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The ongoing contractile and metabolic demands of the heart require a tight

control over protein quality control, including the maintenance of protein

folding, turnover and synthesis. In heart disease, increases in mechanical and

oxidative stresses, post-translational modifications (e.g., phosphorylation),

for example, decrease protein stability to favour misfolding in myocardial

infarction, heart failure or ageing. These misfolded proteins are toxic to car-

diomyocytes, directly contributing to the common accumulation found in

human heart failure. One of the critical class of proteins involved in protect-

ing the heart against these threats are molecular chaperones, including the

heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy ter-

minus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3

(BCL2-associated athanogene 3). Here, we review their emerging roles in the

maintenance of cardiomyocytes in human and experimental models of heart

failure, including their roles in facilitating the removal of misfolded and

degraded proteins, inhibiting apoptosis and maintaining the structural

integrity of the sarcomere and regulation of nuclear receptors. Furthermore,

we discuss emerging evidence of increased expression of extracellular

HSP70, HSP90 and BAG-3 in heart failure, with complementary indepen-

dent roles from intracellular functions with important therapeutic and

diagnostic considerations. While our understanding of these major HSPs

in heart failure is incomplete, there is a clear potential role for therapeutic

modulation of HSPs in heart failure with important contextual consider-

ations to counteract the imbalance of protein damage and endogenous

protein quality control systems.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Introduction
According to the World Health Organization, heart disease is a leading cause of

death worldwide [1]. An estimated 17.7 million people died of heart disease in

2015, representing 31% of all global deaths [1]. One in nine deaths includes

heart failure as a contributing cause, with half of these people developing

heart failure dying within 5 years of diagnosis [2]. In the USA, heart failure

costs are estimated to be $30.7 billion each year [3]. As heart failure-related mor-

tality rates increase [4], alternative approaches to diagnosing and treating the

disease are needed. One just recently recognized therapeutic approach involves

targeting protein quality controls systems in heart failure, much like those

involved in Alzheimer’s disease and other neurodegenerative conditions [5].

The ongoing contractile and metabolic demands of the heart require a tight

control over protein quality control, including the folding of proteins, their

turnover and protein synthesis process. These processes are best known in

the sarcoplasmic reticulum, sarcomeres and mitochondria and are critical to

minimizing wear and tear processes. Heart disease, broadly characterized by

increases in mechanical and oxidative stresses and changes in pH, induces
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Figure 1. A schematic of the way molecular chaperones maintain cardiomyocyte protein quality control. (a) Molecular chaperones (i.e. HSP70, HSP90, CHIP and BAG-3)
are critical in maintaining a protein’s native folding and function in the face of cardiac stress, mutations and improper folding induced by post-translational
modifications (e.g., phosphorylation). (b) When misfolded proteins interact with chaperones (which cannot be refolded), they can be shuttled (c) for ubiquitin-
dependent proteasome degradation or (d) directly to lysosomal degradation via the HSP70 complex or (e) accumulate as aggregates that can be cleared by
the autophagosome (to a certain extent), at which point they ( f ) start playing a role in proteotoxicity-mediated cardiac dysfunction. Addendum to (c). The ubi-
quitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and the ubiquitin ligase (E3) act in concert to interact specifically with substrates (along with
molecular chaperones) to poly-ubiquitinate the substrate, resulting in degradation by the 26S proteasome.
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the accumulation of misfolded proteins, whether caused by

myocardial infarction (MI), heart failure or genetic mutations.

These misfolded proteins are toxic to cardiomyocytes and can

lead directly to heart failure [6] or mimic the proteinopathy

that is found in human heart failure [7]. One of the critical

class of proteins involved in protecting the heart against

these threats are molecular chaperones, which regulate the

balance of protein synthesis and degradation, assist with

refolding misfolded proteins and can protect against cell

death when induced in stressful/pathological conditions

(figure 1) [5,8]. The stress-induced cardiomyocyte production

of HSPs is appreciated in the context of sarcomere assembly,

autophagy, the ubiquitin-proteasome system (UPS) and the

normal turnover of proteins in the heart [9].

In this review, we focus on the role of the major heat shock

proteins (HSPs) in cardiomyocytes (HSP70 and HSP90) and

the co-chaperones (CHIP and BAG-3) that are more recently

appreciated for their critical roles in maintaining cardiac integ-

rity during stress. We have much to learn about and from these

endogenous protein quality control systems as the inherent first

line of defence that has been biologically established. Further

understanding their roles in heart failure will give insight

into ways in which we can therapeutically support HSPs in

the treatment of heart failure.
(a) Heat shock protein 70
The 70-kDa heat shock protein (HSP70) family of molecular

chaperones is a ubiquitous class of molecular chaperones and
conserved protein families throughout evolution. The HSP70

family of molecular chaperones are monomeric proteins

found throughout the cytosol, in cell membranes and in the

extracellular milieu [10–14]. While originally discovered as a

set of genes whose expression increased with thermal stress

(heat shock) in Drosophila melanogaster [15], it was later uncov-

ered that HSPs could be induced by ischaemia, nutrient

deprivation, irradiation, infections and inflammation, among

other cellular stresses [16]. Upregulation of the HSP70 family

promotes cell survival in the face of endogenous or exogenous

challenges.

Eight unique gene products make up the human HSP70

family that differ from each other by amino acid sequence,

expression levels and localization subcellularly [17,18]. These

include three stress-induced isoforms (HSP70-1a, HSP70-1b

and HSP70-6) and five not responsive to stress (HSP70-1t,

HSP70-2, HSP70-5, HSC70 and HSP70-9) (table 1). The

stress-inducible isoforms of HSP70 have high homology,

with HSP70-1b having 99% homology and HSP70-6 having

85% homology (figure 2). Alternative names for inducible

HSP70 isoforms HSP70-1a and HSP70-1b include HSP70,

HSP72 and HSP70-1 (table 1). Notably, the cellular localiz-

ation of the different isoforms differ with most being in the

cytosol and nucleus and others in the ER and mitochondria

(figure 2). The inducible HSP70-1a and HSP70-1b can be

found in the cytosol, nucleus and lysosomes, while the

HSP70-6 is localized to the cytosol and nucleus. The stress-

inducible HSC70 isoform (also known as HSP70-8, HSP73)

is found in the cytosol and nucleus. Together, these largely
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Figure 2. The human HSP70 family member protein domain diversity. Of the eight HSP70 family members, three are induced by stress (indicated by *), including
HSP70-1a, HSP70-1b and HSP70-6 (aka HSP72). HSC70 and HSP70-9 have localization signals and are found in the cytosol/nucleus and mitochondria, respectively
[24 – 26]. Adapted from Daugaard et al. [18].

