comprehensive investigation of

long-term heat treatment in young, sedentary humans was

recently performed [140]. Brunt et al. [140] found that eight

weeks of repeated hot water immersion resulted in increased

endothelial function (measured via flow-mediated dilation),

reduced arterial stiffness, reduced mean arterial and diastolic

blood pressure, and reduced carotid intima media thickness.

Incredibly, these cardiovascular adaptations were on par

with what is typically observed with exercise training in pre-

viously sedentary subjects. Despite ample evidence in animal

studies demonstrating the beneficial effects of heat treatment

on whole body metabolism and the anti-inflammatory and

neuroprotective functions of HSP72 in vivo, heat treatment
studies in insulin resistant or diabetic patients are lacking.

Mild heat therapy treatment in patients with heart failure is

remarkably effective [141], and the most promising appli-

cation of mild, chronic heat treatment in humans could be

in combination with exercise training. Novel, integrative

research studies to examine both cellular mechanisms and

systemic metabolic adaptations of heat therapy in humans

could lead to new interventions for insulin resistance, obesity

and cardiometabolic disease.
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Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil
GS. 2006 Chemical chaperones reduce ER stress and
restore glucose homeostasis in a mouse model of
type 2 diabetes. Science 313, 1137 – 1140. (doi:10.
1126/science.1128294)

66. Hetz C. 2012 The unfolded protein response:
controlling cell fate decisions under ER stress and
beyond. Nat. Rev. Mol. Cell Biol. 13, 89 – 102.
(doi:10.1038/nrm3270)
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