Table 1. HSP70 family of proteins, their alternative names, cellular localization and stress-responsiveness. Adapted from Daugaard et al. [18].

protein other names

% homology
(versus
HSP70-1a) cellular localization

stress-
induced reference

HSP70-1a HSP70, HSP72, HSP70-1 100 cytosol, nucleus, lysosomes yes Wu et al. [19]

HSP70-1b HSP70, HSP72, HSP70-1 99 cytosol, nucleus, lysosomes yes Wu et al. [19]

HSP70-1t HSP70-hom 91 cytosol, nucleus no Goate et al. [20]

HSP70-2 HSP70-3, HSPA2 84 cytosol, nucleus no Bonnycastle et al. [21]

HSP70-5 Bib, GRP78 64 sarco-/endoplasmic reticulum no Munro & Pelham [22]

HSP70-6 HSP70B 85 cytosol, nucleus yes Leung et al. [23]

HSC70 HSP70-8, HSP73 86 cytosol, nucleus no Dworniczak & Mirault [24]

HSP70-9 GRP75, mtHSP75, Mortalin,

tumour necrosis factor-

associated protein-1

(TRAP1)

52 mitochondria no Domanico et al. [25]

Bhattacharyya et al. [26]

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160530

3

highly homologous proteins are found in most compartments

of the cell, with critical roles in the health of cells in tissues

throughout the body.

In the heart, HSP70 and its protein homologue, heat shock

cognate (HSC) 70, are integral for disease prevention and pro-

tecting cardiomyocytes from stress. While HSP70 and HSC70

are protein homologues (as described in figure 2), there are

differences between the two. HSC70 is constitutively

expressed in the heart, whereas HSP70 expression is induced

by a stressful or protective stimuli (table 1). The HSP70 family

protein structure consists of a 44-kDa amino terminus nucleo-

tide binding domain that binds and hydrolyses ATP, a central

domain with protease-sensitive sites, and a 28-kDa carboxyl

terminus substrate binding domain that contains an EEVD

motif to bind polypeptides, co-chaperones and other HSPs

(figure 3a) [27,28]. Under physiological conditions, HSP70s

provide support for protein folding of newly synthesized

polypeptides and aberrant proteins and transport of the

formed native proteins to protect the intracellular milieu

[28]. HSP70s contain unfoldase activity to unfold and then

refold misfolded proteins through repeated cycles of binding,

ATP-dependent unfolding and finally refolding to the native

protein conformation [29,30].

Multiple co-chaperones Hip (HSC70-interacting protein),

HSP40 proteins and Hop (HSC70-HSP90 organizing protein)
play critical roles in supporting HSP70 function [31,32]. Hip

binding to the ATPase domain of HSC70 or HSP70 increases

the affinity for substrates by stabilizing the ADP-bound state

of HSC70 or HSP70. Members of the HSP40 proteins (also

known as DNAJ proteins) are chaperones themselves, bind-

ing exposed hydrophobic residues of unfolded proteins and

sharing common substrates with HSP70s [33–35]. In most

cases, HSP40s are homodimeric proteins with a highly con-

served J-region that facilitates interactions with HSP70

family members by binding the N-terminal ATPase domain

[36–38]. Hop binds and connects HSP/HSC70 to HSP90 to

initiate a partnership, even potentially allowing an exchange

of substrates between HSP/HSC70 and HSP90 [31]. HSP70

recognizes short stretches of extended hydrophobic amino

acids, such as loosely folded protein complexes, that are

exposed by nascent chains, protein translocation intermedi-

ates and misfolded proteins [39–42]. When HSP/HSC70

cannot properly refold a misfolded protein, HSP/HSC70 par-

ticipates in degradation of said protein by forming a complex

with other proteins (e.g., CHIP, discussed below; figure 3b).

Ubiquitinated proteins are degraded by the proteasome and

autophagy when HSP/HSC70 complex with Bcl2-associated

athanogene (BAG)-1 and BAG-3 (discussed below), respect-

ively. There is a specific form of autophagy for HSC70,

named chaperone-mediated autophagy (CMA). An HSC70
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complex recognizes and binds to oxidized or abnormal pro-

teins containing a KFERQ motif and delivers them to the

lysosomal membrane where the HSC70 complex binds to a

lysosome-associated membrane protein 2A (LAMP2A) recep-

tor for the substrate protein to be internalized for degradation

[43]. CMA is similar to macroautophagy but more selective

by targeting specific soluble proteins for degradation by the

lysosome [44]. A recent study demonstrated that the HSP70

family can not only bring proteins to the proteasome for

degradation, but that HSP70 molecular chaperones are inte-

gral to the assembly of the proteasome [45]. Yeast lacking

HSP70 molecular chaperones exhibited defects in assembly

of the proteasome core particle.

HSP70 expression is elevated in human myocardial tis-

sues following coronary artery bypass grafting, aortic cross-

clamp during surgery or in the setting of ischaemia (as

recently reviewed [46]). Ischaemic preconditioning induces

HSP70 expression, occurring as soon as 1 h after exposure

[47,48]. The closely related HSC70 (not known to be an indu-

cible factor) has been reported to be decreased in the diabetic

myocardium, whereas HSP70 is not [49]. Restoration of insu-

lin signalling restores HSC70 levels, demonstrating insulin’s

major role in HSC70 in cardiomyocytes [49]. In the setting

of inducibly elevated HSP70, cardiomyocyte protection has

been identified [50]. Additionally, other studies have found a

lower incidence of post-operative atrial fibrillation in patients

with high levels of HSP70 (also known as HSP70-1a, HSP70-

1b), in contrast to those with low HSP70 (or a HSP70 poly-

morphism with decreased function) who have an increased

risk of post-operative atrial fibrillation [42,51,52]. HSP70

expression may also be increased in the phenomena of ischae-

mic preconditioning and exercise. Ischaemic preconditioning

is the induction of resistance to a subsequent ischaemic insult

induced by a repeated short episode of ischaemia in the
myocardium [53]. The mechanisms of ischaemic precondi-

tioning go beyond the induction of HSPs (e.g., activation of

protein kinase C (PKC) isoforms, attenuation of p38 acti-

vation) [54], but induction of HSP70 HSPs is involved.

When HSP70 and HSC70 are increased using adenoviral

vector expressing both, protection from H2O2-induced apop-

tosis (simulating ischaemic conditions) has been reported by

blocking the activation of the apoptosis inducing factor (AIF)

[55]. Specifically, HSC70 appears to bind AIF directly to inac-

tivate it [55]. While the cardioprotective effects of HSP70

seem straightforward, it is worth noting that they are context

specific, as recently reviewed [50]. In studies using the same

HSP70 transgenic animal protected in acute ischaemia reper-

fusion injury, chronic models of pressure overload-induced

cardiac hypertrophy, dilated cardiomyopathy (DCM) and

heart failure were not found to be protected when HSP70

was increased [56,57].

Exercise induces HSP70 expression, but the mechanisms

by which exercise is cardioprotective are complex and may

not be entirely explained by HSP70 expression. Exercise

activates an immediate upregulation of HSP70 that remains

elevated 24 h following exercise [58–61]. Similarly,

increases in HSP70 have been corroborated by another

study noting an increase in HSP72 (also known as HSP70-

1a, HSP70-1b) expression following endurance exercise,

which then elicited cardioprotection against ischaemia–

reperfusion (IR) injury compared to sedentary controls

that did not have enhanced HSP72 expression [62]. Exer-

cised rats with increased HSP72 expression exhibited

smaller infarcts and reduced apoptosis [62]. Induction of

HSP70 expression by both ischaemic preconditioning and

short-term exercise was shown to be protective against MI

[63] and IR injury [58,62], respectively. These cardioprotec-

tive effects appear to be secondary to increases in core body
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temperature, as animals trained in the cold do not demon-

strate increases in HSP70, but do have some degree of

cardioprotection [64–66]. Given these findings, the mechan-

isms of exercise-induced HSP70 and associated

cardioprotection should be interpreted carefully.

Pathological myocardial stress (e.g., hypertrophy or

ischaemia) increases the amount of misfolded proteins that

need to be refolded to their native states or removed to

avoid protein aggregation [67–69]. To counteract this stress

and accumulation of misfolded proteins during myocardial

ischaemia, there is a rapid induction of HSP70 expression

[47]. Transgenic mice that overexpress HSP70 maintained

higher systolic peak pressure and limited cellular injury

following ischaemia reperfusion [70–72]. Mice overexpres-

sing HSP70 also exhibited improved myocardial ischaemia

recovery of contractile force, high energy phosphate stores

and correction of metabolic acidosis [71,73]. During normal

conditions, the increased expression of HSP70 did not alter

protein synthesis or degradation, nor did it affect cardiac

function. Elevated levels of myocardial HSP70 reduced

infarct size and improved post-ischaemic recovery [63,74–

76]. Blocking the augmented expression of HSP72 resulted

in increased cardiomyocyte damage and susceptibility to

cell death in isolated cells exposed to hypoxia [77]. Further-

more, there appears to be a direct correlation between the

amount of inducible HSP70 and the extent of myocardial pro-

tection [78]. This observation was further supported by

the finding that in vivo adenovirus (Ad)-mediated gene trans-

fer of HSP70 attenuated IR injury in rabbit hearts [79].

Ad-HSP70 injected rabbit hearts had a nearly 50% reduction

in infarct size compared with the rabbit hearts injected

with Ad-LacZ or injected with saline alone. Collectively,

these findings demonstrate the cardioprotection of increased

expression of HSP70 molecular chaperones during myocardial

ischaemia.

The heat shock protein HSP75, also known as HSP70-9

(table 1), is a mitochondrially localized member of the

HSP90 family [80]. To determine the role of HSP75 in cardiac

hypertrophy, cardiac-specific inducible HSP75 transgenic

mice were created and challenged to pressure overload-

induced hypertrophy [80]. Increasing HSP75 prevented the

development of cardiac hypertrophy and fibrosis, assessed
by heart weight, echocardiographic and haemodynamic

measures, cardiomyocyte cross-sectional areas, collagen mar-

kers and the expression of the hypertrophic ‘fetal gene’

program [80]. Increasing HSP75 attenuated the activation of

TAK/p38, JNK and Akt signalling pathways, which were

suggested to be the mechanisms by which the reduced hyper-

trophy and fibrosis were regulated [80].
(b) Heat shock protein 90
The HSP90 proteins have three functional domains (ATP-

binding, protein-binding and dimerizing domain) and assist

with stabilizing proteins against heat stress and aid in protein

degradation (figure 4). The interaction of HSP90 with non-

native structures (misfolded regions) of a substrate protein

lends stability to the substrate and decreases aggregation

with other misfolded proteins. Moreover, HSP90 appears to

be more selective than other chaperones, linking mis-

folded protein recognition to protein degradation via poly-

ubiquitination and destruction by the 26S proteasome.

These substrates include the glucocorticoid receptor and

immunophilin co-chaperones (e.g., PKBP52) that attach the

GR complex to the dynein protein tracking pathway (detailed

in figure 5). HSP90 is also involved in the proper functioning

of multiple other steroid receptors, including aldosterone,

androgen, oestrogen and progesterone and regulates intra-

cellular signal transduction, affecting more than 40 protein

kinases [83,84]. Over 200 substrate or client proteins have

been identified, as have dozens of co-chaperones [85]. Its pro-

minent role in heart failure, therefore, is not surprising.

Members of the HSP90 family of molecular chaperones

are the most abundant chaperones in the cytosol (figure 4).

There are two main cytosolic HSP90 isoforms: HSP90a and

HSP90b, with HSP90a an inducible isoform, whereas

HSP90b is not and is constitutively expressed. In this

manner, HSP90 can maintain a high baseline abundance,

while increasing expression inducible by stress [86,87].

Other members of the HSP90 family include HSP90N, TNF

receptor-associated protein 1 (TRAP1) and glucose-regulated

protein with molecular mass of 94 kDa (Grp94; figure 4)

[88,89]. HSP90N interacts with plasma membrane-localized

rapidly accelerated fibrosarcoma gene (Raf ) [90], while
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TRAP1 is localized in mitochondrial matrix and Grp94 is

most abundant in the endoplasmic reticulum, with 50%

and 35% homology to cytoplasmic HSP90 forms, respectively

[88,89,91] (figure 4).

Cardiac ischaemia induces HSP90 (aka HSP90a) levels

approximately 16-fold [92], driven by concurrent increases

in the HSF1 transcription factor, driven by the accumulation
of reactive oxygen species (ROS) in ischaemia/reperfusion

[93] or ATP concentration [94]. HSP90 is regulated by co-cha-

perones Hop, p23 and the cyclophillins (as outlined in

figure 5) [89,95]. Briefly, Hop (discussed above) can bind

HSP/HSC70 and Hsp90. The p23 protein can then bind the

amino terminus of HSP90. The cyclophillins are a family of

co-chaperones that contain peptidyl-prolylisomerase activity
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to aid in the final folding of HSP90 substrates [96]. Substrates

targeted by HSP90 tend to be bound in a more compact struc-

ture having near-native conformations and resemble late-

stage folding intermediates [89]. Misfolded proteins that

cannot be refolded to their native state by HSP90 can

remain bound to HSP90, thereby keeping the misfolded

protein in a holding state to prevent it from aggregating

with other misfolded proteins and maintenance of a fold-

ing-competent state. HSP90 can then pass the misfolded

protein onto a HSP70 complex for unfolding and attempted

refolding [29,86,97].

Insulin-like growth factor (IGF)-1 and downstream Akt

signalling is best known as the pathway activated in physio-

logical muscle (and cardiac) hypertrophy growth in response

to exercise. However, in pathological cardiac hypertrophy

induced by pressure overload (e.g., hypertension), multiple

signalling pathways are activated, including Akt [98,99]. In

the context of cardiac disease, we focus here on Akt signalling

because of its importance in pathological cardiac hypertro-

phy and heart failure [100]. The critical role of HSP90 in

supporting Akt signalling was first identified in human

osteosarcoma cells and human embryonic kidney 293 cells

[101]. In these studies, platelet-derived growth factor

(PDGF) stimulation leads to increased Akt association with

the actin skeleton through direct contact with the Akt pleck-

strin homology domain (PH domain) [102]. Other studies

have reported that Akt then associates with HSP90, which

supports active Akt by preventing dephosphorylation by

protein phosphatase 2A (PP2A) by competing for binding

of the Akt 229–309 amino acid residues [103]. Akt interacts

with HSP90 to associate and activate endothelial nitric

oxide synthase (eNOS), whereby HSP90 acts as a scaffold to

help Akt-mediated phosphorylation of eNOS in caveolae

[104–106]. Experimental evidence for these pathways in car-

diomyocytes include observational studies of elevated HSP90

and Akt levels in hypoxia-challenged cardiomyocytes [107].

Subsequent studies demonstrated that the anti-apoptotic

effect of HSP90 on hypoxia-mediated cardiomyocyte damage

was due to PI3 K/Akt signalling pathways [108].

Another major HSP90 client is HER2 (also known as

erbB2), a member of the tyrosine kinase epidermal growth

factor receptor (EGFR or erbB1) family. HER2 is an orphan

receptor found in both neuronal and non-neuronal tissues in

embryos and adult animals, including the heart [109]. Mice

lacking erbB2 are embryonic lethal, but crossing erb22/2

mice with cardiac transgenic erbB2 rescues the embryos to

allow development to birth (but still having a severe neuro-

logical defect) [109]. Mice conditionally lacking cardiac-

specific erbB2 develop heart failure, characterized by left ven-

tricular dilation, wall thinning and decreased systolic

function [109]. When humans are treated with Herceptin

(anti-erbB2 monoclonal therapy against breast cancers over-

expressing erbB2), a subset have developed cardiac

dysfunction, potentially by similar mechanisms [109].

HSP90’s support of HER2 function is most likely relevant

in the context of the development of pathological cardiac

hypertrophy. Central to this pathophysiology is the activation

of the angiotensin II receptor by angiotensin. Pharmacological

inhibition of angiotensin II-stimulated cardiomyocyte hyper-

trophy by increasing EGFR first suggested a link between

HER2 and pathological hypertrophy [110]. Specific inhibition

of HER2 acted as a dominant-negative inhibitor co-transfected

with full-length EGFRs. While the role of HSP90 in mediating
angiotensin II-induced cardiac hypertrophy has not been

tested directly, there is emerging evidence linking HSP90 to

HER2 expression [111–113].

HSP90 may be cardioprotective in doxorubicin-induced

heart failure experimentally, through its support of Akt sig-

nalling. Using mice treated with 3 mg kg21 doxorubicin

twice weekly for four weeks (cumulative does 24 mg kg21),

approximately 30% of mice survived 35 days [114]. Noticing

the doxorubicin activation of poly ADP ribose polymerase

(PARP), the PARP inhibitor L-2286 was tested and found to

protect against the cytotoxic effects of doxorubicin and

improved survival (more than 60% survived at 35 days)

[114]. These cardioprotective effects of the PARP inhibitor

L-2286 included the observation that Akt (also known as

protein kinase B) signalling was enhanced (Akt-1 Ser473

phosphorylation), as was GSK-3b Ser9 phosphorylation (a

downstream target of Akt-1Ser473) and significant increases

in HSP90 [114]. Furthermore, decreases in HSP90 substrates

p-p38 and p-JNK were identified, consistent with previously

reported activity of elevated HSP90 (also found) [114]. The

cardioprotective effects of the PARP inhibitor on function

by echocardiographic measurements illustrate the role of

HSP90 and other potential mechanisms in protection against

doxorubicin-induced heart failure [114].

HSP90 also appears to be cardioprotective in high-glucose-

induced cell injury. The systemic high glucose (HG) found

in diabetes has a role in the pathogenesis of diabetic cardiomyo-

pathy. Recent studies have found that exogenous hydrogen

sulfide (H2S) protects against HG-induced cardiac injury

and modifies HSP90 and Akt [115]. When the H9c2 cardiomyo-

cyte cell line was challenged to 35 mM glucose (HG) for 1–24 h,

a marked reduction in both HSP90 and phosphorylated (p-)Akt

over time was identified [115]. Treatment of H9c2 cells with a

donor of H2S prior to HG challenge significantly inhibited the

HG-induced decrease in HSP90 and p-Akt levels, increasing

cell viability, decreasing apoptosis, attenuating ROS and

decreasing the mitochondrial membrane potential [115]. Inhi-

biting HSP90 with geldanamycin aggravated the inhibition of

the p-Akt expression by HG, which treatment with the Akt

inhibitor LY294002 blocked the cardioprotective effects of H2S

[115]. Together, these findings reveal that the cardioprotection

of H2S is mediated by both HSP90 and p-Akt activities,

giving context in heart failure to HSP90 and its support of p-

Akt signalling [115].

The role of cardiomyocyte HSP90 in the remodeling

associated with cardiac hypertrophy and heart failure has

recently been reported, involving a rich crosstalk between

cardiomyocytes and fibroblasts [116]. The pathological remo-

delling of the heart involves both increases in left ventricular

mass and deposition of extracellular matrix, which contrib-

utes to the development of heart failure. Release of

transforming growth factor beta (TGFb) from cardiomyocyte

is a driving mechanism of this remodelling, activating adja-

cent fibroblasts to deposit extracellular matrix. In

fibroblasts, the TGFb receptor I (TGFbRI) complexes with

HSP90, which in silico studies predict are made up of

HSP90 dimers and TGFbRI extracellular domain interactions

[116]. Inhibiting the extracellular HSP90 decreased collagen

production and activation of the canonical TGFb signalling

cascade [116]. Collagen protein synthesis was significantly

reduced in mice lacking Hsp90aa1 (HSP902/2), implicating

a link between the activity of HSP90 at the plasma membrane

and the cooperative relationship of HSP90 and TGFbRI [116].
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Other investigators have found that myocyte-derived HSP90

modulates collagen by the biphasic activation of Stat-3 in

fibroblasts [117]. Cardiomyocyte-targeted knockdown of

HSP90 in rats challenged with pressure overload (via renal

artery ligation) exhibited a downregulation of collagen syn-

thesis [117]. When cardiac fibroblasts were conditioned with

HSP90-inhibited myocyte supernatant, a role in the regulation

of collagen expression in fibroblasts was established [117].

The mechanism by which myocyte-derived HSP90 orches-

trates myocyte IL-6 synthesis has been detailed at multiple

levels in cardiac hypertrophy [117]. Cardiomyocyte HSP90

regulates IL-6 release by supporting p65-mediated IL-6 syn-

thesis and its release by regulating exosomal vesicles release

[117]. Myocyte-derived HSP90 then orchestrates the biphasic

activation of STAT-3 in cardiac fibroblasts that results in

excess collagen synthesis, resulting in defects in cardiac func-

tion [117]. Together, these mechanisms act in unison to

activate Stat-3 in cardiac fibroblasts, which then synthesizes

excess collagen and leads to the eventual cardiac dysfunction

that occurs [117]. These recent findings give context to the

role of HSP90 isoforms during pathological cardiac remodel-

ling in pressure overload models and the detection of

circulating HSP90 [116].

Cardiac HSP90 proteins have critical roles in supporting

protein maturation and have roles in the development of

mutation-related cardiac arrhythmias. The human ether-a-

go-go-related (hERG) potassium channels in cardiomyocytes

are essential for the normal coordinated electrical activity in

the heart. Mutations in the hERG gene cause long QT syn-

drome, which predisposes individuals to life-threatening

arrhythmias. More than 100 mutations have been linked to

long QT syndrome in the hERG channels, mainly due to

single-nucleotide changes causing amino acid substitutions

[118]. HSP90 proteins prevent the aggregations of misfolded
protein in vitro, with HSP90 inhibition (via geldenamycin)

preventing the maturation of wild-type hERG channels,

which promoted the ubiquitination and degradation of the

protein. A proposed mechanism for the depleted hERG chan-

nels is linked to their retention by the quality control

mechanism in cells [118] because the G601S and R752 W

hERG mutations have been observed to have increased bind-

ing with HSP90 compared to wild-type HERG [119]. A more

detailed review of hERG channel trafficking and HSP90

mechanisms can be found in Dennis et al. [120].
(c) Carboxyl terminus of HSC70-interacting protein
Both the chaperone and the UPSs function to maintain cardio-

myocyte protein quality control, however, a link between these

two systems remained illusive [121,122]. CHIP, a protein that

is ubiquitously expressed but most prominently in striated

muscle (cardiac and skeletal muscle) and the brain, was initially

identified in a screen for tetratricopeptide repeat (TPR) motifs

[123]. CHIP possesses three domains: a TPR domain at its

amino terminus responsible for protein–protein interactions,

a central charged domain and the U-box domain at its carboxyl

terminus, which binds E2-conjugating enzymes and harbours

ubiquitin ligase capabilities (figure 6a). Through its TPR

domain CHIP interacts with the EEVD motif at the carboxyl

terminus of HSPs HSP70, HSC70 and HSP90 [89,124]. The

U-box structure is similar to RING domains, except that

the U-box lacks a zinc-binding motif, instead using salt-

bridges to stabilize the structure [125]. The co-chaperone

CHIP plays a key role in both protein folding by regulating

its co-chaperones and in protein degradation as a ubiquitin

ligase. This unique combination of molecular chaperone and

ubiquitin ligase capabilities allows CHIP to make protein

triage decisions: refold the misfolded protein with its co-
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chaperones or if the protein cannot be repaired, ubiquitinate

the misfolded protein targeting for protein degradation by

the proteasome [122]. Thereby CHIP is a primary effector of

cardiomyocyte protein quality control, but how does CHIP

discriminate between what is to be refolded and those to be

degraded? When a co-chaperone cannot refold a misfolded

protein, CHIP will bind to its co-chaperone and ubiquitinate

the misfolded protein for degradation [67].

CHIP forms a multi-protein complex to facilitate protein

degradation. BAG-1 connects the HSC70–CHIP complex with

the proteasome through binding Hsc70 and the proteasome

simultaneously [126]. It has also been speculated that Bag-1

recruits and binds its cofactor, HSC70, thus CHIP to the protea-

some [127,128]. CHIP was immunoprecipated with the a7

subunit (also known as the HC8 subunit) of the 26S proteasome

in COS-7 cells [129], however, the presence of BAG-1 was not

assessed. CHIP is also linked to protein degradation by auto-

phagy during exercise [130]. It has been speculated that CHIP

shuttles proteins towards autophagy when in complex with

BAG-3 [128,131]. In neurons, CHIP was revealed to facilitate

the degradation of a-synuclein mediated by either the protea-

some or autophagy route [132]. Collectively, these findings

link the detection of misfolded proteins to their ubiquitination

to their shuttling for protein degradation to the proteasome or

lysosome, all of which are dependent on the proteins that CHIP

is in complex with (figure 6b).

CHIP overexpression or deletion does not alter basal car-

diac function. However, once the heart is challenged, CHIP

modulation has a profound cardiac effect [133]. CHIP2/2

mice develop exaggerated cardiac hypertrophy, evidenced

by increased cardiomyocyte size, heart weights and wall

thicknesses in response to exercise or pressure overload

[130,134]. Following voluntary wheel running exercise,

CHIP2/2 mouse hearts displayed a further increase in

heart weight to body weight, cardiomyocyte cross-sectional

area and wall thickness compared with wild-type mice

[130]. Subjecting CHIP2/2 mice to pressure overload resulted

in a 35% mortality within the first week while the wild-type

mice had no mortality in the same period [134]. CHIP2/2

mice also exhibited exaggerated cardiac hypertrophy and

fibrosis along with a dramatic decline in cardiac function

compared with control mice following pressure overload.

Interestingly, CHIP2/2 cardiomyocytes also had a decline

in mitochondrial density, which was attributed to decreased

peroxisome proliferator-activated receptor gamma coactiva-

tor 1-alpha (PGC1-a) and oxidative phosphorylation

(OxPhos) in CHIP2/2 myocardium [134]. These data suggest

CHIP has a role in maintaining mitochondria during the

development of left ventricular hypertrophy.

MI/IR injury damages intracellular proteins, impairs

protein degradation processes, leads to cardiomyocyte apopto-

sis and reduces cardiac function [135]. In response to MI or IR

injury, CHIP2/2 mice developed 50% larger infarcts, had a

higher incidence of arrhythmias, decreased survival and a fail-

ure to upregulate Hsp70 in comparison to wild-type control

mice [133]. There was also a dramatic increase in cardiomyocyte

apoptosis in CHIP2/2 in response to IR injury [133]. Sub-

sequent investigations have revealed this is in part due to an

accumulation of the tumour suppressor/pro-apoptotic, p53,

in CHIP2/2 hearts during IR [136]. Conversely, mice with car-

diac-restricted CHIP overexpression were protected from MI as

evidenced by a decreased infarct size, cardiomyocyte apoptosis,

inflammation, fibrosis and heart weight to body weight
compared with wild-type controls [136,137]. CHIP overexpres-

sion mice also exhibited improved cardiac function and a

prolonged lifespan after suffering an MI [136,137]. Addition-

ally, mice with CHIP overexpression showed increased post-

MI angiogenesis in the heart [137]. Taken together, these data

suggest that mechanisms increasing myocardial CHIP levels

act as a novel therapeutic strategy for cardiac hypertrophy

and myocardial ischaemia to improve cardiac function.

An emerging area of interest is the role CHIP has in reg-

ulating intracellular protein signalling. CHIP knockdown in

HL-1 cells increased protein kinase B (Akt) phosphorylation

at S473 at baseline and in response to IGF stimulation [130].

Akt was also phosphorylated at S473 more in CHIP knockout

mice following cardiac pressure overload compared with

their WT littermates [134]. Activation of the IGF-1/Akt sig-

nalling pathway induces the development of cardiac

hypertrophy [138,139]. Interestingly, during stress, CHIP

was shown to ubiquitinate Akt for degradation by the protea-

some, thereby acting as a negative regulator of Akt signalling

[140]. In response to cardiac pressure overload, there is an

increase in AMP-activated protein kinase (AMPK) signalling

in WT mice but not in CHIP2/2 mice. AMPK and its protein

substrate ACC are less phosphorylated in CHIP2/2 mice

during pressure overload, indicating decreased AMPK

activity, despite an increased amount of LKB1, an

upstream-positive regulator of AMPK [134]. The authors pro-

pose CHIP enhances LKB1 phosphorylation, thus activation,

of AMPK during cardiac stress [134]. CHIP knockout/knock-

down results in increased Akt activation and decreased

AMPK activation. The mechanistic target of rapamycin

(mTOR), an activated and essential protein kinase during car-

diac hypertrophy [141], is by regulation by Akt (positively)

and AMPK (negatively). Indeed, an enhancement of mTOR

activity, as measured by phosphorylation of its protein sub-

strates, was detected in CHIP2/2 mouse hearts during

cardiac hypertrophy [134].

In the heart, CHIP emerged as a protein containing a TPR

domain (binding molecular chaperones) and ubiquitin ligase

activity allowing it to connect the molecular chaperone system

and the UPS. With these properties, CHIP was identified as a

co-chaperone with regulatory functions in protein quality

control (recognizing damaged/misfolded protein and ubiquiti-

nating them to target proteasome-mediated degradation), a

rheostat of cardiac disease mediating the pathogenesis of

cardiac hypertrophy and myocardial ischaemia reperfusion

injury, and as a regulator of AMPK sensor of cardiac stress

(recognizing ATP depletion/increased AMP) and downstream

AMPK-mediated intracellular signalling. While we have accu-

mulated a vast array of knowledge about CHIP’s functions,

targets and role in cardiac disease, we have no information

on how to pharmacologically affect CHIP functions. Discover-

ing the mechanisms that regulate the activity or expression of

CHIP within cardiomyocytes may translate the powerful cardi-

oprotective function of CHIP to the clinic.
2. Bcl-2 associated athanogene 3
Bcl-2 associated athanogene 3 (BAG-3) is a member of a

highly conserved, six-member family of anti-apoptotic BAG

proteins, all of which are characterized by an approximately

40 kDa BAG domain located near the C-terminus. It is

found predominantly in cardiac and skeletal muscle but
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also in subsidiary amounts in the brain, nervous system and

cancer cells. As its name suggests, one of its first known bind-

ing partners is Bcl-2, with which it interacts to suppress

apoptosis [142]. BAG proteins are involved in a variety of cel-

lular mechanisms such as stress response, protein folding,

apoptosis, autophagy, CMA/chaperone-assisted selective

autophagy (CASA) and the UPS. BAG-3 has recently been

the focus of an influx of research, as it is thought to be

involved in a variety of disease models such as Alzheimer’s

disease [143], cancer [144–146], skeletal muscle/myofibrillar

myopathies (MFM) [147–150] and heart failure [151–156].

This section will focus on what is known about the relation-

ship between BAG-3 and HSP70, the implication of BAG-3 in

heart disease and its role in protein quality control.

One of the first discoveries concerning BAG-3 was its role

as a co-chaperone to HSP70/HSC70. BAG-1 was discovered

by the interaction of its BAG domain and the ATPase

domain of HSP/HSC 70 [157]. Of the BAG proteins, the

relationship between BAG-1’s four isoforms and HSP70 has

been a large focus of study, with the inhibition or promotion

of substrate release isoform dependent [158,159]. Along with

BAG-2, BAG-4 and BAG-5, BAG-3 was discovered via a

yeast-two hybrid screen using HSP70 as bait [160]. BAG-3

is now well known to be a co-chaperone to many different

HSPs. The ability of BAG-3 to be such a successful co-chaper-

one is influenced by its various domains. In addition to the

BAG domain, BAG-3 comprises a WW domain, a proline-

rich region (PxxP) and two isoleucine–proline–valine (IPV)

motifs (figure 7). The WW and PxxP domains are believed

to facilitate complexes among BAG-3, HSP/HSC 70 and

other proteins, while the IPV motifs mediate an interaction

between BAG-3 and the small heat shock proteins (sHSP/

HSPB8), which are involved in autophagy [161,162]. As

HSPs are induced when the cell experiences stress, when

exposed to heat and heavy metal exposure, HeLa cells exhibit

an increase in expression of BAG-3 and HSP70, indicating

that both chaperones play a role in protecting against cellular

stress and that this stress response could be activated by stres-

ses beyond temperature and heavy metals [163].

BAG-3 and its interaction with HSP70 are critical for cardiac

and skeletal muscle development and in vascular disease

pathogenesis. Constitutive deletion of BAG-3 is not embryonic

lethal, but results in multiple defects, including delayed growth

compared with wild-type litter mates and premature death by

day 25 [147]. BAG-32/2 mice also develop cardiomyopathy

and non-inflammatory MFM [147]. While expression of BAG-

3’s two well-known binding partners Bcl-s and HSP70 do not
change with decreased amounts of BAG-3, it can be inferred

that without BAG-3, these proteins are unable to contribute

to cell maintenance as they would in a control model [147].

From a clinical perspective, it was observed that patients with

end stage heart failure have a decrease in BAG-3 in their

heart tissue [154], while other studies have detected increased

amounts of BAG-3 in the serum of heart failure patients,

suggesting that cardiomyocytes release BAG-3 upon the

influx of stress [164]. Additionally, BAG-3 has been implicated

in the maintenance of the vasculature. BAG-3 is capable of

evoking a dose-dependent vasorelaxation in resistance vessels,

typically involved in blood pressure regulation [165]. The

mechanism appears to be BAG-3’s effect on the activation of

the PI3 K/Akt signalling pathway in endothelial cells, leading

to nitric oxide release [165]. Subsequent studies have found that

BAG-3 is involved in advanced glycation end product (AGE)-

induced proliferation and migration of vascular smooth

muscle cells, implicated in the vascular dysfunction in diabetes

[166]. AGEs were found to increase ROS production, promot-

ing the proliferation and migration of vascular smooth

muscle cells by increasing the expression of BAG-3 [166].

Together, these studies demonstrate a critical role for BAG-3

in both cardiac and skeletal muscle development and implicate

BAG-3 in potentially having critical roles in vascular biology

and disease.

An important study investigated the relationship between

BAG-3 and HSC70 in a BAG-3 knockdown model [167].

Using rat neonatal ventricular cardiomyocytes (NVCM),

BAG-3 was knocked down via shRNA and the cells were

stretched to simulate mechanical stress. Increased stretch

resulted in increased myofibrillar disarray and z-disc destabi-

lization. Further, it was hypothesized that BAG-3 plays a role

in maintaining structural stability by facilitating the bond

between capZb1, an actin capping protein, and Hsc70. It

was observed that BAG-3 and Hsc70 formed a complex

with capZb1, promoting myofibril stability and facilitating

the localization of HSC70 from the cytoplasm to the z-disc.

In the absence of BAG-3 to localize capZb1, it is degraded

by the proteasome. In addition to being vital for myofilament

structure, BAG-3 is also important for cellular contraction. In

adult mouse, left ventricular myocytes BAG-3 localizes to the

sarcolemma and t-tubules and acts to modulate myocyte con-

traction through its interactions with b1-andrenergic receptor

and L-type Ca2þ channels [168]. Whether this represents a

shift in BAG-3 signalling between neonatal and adult myo-

cytes is not yet clear. Mutations in BAG-3 (P209 L) have

resulted in a long QT phenotype, making it possible that



Table 2. A list of known BAG-3 mutations, the type of mutation and the disease they were associated with.

mutation
type of
mutation

associated
disease reference

R71 W missense DCM Norton et al. [151]

R90 STOP missense DCM Norton et al. [151]

I94F missense DCM Villard et al. [170]

H109R missense DCM Norton et al. [151]

P115S missense DCM Villard et al. [170]

R123 STOP missense DCM Norton et al. [151]

C151R missense DCM Villard et al. [170]

P209 L missense MFM Selcen et al. [171]

V216 deletion DCM Norton et al. [151]

R218 W missense DCM Arimura et al. [152]

I258 deletion DCM Villard et al. [170]

R258 W missense MFM Lee et al. [172]

L260 deletion MFM Sato et al. [149]

A262T missense DCM Norton et al. [151]

R309 STOP missense DCM Villard et al. [170]

Q353R frameshift DCM Franaszczyk et al. [173]

G379A frameshift DCM Franaszczyk et al. [173]

P380S missense DCM Villard et al. [170]

P384 deletion DCM Villard et al. [170]

E393 deletion DCM Villard et al. [170]

P407 L missense DCM Villard et al. [170]

Y451 STOP missense DCM Franaszczyk et al. [173]

E455 K missense DCM Villard et al. [170]

L462P missense DCM Arimura et al. [152]

V468M missense DCM Villard et al. [170]

R477H missense DCM Norton et al. [151]
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BAG-3 acts to support ion channel expression/function (in

addition to L-type Ca2þ channels) [169]. Further work is

necessary to determine how BAG-3 and HSC70 signalling

change as the cardiomyocyte matures, and what other pro-

teins may be involved.

Upwards of 20 potentially pathogenic BAG-3 mutations

have been discovered (table 2). About one-third of these are

found in the BAG domain or cause a deletion or premature

stop codon responsible for preventing transcription of most

of the N-terminus (figure 7). While other mutations seem to

have no known deleterious effects on the patient, many cause

heart disease such as DCM, which presents as a heart with

enlarged, thin-walled chambers and an inability to pump

blood effectively [152,154,170,173–175]. Other mutations

result in MFMs that may or may not be present with cardio-

myopathies [148,151,152,171,172,176–179]. In many cases, a

patient is initially diagnosed with MFM, but later develops

and succumbs to issues stemming from heart failure. MFMs

affect skeletal muscle, and result in progressive muscle weak-

ness and atrophy. Mutations that cause this disease are not

limited to BAG-3, and have been found in vital intermediate

filament proteins such as desmin [180–188], the client protein

of the chaperoneaB-crystallin (encoded by HspB5) [189,190]. In
many of these mutations that lead to cardiac and MFMs, sarco-

mere disorganization is characteristic. Given that contraction of

a myocyte depends on the ability of filaments to slide past one

another, a disruption in the localization of these myofilaments

greatly and drastically impacts the cell, and as a result, the

whole heart/skeletal muscle’s ability to function properly.

Contributing to impeded contraction, these myopathies are

characterized by aggregations of proteins such as desmin,

aB-crystallin, dystrophin and many others that are indicative

of myofilament disintegration [171].

One particular mutation, Pro209Leu, causes severe MFM

and hypertrophic/restrictive cardiomyopathy, often present-

ing in early childhood [171]. This mutation has been

investigated in multiple models, all of which have slightly

differing phenotypes. It is hypothesized that the difference

in phenotype seen among human, cell and animal models

is due to different amounts of induced Pro209Leu mutant

expression [179]. When investigating muscle biopsies of

patients with this mutation, BAG-3 was discovered to

remain localized at the z-disc regions despite its disinte-

gration and large protein deposits. There was a severe

decrease in both BAG-3 and HSP70 compared with con-

trol patients [169], indicating that BAG-3 and Hsp70 are
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important for z-disc maintenance. By contrast, when this

mutation was expressed in neonatal rat cardiomyocytes and

cardiomyocyte cell line H9c2s, there were no reductions

in function compared with control cells. However, when

expressed in the skeletal muscle cell line C2C12, this mutation

affected the multi-nucleation of the cells into myotubes [152].

This study concluded that this mutation does not affect

cardiomyocyte function, but affects cellular development.

When put in the context of an inducible myocyte-specific

transgenic mouse model [179,191], the Pro209 L mutation

induces left ventricular dysfunction indicated by depressed

fractional shortening. As seen in human patients, there were

protein accumulations identified as pre-amyloid oligomers,

a condition often observed in HSP mutations, which is unsur-

prising given that this mutation occurs in the IPV domain of

BAG-3, which is known to be vital for interaction with HSPB

proteins [191,192]. In addition, wild-type BAG-3 becomes

haploinsufficient, and there is an increase in p38 signalling,

all of which can be hypothesized to contribute to heart failure

[179]. This study also saw an alteration in mitochondrial

dynamics with the expression of mutant BAG-3. Wild-type

BAG-3 and HSP70 have been linked to mitochondrial quality

control in cardiomyocytes, with a knockdown in BAG-3

resulting in reduced mitophagy, lending itself to the hypoth-

esis that BAG-3 is necessary to maintain mitochondrial

homeostasis under cellular stresses induced with disease

[193].

BAG-3 has been hypothesized to be involved in protein

quality control in macroautophagy, CMA and the UPS.

Many studies have attributed the onset of disease to a failure

of one or more of these systems [194–196]. While not specific

to the heart, the role of BAG-3 in autophagy and the UPS is

starting to be elucidated. It has been hypothesized that

under normal physiological conditions, BAG-1-HSP70 are

mainly responsible for degrading misfolded proteins via the

UPS. During ageing or pathological stress, BAG-3 begins

interacting with HSP70 and starts clearing these proteins

via this CMA. This change in degradation pathways has

been referred to as a ‘BAG-1/BAG-3 switch’ [196,197].

Several studies have investigated the relationship among

BAG-3, Hsp70 and HspB8 in macroautophagy and the UPS

to degrade misfolded substrates [131,197,198]. This BAG-3

complex interacts with the microtubule motor dynein

and contributes to shuttling misfolded and aggregated pro-

teins to the aggresome, a perinuclear compartment where

degradation substrates are sequestered [198]. When BAG-3 is

blocked from binding with dynein, aggregation-prone proteins

are ineffectively degraded and are connected with neurode-

generative diseases such as ALS [199].

As some cardiomyopathies and MFMs involved the

accumulation of misfolded proteins, an alteration to any

protein quality control system may contribute to this accumu-

lation. A mutation in the small HSP ab-crystallin (CryAB)

gene has been attributed to MFM [190,200] and overex-

pression of this mutation leads to toxic oligomers

detected in the heart [7,201]. It was observed that BAG-3

forms a complex with CryAB to inhibit protein aggregation

and suppress cell death caused by a CryAB mutant [202].

HSP70 is known to bind to CHIP to inhibit aggregation

and it is thought that there may be a connection between

the BAG-3 and HSP–CHIP complexes to cooperatively inhi-

bit aggregation of mutant CryAB. This relationship is more

fully investigated in 1(c).
3. Therapeutic implications: extracellular HSP70,
HSP90 and BAG-3 in cardiovascular disease

There is limited information currently on the role of extra-

cellular HSPs in the pathogenesis of heart failure, with the

entirety of this review focusing on intracellular HSPs. Thera-

peutics to increase HSPs would likely be most applicable in

acute ischaemic heart diseases. However, more chronic dis-

eases (e.g., hypertension) may not be helpful. For example,

while increasing HSP70 in the heart protects against acute

ischaemia reperfusion injury, elevated HSP70 in transgenic

animals accelerated heart failure in settings of pressure over-

load or DCM [56,57]. That said, there are pharmacological

options that increase intracellular HSP70 (e.g., carbenoxolone,

2-cyclopenten-1-one) that have been primarily tested in can-

cers and infections, as recently reviewed [50].

Extracellular HSP70 has been identified as an independent

prognostic marker of mortality in patients with heart failure

[203] and found to be an independent prognostic marker of car-

diac arrest patients [204]. In the development of hypertension-

induced cardiac hypertrophy and fibrosis, extracellular HSP70

has been identified. Interestingly, HSP70 is a ligand for

damage-associated molecular pattern receptors (DAMPS),

which can induce inflammation in the myocardium [205]. In

hypertensive animals, HSP70 was found elevated [205]. Tran-

scriptional inhibition of (intracellular) HSP70 promoted

cardiomyocyte hypertrophy and dysfunction while protecting

animals from cardiac fibrosis development [205]. Conversely,

inhibiting extracellular HSP70 with anti-HSP70 antibodies

attenuated hypertension-induced cardiac hypertrophy and

fibrosis without affecting haemodynamics [205]. The cardio-

protective response was thought to be due to the inhibition of

the extracellular interaction with DAMPs, reducing infiltrating

macrophages, decreasing pro-inflammatory factors such as

MCP-1 (monocyte chemoattractant protein-1) and the pro-

fibrotic TGFb1, attenuating p38 and ERK MAPK signalling

pathways [205].

Extracellular HSP90 has recently been described in the con-

text of the heart. During the development of pathological

cardiac hypertrophy, increases in left ventricular mass occur

in parallel with extracellular matrix deposition, leading to

fibrosis and heart failure. The major mediator of this process

is cardiomyocyte-derived transforming growth factor beta

(TGFb), which is secreted by cardiomyocytes to act upon fibro-

blasts, which then secrete collagen. The extracellular HSP90

seems to play a role in the stabilization of TGFb signalling by

stabilizing the TGFb cascade [116]. In these studies, extracellu-

lar HSP90 was identified complexed with fibroblast TGFb

receptor, with in silico studies predicting that HSP90 dimers

and the TGFb receptor domain interact [116]. Both Hsp90aa1

and Hsp90ab1 isoforms were identified in complex with the

TGFb receptor. Inhibiting extracellular HSP90 decreased col-

lagen production and stimulation of the canonical TGFb

signalling pathway [116]. As fibrosis is a major contributor to

the aetiology of many chronic heart diseases including ischae-

mic heart disease and heart failure, targeting extracellular

HSP90 may be a therapeutic consideration in the future, with

functions distinctly different from those found intracellularly.

Like HSP70 and HSP90, elevated circulating extracellular

BAG-3 has recently been identified in patients with advanced

heart failure, suggesting a useful biomarker in monitoring

heart failure progression [155,164,206]. Subsequent studies
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investigated the possible role of elevated BAG-3 in regulating

haemodynamics [165]. In these studies, BAG-3 was found to

evoke a dose-dependent vasorelaxation, exerting its effects on

resistance vessels typically involved in blood pressure regu-

lation [165]. BAG-3’s effects were through activation of

PI3 K/Akt signalling, resulting in endothelial cell release of

nitric oxide [165]. While complementary to the studies of

intracellular BAG-3, the increases in extracellular BAG-3

seen in heart failure may be one previously unrecognized

compensatory mechanism in regulating blood pressure. By

contributing to increased endothelial cell NO release, extra-

cellular BAG-3 may have therapeutic value regulating

blood pressure outside of its growing important repertoire

of intracellular functions in cardiovascular disease.
.R.Soc.B
373:20160530
4. Conclusion
Thematically, genetic regulation of the expression of intra-

cellular HSPs and their co-chaperones has revealed their

critical roles in supporting protein stability (with anti-

aggregate activities) and signalling pathways in the heart.

Therapeutically enhancing intracellular HSP activities by
drugs on the market (e.g., geranylgeranylacetone, an anti-

ulcer medicine supporting HSP70) and protecting against

MI experimentally [207] may be one way in which our cur-

rent knowledge can be applied soon. In addition, emerging

evidence for extracellular HSP70, HSP90 and BAG-3’s role

in mechanistically regulating the pathophysiology of disease

is revealing important new pathways for heart failure diag-

nosis/prognosis and possibly therapy. However, a better

understanding of how both intracellular and extracellular

HSPs mediate disease will be necessary to best optimize

therapies for specific diseases and stages, given the plethora

of contributors to protein misfolding and proteinopathies

(including those caused by mutations) in heart failure.
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